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Abstract: The essential factors of information-aware systems are heterogeneous multi-sensory devices.
Because of the ambiguity and contradicting nature of multi-sensor data, a data-fusion method based
on the cloud model and improved evidence theory is proposed. To complete the conversion from
quantitative to qualitative data, the cloud model is employed to construct the basic probability
assignment (BPA) function of the evidence corresponding to each data source. To address the issue
that traditional evidence theory produces results that do not correspond to the facts when fusing
conflicting evidence, the three measures of the Jousselme distance, cosine similarity, and the Jaccard
coefficient are combined to measure the similarity of the evidence. The Hellinger distance of the
interval is used to calculate the credibility of the evidence. The similarity and credibility are combined
to improve the evidence, and the fusion is performed according to Dempster’s rule to finally obtain
the results. The numerical example results show that the proposed improved evidence theory
method has better convergence and focus, and the confidence in the correct proposition is up to 100%.
Applying the proposed multi-sensor data-fusion method to early indoor fire detection, the method
improves the accuracy by 0.9–6.4% and reduces the false alarm rate by 0.7–10.2% compared with
traditional and other improved evidence theories, proving its validity and feasibility, which provides
a certain reference value for multi-sensor information fusion.

Keywords: sensor data fusion; cloud model; Dempster–Shafer evidence theory; cosine similarity;
Hellinger distance

1. Introduction

Heterogeneous multi-sensors play an important role in information perception, the
acquired data may contain some ambiguous and conflicting information due to the limita-
tions of multi-sensor devices’ measurement accuracy and the complexity of the working
environment, which may result in inaccurate data-fusion decisions [1]. Consequently, the
way to better handle multi-sensor data and improve data-fusion accuracy is a popular
research direction in the field of data-fusion technology. Common data-fusion algorithms
currently include Kalman filtering [2], Bayesian estimation [3], Dempster–Shafer (D-S)
evidence theory [4], and artificial neural networks [5], etc. Bayesian networks and D-S
evidence theory are commonly used to deal with the uncertainty in multi-sensor data,
which frequently results in anomalous data. However, the Bayesian estimation fusion
method requires access to prior data to generate new probability estimates, which is not
always possible [6]. Dempster–Shafer (D-S) evidence theory is a theory of fuzzy reasoning
proposed by Dempster in 1967 [7] and subsequently refined by Shafer [8]. It has been
widely employed in areas such as target identification [9], multi-attribute decision analy-
sis [10], fault diagnostics [11], and robotics research [12] due to its capacity to better handle
uncertain and unknown situations with unknown prior probabilities. Although the D-S
evidence theory has been applied in a number of fields, it has certain problems. One is
that there is no unified method for determining the BPA function, and the other is that the
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evidence theory is prone to produce results that contradict the facts when dealing with
highly conflicting evidence, and there is no unified method for solving this problem. Most
scholars have done some research on the above two problems.

Determining the BPA function is an important step in evidence theory, which influ-
ences the accuracy of fusion results to some extent. Many researchers have proposed
various methods for determining BPA functions [13–15]. The cloud model [16] is a concept
proposed by Professor Li in 1995, which is a cognitive model based on probability statistics
and fuzzy set theory. It can well portray the fuzziness and randomness of information
and is applicable to the field of multi-sensor information fusion. Peng et al. [17] improved
the multi-criteria group decision method by using a cloud-model method to deal with
uncertain information based on information fusion and information measurement, Liu
et al. [18] used the cloud model to describe the load direction in topology optimization
with uncertainty, and Peng et al. [19] proposed an uncertain pure linguistic information
multicriteria group decision-making method based on the cloud model, demonstrating
the advantage of the cloud model in dealing with uncertain information. In this paper, the
cloud model is used to determine the BPA function to convert measured quantitative data
to qualitative concepts.

The directions for improving the accuracy of traditional evidence theory fusion can be
divided into two major areas: improvement of combination rules [20,21] and improvement
of the body of evidence. The former blames the D-S rule for producing results that contradict
the facts, achieving certain results but destroying the D-S rule’s own advantages, such as
the law of exchange and the law of union. The latter believes that the problem stems from
the unreliability of the information source and uses an improved approach to the body of
evidence to deal with the conflict, which retains the good characteristics of Dempster’s
rule and weakens the influence of conflicting evidence on the fusion result. As Haenni [22]
points out, the improvement of the body of evidence is more reasonable both from an
engineering and mathematical standpoint. The calculation and assignment of weights
to the body of evidence is critical to improving the body of evidence, and some scholars
have conducted a series of studies on how to evaluate the body of evidence’s weights.
Murphy [23] proposed a simple averaging method to assign the same weight to each
piece of evidence, but it ignores the relationship between the evidence and is therefore
unreasonable. Deng et al. [24] proposed a more convergent method based on the rules
of evidence theory after weighted average processing of evidence based on trust degree,
but it does not take into account the characteristics of the evidence itself. There are two
methods for determining the weight of the body of evidence: according to the relationship
between the evidence and according to the characteristics of the evidence itself. For the
former, Wang et al. [25], Jousselme et al. [26], and Dong et al. [27] measure the relationship
between evidence by using the Pignistic probability distance, the Jousselme distance, and
cosine similarity, respectively; however, using a single measure of evidence relationship to
find the weight of evidence does not accurately describe the relationship between evidence
in certain cases. For the latter, scholars have proposed various uncertainty measures based
on information entropy, such as Yager’s [28] dissonance measure based on the likelihood
function and Deng’s [29] evidence uncertainty measure based on Shannon entropy, but
such methods deal with evidence in a one-sided manner, replacing the entire uncertainty
interval with only part of the evidence information. Deng et al. [30] developed a method
for evaluating evidence uncertainty based on the Hellinger distance of the uncertainty
interval, which is simple to compute and measures uncertainty well for a better integration
effect. The relationship between evidence and the characteristics of the evidence itself do
not affect each other and are both valid information available within the evidence, yet some
current scholarly approaches to improving evidence theory consider only one of them to
deal with the evidence, undermining the integrity of the evidentiary information. Some
scholars have proposed ways to improve the evidence theory based on both, but they both
have some room for improvement. For example, Tao et al. [31] proposed a multi-sensor
data-fusion method based on the Pearson correlation coefficient and information entropy.
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Xiao et al. [32] proposed a multi-sensor data-fusion method based on belief dispersion of
evidence and Deng entropy [29]. Wang et al. [33] combined the Jaccard coefficient and
cosine similarity to calculate evidence similarity, combined with evidence-based precision
and entropy of evidence to calculate evidence certainty. Although these methods combine
the relationship between evidence and the characteristics of evidence itself, they all have
certain disadvantages. The Pearson correlation coefficient is only used to portray the linear
correlation between normally distributed attributes, which is more demanding on evidence.
The Jaccard coefficient and cosine similarity sometimes cannot measure the relationship
between evidence correctly. Using information entropy cannot measure the characteristics
of evidence itself comprehensively, etc.

In order to more accurately measure the relationship between evidence and the char-
acteristics of evidence itself, and improve the accuracy of data fusion, this paper proposes
an improved evidence-theory method based on multiple relationship measures and fo-
cal element interval distance. We combine the Jousselme distance, cosine similarity and
the Jaccard coefficient to calculate the similarity between the evidence, and we use the
Hellinger distance between the evidence determination intervals to measure the certainty
of the evidence. Based on these calculations, the evidence weight coefficients are then
jointly improved. Finally, the original evidence is average-weighted and fused by using the
Dempster rule to produce the result. In addition, we analyze the results of the arithmetic
examples to demonstrate the validity of the proposed improved evidence theory. By using
the aforementioned improved evidence theory along with cloud model, we developed a
multi-sensor data-fusion method. The BPA functions corresponding to each data source
are determined based on the cloud model, which converts the collected quantitative data
into stereotypical concepts. The fusion results are obtained by fusing each BPA function by
using the improved evidence theory mentioned above.

Multi-sensor data-fusion technology can combine relevant information within multi-
ple sensors, thereby increasing the safety and reliability of the overall system. The proposed
multi-sensor data-fusion method can be utilized in multi-sensor systems in various fields,
such as fault-determination systems, target identification systems, environmental moni-
toring systems, and intelligent firefighting systems, among others. Due to external factors
or their own aging faults, one or more sensors may acquire incorrect information, causing
the fusion results to be contradictory to the facts. The proposed method overcomes the
problem, improves the handling of ambiguity in sensor data, increases the reliability of data
fusion results, and makes it easier for people to make appropriate decisions. We establish
an early indoor fire detection model to test the efficacy of the proposed strategy. The
proposed method improves accuracy by 0.7–10.2% and reduces false alarm rate by 0.9–6.4%
when compared to the traditional evidence theory and other improved evidence theories.
It has better fusion performance, which provides some reference value for multi-sensor
data fusion.

2. Preliminaries

This section provides a brief overview of D-S evidence theory and the cloud model.

2.1. Cloud Model

Let X be a quantitative domain (X = {x}) and U be a qualitative concept on the
domain X. For any element x(x ∈ X) and x is a single random realization on U, the
certainty of x to U is y(x) ∈ [0, 1], which is a random number with stable tendency, the
distribution of x over the domain X is called a cloud model and each (x y(x)) becomes a
cloud drop [34].

The cloud model completes the conversion of quantitative data to qualitative concepts
through numerical characteristic expectation (Ex), entropy (En), and hyperentropy (He),
where expectation is the expected value of the distribution of cloud droplets in the theoreti-
cal domain, entropy reflects the dispersion of cloud droplets, and hyperentropy reflects
the dispersion of entropy. Because the values of the characteristics corresponding to the
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evaluation indices have some stability across the multi-sensor domain and the interval
distributions generally follow a normal distribution that is more realistic, the normal cloud
model is used in this research. Each parameter’s computation formula is presented in
Equation (1), 

Exij =
Cij,max+Cij,min

2

Enij =
Cij,max−Cij,min

2.355
He = λi

, (1)

where
[
Cij,min, Cij,max

]
are the range of values of the evaluation interval corresponding

to the jth certain evaluation index inside the ith data type of the multi-sensor system,
and λi is a value determined by experts based on experience and is typically 0.01. It
is worth noting that the maximum and lower bounds of each data source’s evaluation
value are the expectation of both cloud Ex values. The entropy of the traditional cloud
model is Enij = (Cij,max − Cij,min)/6, when the data is near the endpoint value, and the
corresponding degree of certainty tends to 0. However, the endpoint value of the interval
divided by each level is the transition boundary value of the two adjacent levels, and the
edge value should belong to the upper and lower intervals at the same time. Therefore, in
order to represent the boundary ambiguity of adjacent ranks, the divisor for finding the
entropy is determined to be 2.355.

Let (Exij, Enij, He) be the three numerical properties of a cloud for a given one-dimensional
domain, and the procedure for this one-dimensional normal cloud generator is:

1. Generate a normal random number E′nij with Enij as the expected value and He
2 as

the variance.
2. Generate a normal random number xij with Exij as the expected value and E′nij

2 as
the variance.

3. Calculate yij = exp (− (xij−Exij)
2

2E′nij
2 ), where xij is a specific quantified value, yij is the

degree of determination of xij on qualitative index U, and (xij, yij) is the cloud drop.
4. Repeat the above steps until N cloud drops are generated.

2.2. Dempster–Shafer Evidence Theory

Let Θ = θ1, θ2, . . . , θn be a finite identification framework in the D-S evidence theory,
where Θ = θ1, θ2, . . . , θn are all possible events and θi(i = [1, n]) is a subset of the recogni-
tion frame Θ. The underlying trust function m be a mapping from the set 2Θ → [0, 1] , with
A being any subset of Θ and it satisfies{

m(∅) = 0
∑A⊂Θ m(A) = 1

(2)

We call m the basic probability assignment function (BPA function for short) of Θ [35],
where m(∅) denotes the degree of confidence of the evidence in the empty set. If m(A) > 0,
then A is called a focal element within the identification framework Θ, and m(A) reflects the
degree of trust of the evidence in A. In particular, the condition m(∅) = 0 is not necessarily
satisfied. For the open evaluation set space, m(∅) is not necessarily equal to 0. In this paper,
we only consider the case in the closed evaluation set space.

For recognition framework Θ = θ1, θ2, . . . , θn and BPA function m(A), Bel(A) is defined
as the confidence function, which is the sum of the potential probability assignments
of all subsets of A, indicating the degree of certainty of the proposition A, as shown in
Equation (3):

Bel(A) = ∑B⊂A m(B), ∀A ⊂ Θ . (3)

Pl(A) is the likelihood function of A, as defined in Equation (4), indicates the degree of
trust that does not deny A,

Pl(A) = 1− Bel
(

A
)
= ∑B∩ A 6=∅ m(B). (4)
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The intervals of evidence are shown in Figure 1, where [0,Bel(A)] is the support
interval of proposition A, [Bel(A), Pl(A)] is the uncertainty interval of proposition A,
and [Pl(A), 1] is the rejection interval of evidence. Among them, support interval and
rejection interval together constitute the definite interval of evidence, which can represent
the certainty of evidence.
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Let m1 and m2 be two BPA functions on the same finite identification frame Θ, with
focal elements B1, B2, . . . , Bn and C1, C2, . . . , Cn. Then the D-S evidence theory combination
rule rules are as follows in Equations (5) and (6):

m(A) =


1

1−K ∑Bi∩ Cj=A m1(Bi)m2
(
Cj
)

, A 6= ∅

0 , A = ∅
(5)

K = ∑Bi∩ Cj=∅ m1(Bi)m2
(
Cj
)
, (6)

where K is the coefficient of evidence conflict between m1 and m2, the higher K value
indicates the greater the degree of evidence conflict, and the values of K range from 0 to 1.

3. The Proposed Method

Based on the above theoretical knowledge, this paper proposes a heterogeneous data-
fusion method based on a cloud model and improved evidence theory. In order to obtain the
BPA function of evidence more accurately, we consider the ambiguity of multi-sensor data
when completing data transformation by using the cloud model. To improve the reliability
of the fusion results, we propose a new method for measuring the similarity of evidence
and improve the evidence by combining the similarity and certainty of evidence together.
The specific method for determining the BPA function and calculating the similarity of
evidence and the certainty of evidence are described in this section, and finally the overall
steps of the method are proposed.

3.1. Determination Method of BPA Function

It is assumed that the multi-sensor system’s data information is pre-processed to
extract n classes of data, forming n bodies of evidence, i.e., X = (x1, x2, x3, . . . , xn), where
xi(i = [1, n]) is the ith class of data measured by the system. Based on the knowledge
gained from the cloud model, the membership degree µij(k) for the values of discrete
feature variables is calculated as follows in Equation (7):

µij(k) = e
−

(xi−Exij)
2

2E′nij
2

, (7)

where µij(k) is the membership of the ith class of data relative to the jth evaluation index
under the kth judgment within the same acquisition cycle of the multi-sensor system, Exij
is the expectation value of class i data relative to the jth evaluation index obtained in
Equation (1), and E′nij is a normal random number generated with Enij as the expectation
and He as the standard deviation obtained in Equation (1).

k is the number of times the multi-sensor acquires data in the same acquisition cycle,
when k is greater than 1, the membership of class i data with respect to the jth evaluation
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index can be determined by the maximum of the k affiliation values when the feature
parameters have multiple values:

µij = max
(
µij(a)

)
, a = 1, 2, . . . , k. (8)

The multi-sensor membership matrix can be calculated based on the membership
degree µij:

Rn×m =


µ11 µ12
µ21 µ22

. . . µ1m

. . . µ2m
...

...
µn1 µn2

...
...

. . . µnm

. (9)

The elements in each row in Equation (9) represent the membership of the ith (i = 1, 2,
· · · , n) class of data of the multi-sensor for the jth (j = 1, 2, · · · , m) evaluation index, and the
elements in each column represent the membership of all data information collected by the
multi-sensor system at a certain time for the jth (j = 1, 2, · · · , m) evaluation index.

The obtained membership matrix Rn×m basically satisfies the definition of probability
assignment but does not satisfy ∑m

j=1 µij = 1. Considering that the actual use of the sensor
will produce a certain measurement error, the following definition is added to transform
the membership of each evaluation index into a BPA function:

γi = 1−max(µi1,µi2, . . . , µim)
mi(Θ) = γi

mi
(

Aj
)
= (1− γi)

µij,

∑m
j=1 µij

, (10)

where γi denotes the uncertainty of the ith characteristic parameter, mi(Θ) is the basic
probability assignment value of the uncertainty of the ith piece of evidence, and mi

(
Aj
)

is the basic probability assignment value of the jth evaluation index of the ith piece of
evidence.

3.2. Similarity of Evidence

Classical measures for describing the relationship between evidence include: con-
flict coefficient K, Pignistic probability distance, Jousselme distance and cosine similarity,
and so on. The computation of the conflict coefficient K is given in (6), and assuming
that the evidence bodies m1 and m2 are BPA functions of the identification framework
Θ = θ1, θ2, . . . , θn, the calculation of the Pignistic probability distance, Jousselme distance,
and cosine similarity is given below.

1. Pignistic probability distance [25]

Pignistic probability distance is a measure of conflicting relationships between ev-
idence. Let the recognition frame Θ = θ1, θ2, . . . , θn, m is the BPA function of Θ, and if
A ⊆ Θ, then

BetPm(A) = ∑B⊆Θ
|A ∩ B|
|B| m(B) (11)

is said to be the Pignistic probability of the focal element A.
Assuming that BetPm1 and BetPm2 are the corresponding Pignistic probability func-

tions, the Pignistic probability distances are calculated as follows:

di f BetPm1
m2 = maxA⊆Θ(|BetPm1(A)− BetPm2(A)|). (12)

2. Jousselme distance [26]

dBPA(m1, m2) =

√
1
2
(m1 −m2)

TD(m1 −m2), (13)
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where m1 and m2 are the vector forms of the evidences m1 and m2, and D is a 2Θ × 2Θ

positive definite matrix, its mathematical expression is: D =


d11 d12
d21 d22

. . . d1n

. . . d2n
...

...
dn1 dn2

...
...

. . . dnn

,

where the element dij = J
(
θi, θj

)
= |θi∩ θi |
|θi∪ θj| , θi is any focal element in evidence m1 and θj is

any focal element in evidence m2, which can also be called the Jaccard coefficient and can be
used to reveal the relationship between unifocal and multifocal elements of the evidence.

The Jousselme distance is a measure of the conflicting relationships of the evidence,
and the higher its value, the greater the conflict between the evidence.

3. Cosine similarity [27]

The cosine similarity can be used to calculate the similarity of the evidence. The greater
the cosine similarity, the greater the confidence between the evidence.

cos(m1, m2) =
m1·mT

2
||m1||·||m2||

, (14)

where ||mi|| =
√

mi·mT
i .

The accuracy of the various measurements is examined based on the above computation
by calculating the measures under different conditions in conjunction with Example 1.

Example 1. Suppose there are identification frames Θ = {a, b, c, d} with different distribu-
tions of evidence bodies under different conditions, as shown in Table 1.

Table 1. Distribution of different bodies of evidence in different situations.

Situation The Distribution of Evidence Body

Situation 1 m1(a) = m1(b) = m1(c) = m1(d) = 0.25
m2(a) = m2(b) = m2(c) = m2(d) = 0.25

Situation 2 m1(a) = m1(b) = 0.5
m2(c) = m2(d) = 0.5

Situation 3 m1(a) = m1(b) = m1(c) = 1/3
m2(a, b, c) = 1

Situation 4 m1(a) = 0.25, m1(b) = 0.65, m1(abc) = 0.1
m2(a) = 0.65, m2(b) = 0.25, m2(abc) = 0.1

The body of evidence under Situation 1 is identical, and its conflict coefficient K is
calculated by using Equation (6), yielding 0.75, which contradicts the fact, whereas cosine
similarity and the Jousselme distance yield 1, which is consistent with the fact. Situation
2’s evidence is radically different, and the Jousselme distance metric produces 0.707, which
is inconsistent with the facts, whereas the cosine similarity computation yields 0, which is
consistent with the facts. Because it is impossible to determine whether the body of evidence
m2 under Situation 3 supports each focal element on average, the body of evidence under
Situation 3 is somewhat conflicting, and the results of the Pignistic probability distance and
cosine similarity are both 0, which contradict the facts, the result of the Jousselme distance
is 0.577, which is more consistent with the facts.

From the above analysis, the cosine similarity measure is more accurate when measur-
ing evidence with only a subset of single focal elements, and less accurate when faced with
evidence containing a subset of multiple focal elements. Wang et al. [33] combined cosine
similarity and the Jaccard coefficient to measure the relationship between evidence. But
both measures are similarity measures, and the analysis of how the evidence relates to each
other is not thorough enough. This can lead to inaccurate measurements in some situations,
such as when evidence m1 and m2 in Situation 4 point to different correct propositions and
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there is a big disagreement. However, Wang’s method gives a similarity of 0.80, which
is less consistent with the facts. Therefore, this paper proposes to combine conflicting
evidence and similarity to jointly measure the relationship between evidence. Because the
Jousselme distance can measure the relationship between evidence more accurately in most
cases, and it is introduced to jointly measure the relationship between evidence.

Assuming the identification framework Θ = A1, A2, . . . , An, we define the local
similarity of evidence sij as:

J(Aa, Ab) =
|Aa∩Ab |
|Aa∪Ab |

, ∀Aa, Ab ⊆ Θ

sij = (1− dBPA(m1, m2))×
∑n

a=1 ∑n
b=1 mi(Aa)mj(Ab)×J(Aa ,Ab)√

∑n
c=1 mi(Ac)

2
√

∑n
c=1 mj(Ac)

2

(15)

According to Equation (15), the local similarities of the evidence under different
situations in Example 1 are: 1, 0, 0.244, and 0.470, all of which are more consistent with the
facts. Based on the local similarity sij, the global similarity si can be derived for each piece
of evidence, and its normalization can lead to the similarity-based weight coefficient αi,
which is calculated as follows: {

si = ∑n
j=1,i 6=j sij

αi =
si

∑n
j=1 sj

. (16)

3.3. Certainty of Evidence

The properties of the evidence itself can be measured based on the degree of certainty
of the evidence. In probability theory, the Hellinger distance is a complete distance metric
defined in the space of probability distributions and can be used to measure the similarity
between two probability distributions. It has the advantage of stability and reliability
compared to other metrics. Deng et al. [30] measured the uncertainty of the evidence itself
by calculating the uncertainty interval distance of the evidence focal elements. However,
finding the weight of the evidence based on uncertainty involves more steps and is more
tedious than finding the weight based on certainty, so this paper proposes a method by
which to combine the Hellinger distance of the evidence support interval and rejection
interval to jointly measure the certainty of the evidence.

Suppose X = {x1, x2, . . . xn} and Y = {y1, y2, . . . yn} are two probability distribution
vectors of the random variable Z, and the Hellinger distance is

Hel(X||Y) =
√

1
2 ∑n

i=1(
√

xi −
√

yi)
2. (17)

Assuming the identification framework Θ = A1, A2, . . . , An and defining DU(mi) as
the evidence certainty, the calculation of DU(mi) is as follows:

DU(mi) = ∑n
j=1

√
2×


√√√√1

2
×
[(√

Bel
(

mi

(
Aj

))
− 0
)2

+

(
1−

√
Pl
(

mi

(
Aj

)) )2] , (18)

where
√

2 is the normalization factor. The Hellinger distance reaches its maximum when
the evidence determines that the interval is [1,1] or [0,0], which leads to the calculation of
the normalization factor: 1

Hel[[1,1],[0,1]] =
√

2.
Normalizing the resulting determinacy DU(mi) obtains the weight of the evidence

based on the determinacy:

βi =
DU(mi)

∑n
j=1 DUmj

. (19)
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3.4. Steps of the Proposed Method

Based on the above study, the specific steps of the proposed method in this paper are
given as follows, and the flow chart is shown in Figure 2.

Step 1: After pre-processing the data from sensors, the BPA function of each data source
related to the body of evidence is calculated by integrating the cloud model and each data
evaluation index.
Step 2: With the obtained BPA function of each evidence, the weight αi based on the
similarity of evidence is calculated by combining Equations (15) and (16), and the weight
βi based on the certainty of evidence is calculated by combining Equations (18) and (19).
Step 3: With the weights αi and βi, the total weight of the evidence body is calculated and
normalized to obtain the final weight ωi, which is calculated as follows:ω′i = αi × βi

ωi =
ω′i

∑n
j=1 ω′j

. (20)

Step 4: Based on the weights ωi, the original evidence is averaged and weighted to obtain
the processed body of evidence m,

m(A) = ∑n
i=1 ωi ×mi(A). (21)

Step 5: Use Dempster’s fusion rule to perform n − 1 fusion for evidence body m.
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4. Numerical Example and Simulation Results

In this section, the proposed improved D-S evidence theory method based on similarity
and certainty, as well as the proposed overall method of heterogeneous data fusion based
on cloud model and evidence theory, are evaluated and simulated to demonstrate the
feasibility and effectiveness of the proposed method in this paper.

4.1. The method for Improving D-S Evidence Theory

In this section, four common conflicting, normal, and multi-quantity single-focal and
multi-focal element evidences are fused based on the proposed improvement method,
comparing traditional evidence theory, classical improvement methods, and similar im-
provement methods, and demonstrating the effectiveness of the proposed methods in this
paper through Examples 2–4. We take the methods proposed by Deng Z. [30] and Wang [33]
as similar improvement methods.

Example 2. In evidence theory, there are four common sorts of conflicts: complete conflict,
0 trust conflict, 1 trust conflict, and severe conflict [36], and the BPA functions for the four
typical conflicts are provided in Table 2.

Table 2. Four common conflicting BPA functions.

Types of Conflict Evidences
Proposition BPA

A B C D E

Complete conflict
(k = 1)

m1 1 0 0 \ \
m2 0 1 0 \ \
m3 0.8 0.1 0.1 \ \
m4 0.8 0.1 0.1 \ \

0 trust conflict
(k = 0.99)

m1 0.5 0.2 0.3 \ \
m2 0.5 0.2 0.3 \ \
m3 0 0.9 0.1 \ \
m4 0.5 0.2 0.3 \ \

1 trust conflict
(k = 0.9998)

m1 0.9 0.1 0 \ \
m2 0 0.1 0.9 \ \
m3 0.1 0.15 0.75 \ \
m4 0.1 0.15 0.75 \ \

High conflict
(k = 0.9999)

m1 0.7 0.1 0.1 0 0.1
m2 0 0.5 0.2 0.1 0.2
m3 0.6 0.1 0.15 0 0.15
m4 0.55 0.1 0.1 0.15 0.1
m5 0.6 0.1 0.2 0 0.1

The global similarity si and own determination DU(mi) of each evidence under the
four conflict types are shown in Table 3. The weights αi and βi of the evidence can be
calculated based on the degree of similarity si and the degree of certainty DU(mi), and
the overall weight ωi of the evidence can be obtained by combining the weights αi and βi.
Figure 3 displays the distribution chart for each weight. Figure 3 shows that the weights
of conflicting evidence are lower than those of normal evidence, and the distribution of
each weight is consistent with the facts. We combined similarity and certainty to improve
the body of evidence in order to improve the science of data fusion, and it should be noted
that because the certainty of evidence describes the characteristics of the evidence itself,
which includes the interval information of all focal elements within the evidence and is
independent of the relationship between the evidence, the weights αi and βi are not always
positively correlated.
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Table 3. Similarity and certainty of each evidence under four conflicts.

Types of Conflict Evidences Global Similarity si Determinacy DU(mi)

Complete conflict

m1 1.628 3
m2 0.036 3
m3 1.832 4.527
m4 1.832 4.527

0 trust conflict

m1 2.141 6.009
m2 2.141 6.009
m3 0.423 3.785
m4 2.141 6.009

1 trust conflict

m1 0.068 3.785
m2 1.715 3.785
m3 1.891 4.858
m4 1.891 4.858

High conflict

m1 2.651 7.194
m2 0.631 8.127
m3 2.737 7.733
m4 2.779 7.987
m5 2.888 7.718
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Table 4 displays the fusion results of the traditional D-S rule, the methods proposed by
Sun [20], Murphy [23], Deng Y. [24], Deng Z. [30], and Wang [33], and the improved method
proposed in this paper. As seen in Table 4, when confronted with the four conflicting
situations listed above, the D-S fusion rule fails or does not match the genuine situation,
and Sun’s method allocates the uncertainty to the entire set, resulting in high BPA values for
the entire set that do not fit the true situation. The larger the value of BPA after fusing, the
greater the amount of confidence in the proposition. Although the approaches of Murphy,
Deng Y., Deng Z., and Wang yield correct answers, the method proposed in this work yields
a higher BPA function value and converges faster, demonstrating that the improved method
in this research performs better than the other methods in resolving the four conflicts. The
fusion BPA results on the reasonable propositions of each algorithm are shown in Figure 4.
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Table 4. Fusion results of four common conflicts.

Types of Conflict Methods
Proposition

Θ
A B C D E

D-S \ \ \ \ \ Invalid

Complete conflict

Sun 0.0917 0.0423 0.0071 \ \ 0.8589
Murthy 0.8204 0.1748 0.0048 \ \ 0
Deng Y. 0.8166 0.1164 0.0670 \ \ 0
Deng Z. 0.9792 0.0207 0.0001 \ \ 0

Wang 0.9996 0.0002 0.0002 \ \ 0
This paper 0.9999 0.0001 0.0001 \ \ 0

D-S 0 0.7270 0.2730 0 0 0

0 trust conflict

Sun 0.0525 0.0597 0.0377 \ \ 0.8501
Murthy 0.4091 0.4091 0.1818 \ \ 0
Deng Y. 0.4318 0.2955 0.2727 \ \ 0
Deng Z. 0.6510 0.2384 0.1106 \ \ 0

Wang 0.7628 0.2200 0.0172 \ \ 0
This paper 0.8421 0.0428 0.1151 \ \ 0

D-S 0 1 0 0 0 0

1 trust conflict

Sun 0.0388 0.0179 0.0846 \ \ 0.8587
Murthy 0.1676 0.0346 0.7978 \ \ 0
Deng Y. 0.1388 0.1318 0.7294 \ \ 0
Deng Z. 0.0273 0.0018 0.9709 \ \ 0

Wang 0.0006 0.0015 0.9980 \ \ 0
This paper 0.0001 0.0008 0.9991 \ \ 0

D-S 0 0.3571 0.4286 0 0.2143 0

High conflict

Sun 0.0443 0.0163 0.0163 0.0045 0.0118 0.9094
Murthy 0.7637 0.1031 0.0716 0.0080 0.0538 0
Deng Y. 0.5324 0.1521 0.1462 0.0451 0.1241 0
Deng Z. 0.9846 0.004 0.0055 0.0001 0.0029 0

Wang 0.9911 0.0025 0.001 0.0 0.0004 0
This paper 0.9983 0.0002 0.0013 0.0 0.0002 0
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Figure 4. Comparison of reasonable proposition BPA value of different fusion algorithms.

Example 3. Assume the radar identification library contains three radar model data A, B,
and C, with identification frame Θ = {A, B, C, AC}. Five existing heterogeneous sensors
are used separately to identify the radar radiation sources, yielding a total of five conflicting
evidences ranging from m1 to m5. Tables 5 and 6 show the results of a specific two times,
which represent the data distribution of multi-quantity single and multi-focal element
conflict evidence, respectively.
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Table 5. Single focal element evidence body data distribution.

Evidences A B C

m1 0.5 0.2 0.3
m2 0 0.8 0.2
m3 0.6 0.3 0.1
m4 0.55 0.25 0.2
m5 0.65 0.15 0.2

Table 6. Multi-focus evidence body data distribution.

Evidences A B C AC

m1 0.5 0.2 0.3 0
m2 0 0.9 0.1 0
m3 0.55 0.1 0 0.35
m4 0.55 0.1 0 0.35
m5 0.6 0.1 0 0.3

The global similarity si and certainty DU(mi) of each evidence under single and
multifocal elements are shown in Table 7. The weights of evidence αi, βi, and ωi for a
different number of evidence cases are shown in Figure 5. From Figure 5, it can be seen
that the weight of conflicting evidence is less than the normal weight, the weight occupied
by conflicting evidence gradually decreases as the number of evidence increases, and the
distribution of each evidence is consistent with the facts, which proves the rationality of
the method proposed in this paper.

Table 7. Similarity and certainty of evidence under single and multifocal elements.

Evidences

Global Similarity si Determinacy DU(mi)

Single-Focal
Element

Multi-Focal
Element

Single-Focal
Element

Multi-Focal
Element

m1 2.743 6.009 2.496 6.009
m2 0.858 4.485 0.345 3.785
m3 2.756 5.599 3.685 3.221
m4 2.983 5.868 3.685 3.221
m5 2.999 5.434 3.730 3.422
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To verify the effectiveness of the improved method proposed in this paper, the evi-
dences are fused by using Murthy [23], Deng Y. [24], Deng Z. [30], and Wang [33], and the
proposed method are fused respectively. Table 8 shows the fusion results for each method,
and Figure 6 shows the comparison of BPA values for reasonable propositions. From
the fusion results and comparison results, it can be concluded that when facing different
numbers of single and multifocal element conflicting evidence bodies, the traditional D-S
fusion results all contradict the facts. Although Murthy [23], Deng Y. [24], Deng Z. [30], and
Wang [33] and the proposed method all point to the correct results, the BPA functions of
the proposed method are higher than the other two improved methods, and as the number
of evidence bodies increases, the improved method converges faster with higher accuracy
on the BPA value as the number of evidence bodies increases.

Table 8. Multi-quantity evidence body fusion results.

Methods
m1–m3 m1–m4 m1–m5

Single-Focal
Element

Multi-Focal
Element

Single-Focal
Element

Multi-Focal
Element

Single-Focal
Element

Multi-Focal
Element

D-S
m(A) = 0

m(B) = 0.9132
m(C) = 0.0868

m(A) = 0
m(B) = 0.6315
m(C) = 0.3685

m(AC) = 0

m(A) = 0
m(B) = 0.9293
m(C) = 0.0707

m(A) = 0
m(B) = 0.3287
m(C) = 0.6713

m(AC) = 0

m(A) = 0
m(B) = 0.9079
m(C) = 0.0921

m(A) = 0
m(B) = 0.1403
m(C) = 0.8597

m(AC) = 0

Murthy
m(A) = 0.3555
m(B) = 0.5868
m(C) = 0.0577

m(A) = 0.5568
m(B) = 0.3562
m(C) = 0.0782

m(AC) = 0.0088

m(A) = 0.5453
m(B) = 0.4246
m(C) = 0.0301

m(A) = 0.8656
m(B) = 0.0891
m(C) = 0.0382

m(AC) = 0.0074

m(A) = 0.8090
m(B) = 0.1785
m(C) = 0.0125

m(A) = 0.9688
m(B) = 0.0156
m(C) = 0.0127

m(AC) = 0.0029

Deng Y.
m(A) = 0.4978
m(B) = 0.4434
m(C) = 0.0588

m(A) = 0.6500
m(B) = 0.2547
m(C) = 0.0858

m(AC) = 0.0095

m(A) = 0.7418
m(B) = 0.2312
m(C) = 0.0270

m(A) = 0.9305
m(B) = 0.0274
m(C) = 0.0339

m(AC) = 0.0082

m(A) = 0.9277
m(B) = 0.0633
m(C) = 0.0090

m(A) = 0.9846
m(B) = 0.0024
m(C) = 0.0098

m(AC) = 0.0032

Deng Z.
m(A) = 0.6367
m(B) = 0.2631
m(C) = 0.1002

m(A) = 0.5669
m(B) = 0.3325
m(C) = 0.0966

m(AC) = 0.0044

m(A) = 0.6603
m(B) = 0.3095
m(C) = 0.0301

m(A) = 0.8389
m(B) = 0.1068
m(C) = 0.0507

m(AC) = 0.0036

m(A) = 0.8733
m(B) = 0.1152
m(C) = 0.0115

m(A) = 0.9136
m(B) = 0.0454
m(C) = 0.0357

m(AC) = 0.0053

Wang
m(A) = 0.6594
m(B) = 0.3119
m(C) = 0.0286

m(A) = 0.6581
m(B) = 0.2409
m(C) = 0.0937

m(AC) = 0.0073

m(A) = 0.8142
m(B) = 0.1604
m(C) = 0.0255

m(A) = 0.9391
m(B) = 0.0190
m(C) = 0.0342

m(AC) = 0.0077

m(A) = 0.9518
m(B) = 0.0401
m(C) = 0.0081

m(A) = 0.9859
m(B) = 0.0014
m(C) = 0.0096

m(AC) = 0.0031

This paper
m(A) = 0.7983
m(B) = 0.175

m(C) = 0.0267

m(A) = 0.8368
m(B) = 0.0478
m(C) = 0.1105

m(AC) = 0.0049

m(A) = 0.8842
m(B) = 0.0944
m(C) = 0.0221

m(A) = 0.9597
m(B) = 0.0028
m(C) = 0.0316

m(AC) = 0.0059

m(A) = 0.9849
m(B) = 0.0109
m(C) = 0.0026

m(A) = 0.9895
m(B) = 0.0003
m(C) = 0.0078

m(AC) = 0.0024

Example 4. With the identification frame Θ = {A, B, C}, there are five normal evidence
bodies from m1 to m5, and the distribution is shown in Table 9.

Table 9. Normal evidence body data distribution.

Evidences A B C

m1 0.85 0.05 0.1
m2 0.70 0.15 0.15
m3 0.50 0.20 0.30
m4 0.50 0.20 0.30
m5 0.7 0.25 0.05
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The proposed improved method’s fusion of normal evidence is compared to the
traditional evidence theory to demonstrate the proposed improved method’s superior
performance in dealing with normal data, and the fusion results are shown in Table 10.
Compared to the traditional evidence theory algorithm, the proposed method can also get
correct results when dealing with normal body of evidence and has a higher BPA function
with higher credibility.

Table 10. Normal evidence fusion result.

Methods m(A) m(B) m(C)

D-S 0.9985 0.0007 0.0008
This paper 1 0 0

According to the above examples, the similarity and certainty-based evidence the-
ory fusion algorithm proposed in this paper performs better in handling both normal
and conflicting evidence bodies, demonstrating the improved method’s rationality and
effectiveness.

4.2. The Proposed Holistic Approach

To demonstrate the feasibility and effectiveness of the proposed data-fusion method,
the heterogeneous data-fusion method combining cloud model and the proposed improved
evidence theory in this paper is used for indoor early fire detection in this subsection.

It has been discovered that the combination of temperature, smoke concentration, and
CO concentration has superior detection performance in fires [37], and the above informa-
tion is collected as fire characteristic parameters in this paper. The fire discrimination results
are divided into three categories: no fire, smoldering fire, and open fire. In the established
fire identification framework Θ = {θ1, θ2, θ3, θ1θ2θ3}, θ1, θ2, θ3 represent no fire, smoldering
fire, and open fire, respectively, and θ1θ2θ3 indicates uncertainty of fire. Lin et al. [38]
proposed a fire-detection method by using the Jousselme distance to improve the evidence
corresponding to the fire characteristic parameters and fusing the evidence according to
Dempster’s rule to improve the timeliness of detection. However, the method ignored the
characteristics of the evidence body itself and did not fully exploit the fire data information.
Because the attribute values corresponding to the three fire characteristic parameters of CO
concentration, smoke concentration, and temperature have certain stability and the interval
distribution obeys normal distribution within a certain value interval [39], the cloud model
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of each data source based on the forward cloud generator and the evaluation index of each
parameter is built, and the cloud diagram is shown in Figure 7.
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concentration-fire cloud chart. (c) Temperature-fire cloud chart.

PyroSim fire simulation software provides a visual user interface for fire dynamic sim-
ulation (FDS) and can more accurately predict the distribution of characteristic parameters
such as fire smoke and temperature [40], so this paper simulates the occurrence of fire to
obtain fire characteristic parameters. We build the indoor scenario as follows:

• The length, width and height of the room are 5, 5, 3 m;
• The room has a sofa, wooden bed and wooden table, in the upper left corner of the

room from the wall 1 m set CO, temperature and smoke sensor group;
• Set the vent: room left wall with 1 × 1 m window, room directly opposite the sofa

with 1.2 × 2 m door;
• The fire burning material is n-Heptane, the center of combustion is the center of the

wooden bed, the burning area is 1 m2.

By setting different heat release rate and heat ramp up time to simulate the occurrence
of open fire and negative fire in the room, the starting room temperature is 30 ◦C, the
simulation time is 30 s, and the data acquisition frequency is 2 Hz. Based on the proposed
data-fusion method, a fire detection model is built. The initial fire detection probability is
estimated by combining CO concentration, smoke concentration, and temperature data.
The probability of smoldering fire and open flame within the initial fire detection probability
is also added, and if it is greater than 0.75, the fire occurred in the room.

Figure 8a depicts a simulation of an open fire with visible fire and black smoke
visible at t = 2.5 s. Figure 8b shows the change of the measured CO concentration, smoke
concentration, and temperature data with time. When the probability of an open fire is 1, the
values of CO, smoke, and temperature are the thresholds, and the time when each parameter
first reached the threshold is shown in Figure 8b. The three characteristic parameters of CO,
smoke, and temperature had almost no fluctuation in the first 2 s and increased rapidly
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after 2 s. The temperature and smoke reached the threshold value relatively quickly, and
all parameters showed an increasing trend in the first 30 s response time.
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Figure 8. Open fire simulation information diagram.

To determine whether a fire has occurred, the early open fire data from this simulation
are fused using the traditional D-S evidence theory, the methods proposed by Murphy [23],
Deng Y. [24], Deng. Z. [30], and Wang [33] and this paper, respectively. Because the
frequency of data acquisition in the simulation is 2 Hz, the period of data fusion is 0.5 s.
The traditional evidence theory, Murphy’s Deng Y’s., and Deng. Z’s methods all detect fire
at t = 3.5 s, Wang’s method detects fire at t = 3 s, and the proposed method detects fire at
t = 2.5 s, proving the method’s effectiveness. Figure 9 depicts the probability comparison
of fire occurrence in this open fire scenario.
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A smoldering fire’s combustion features include the emission of a significant amount
of black smoke from the combustion point prior to the appearance of the evident fire.
Figure 10a depicts a simulation of a smoldering fire, with a clear fire visible at t = 18 s.
Figure 10b displays a time-plot of the data collected by the multi-sensor group during the
first 30 s. As shown in Figure 10b, the rising trend of each characteristic parameter in the
shaded fire scenario is slower than it is in the open fire scenario, and the parameters only
continue to grow after 7 s as a result of the early shaded fire’s insufficient combustion.
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The determination of whether a fire has occurred is made possible by combining data
on smoldering fires based on the traditional D-S evidence theory, the methods proposed
by Murphy [23], Deng Y. [24], Deng. Z. [30], and Wang [33] and this paper, respectively.
The method proposed in this paper can detect the occurrence of fire at t = 10 s, which
is earlier than the 11.5 s of Wang’s method, 11.5 s of Deng Y.’s method, 12 s of Deng Z’s
method, 13.5 s of traditional evidence theory, and 17 s of Murthy’s method, as shown in
Figure 11. As illustrated in Figure 11, when compared to the traditional evidence theory,
classical improvement method, and similar improvement method, the method proposed
in this paper not only detects the occurrence of fire in advance, but also has a higher
detection accuracy.

To further verify the effectiveness of the proposed fire detection method, we obtained
different CO concentration, smoke concentration and temperature data by setting different
combustibles, combustion locations, heat release rates, and heat ramp-up times. Then
we made our own fire dataset, which included 1000 positive samples and 1000 negative
samples. Based on the traditional evidence theory, classical improvement method, similarity
improvement method and the proposed method in this paper, the homemade samples are
fused to calculate the accuracy rate and false alarm rate of detection. Assuming that TP
represents the number of samples correctly judged to be fires, FN represents the number of
samples not correctly judged to be fires, FP represents the number of samples misreported
to be fires, and TN represents the number of samples correctly judged to be fires that did
not occur. The accuracy and false alarm rates (FAR) are calculated as Equation (22): accurary

∣∣∣= TP+TN
TP+FN+FP+TN

FAR
∣∣∣= FP

FP+TN

. (22)



Sensors 2022, 22, 5902 19 of 21

Sensors 2022, 22, x FOR PEER REVIEW 18 of 21 
 

 

 
Figure 10. Smoldering fire simulation information diagram.  

The determination of whether a fire has occurred is made possible by combining data 
on smoldering fires based on the traditional D-S evidence theory, the methods proposed 
by Murphy [23], Deng Y. [24], Deng. Z. [30], and Wang [33] and this paper, respectively. 
The method proposed in this paper can detect the occurrence of fire at t = 10 s, which is 
earlier than the 11.5 s of Wang’s method, 11.5 s of Deng Y.’s method, 12 s of Deng Z’s 
method, 13.5 s of traditional evidence theory, and 17 s of Murthy’s method, as shown in 
Figure 11. As illustrated in Figure 11, when compared to the traditional evidence theory, 
classical improvement method, and similar improvement method, the method proposed 
in this paper not only detects the occurrence of fire in advance, but also has a higher de-
tection accuracy. 

 
Figure 11. Fire occurrence probability comparison in smoldering fire scene. 

To further verify the effectiveness of the proposed fire detection method, we obtained 
different CO concentration, smoke concentration and temperature data by setting differ-
ent combustibles, combustion locations, heat release rates, and heat ramp-up times. Then 
we made our own fire dataset, which included 1000 positive samples and 1000 negative 
samples. Based on the traditional evidence theory, classical improvement method, simi-

Figure 11. Fire occurrence probability comparison in smoldering fire scene.

Table 11 shows the fire detection accuracy and false alarm rate of various methods.
According to Table 11, compared to other methods, the proposed method increased the fire
detection rate by 0.7–10.2% and reduces the false alarm rate by 0.9–6.4%, which improves
the reliability of fire discrimination obviously.

Table 11. Comparison of fire detection accuracy and false alarm rate of different methods.

Fusion Methods Accuracy Rate False Alarm Rates

Traditional D-S 88.6% 7.2%
Murthy 93.4% 5.6%
Deng Y. 96.6% 2.2%
Deng Z. 96.3% 3.1%

Wang 98.1% 1.7%
The method proposed 98.8% 0.8%

It is evident that when applied to indoor fire detection, the proposed heterogeneous
data-fusion method has better fire detection performance and can simultaneously improve
the timeliness and accuracy of detection, proving its feasibility and effectiveness in multi-
sensor data fusion.

5. Conclusions

In this paper, a multi-sensor heterogeneous data fusion strategy based on the cloud
model and improved evidence theory is presented, which can better cope with the ambigu-
ity and conflict of heterogeneous multi-sensor gathered data. The cloud model is used to
estimate the BPA function of each data source’s associated evidence. Evidence similarity is
calculated by using multi-relationship measures, evidence certainty is measured by using
interval distance, the body of evidence is jointly improved by combining the evidence’s
similarity and certainty, and the improved body is fused by using Dempster’s rule. The
usefulness of the improved evidence theory technique is validated in this research, and the
results show that the proposed method performs better when dealing with both conflicting
and normal evidence. The method is used for indoor fire detection in light of the issues of
prolonged duration and low accuracy. Compared to traditional evidence theory, classical
improvement method, and similar improvement method, the proposed method improves
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detection speed by 0.5–3 s, accuracy by 0.7–10.2%, and reduces the false alarm rate by
0.9–6.4%, which has better detection performance. It also provides a specific reference value
for multi-source information fusion.

In future work, we intend to test the feasibility of the proposed method on other multi-
sensor acquisition information systems, as well as investigate how to combine homoge-
neous and heterogeneous data fusion algorithms to fully exploit effective data information
and improve data fusion accuracy.
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