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Abstract: The aim of this study was to develop three supervised self-organizing map (SOM) models
for the automatic recognition of a systemic resistance state in plants after application of a resistance
inducer. The pathosystem Fusarium oxysporum f. sp. radicis-lycopersici (FORL) + tomato was used.
The inorganic, defense inducer, Acibenzolar-S-methyl (benzo-[1,2,3]-thiadiazole-7-carbothioic acid-S-
methyl ester, ASM), reported to induce expression of defense genes in tomato, was applied to activate
the defense mechanisms in the plant. A handheld fluorometer, FluorPen FP 100-MAX-LM by SCI,
was used to assess the fluorescence kinetics response of the induced resistance in tomato plants. To
achieve recognition of resistance induction, three models of supervised SOMs, namely SKN, XY-F,
and CPANN, were used to classify fluorescence kinetics data, in order to determine the induced
resistance condition in tomato plants. To achieve this, a parameterization of fluorescence kinetics
curves was developed corresponding to fluorometer variables of the Kautsky Curves. SKN was the
best supervised SOM, achieving 97.22% to 100% accuracy. Gene expression data were used to confirm
the accuracy of the supervised SOMs.

Keywords: artificial intelligence; clustering; data mining; gene expression; plant protection

1. Introduction

Plant diseases are responsible for crop destruction and significant yield losses, which
negatively affect the economy. It has been indicated that about 40% of crop losses occur due
to plant diseases [1]. Taking into account that the population of the whole world is expected
to increase up to 9 billion in the following years, production within the agricultural sector
needs to be expanded by minimum of 70%, in order to meet food demands [2]. For this
reason, early disease detection is regarded as an important tool for preventing low crop
yields and consequently economic losses.

Traditional crop protection methods are usually based on crop inspections through
visual observations, which is a limited, time consuming, and insufficient practice. The
inconvenience of such practices lies in their weakness to discriminate the appearance of
diseases with similar external symptoms. Recently, novel techniques for disease detection
have been proposed that were proven to be capable of reducing misclassification and have
been embedded in commercial platforms. Such techniques are employed by precision
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agriculture experts aiming to exploit attractive and efficient solutions, through computer
vision or image processing tools of infected plants showing symptoms.

Among the large variety of crops, tomato is regarded as having significant economic
importance, and this is the main reason that this plant is often used as a model plant for
many research purposes [3,4].

Zhang et al. [5] proposed a three-channel convolution neural network (CNN) to detect
tomato crop infections, including early blight, target spot, late blight, mosaic virus, bacterial
speck, and Septoria leaf spot. The proposed CNN model reached an accuracy of 89.29%.

Kibriya et al. [6] demonstrated a deep learning approach, two (CNN) based models,
namely GoogLeNet and VGG16, for tomato leaf disease recognition. The VGG16 GoogleNet
and GoogLeNet models reached accuracies of 98%, and 99.23%, respectively, on the Plant
Village dataset that comprised of a total of 10,735 leaf images.

However, solutions based on image processing have important limitations; for ex-
ample, under field conditions, plant images are often noisy, which consequently leads to
segmentation of a low quality, poor feature extraction, and then low model performance.
Due to the high risk of incorrect analysis and diagnosis, alternative methods need to be
explored that are both non-destructive and effective from every aspect of decision making.

Until the present, few studies have been carried out showing defense induction by
microorganisms or chemical inducers. To overcome this, the present study introduces an
original method to assess the success and outcome of defense-inducing applications in
high value commercial crops such as tomato, which would favor the use of such strategies.
The proposed method enables fast assessment of the effectiveness, decision-making, and
adaptation of disease management schemes.

Induction of systemic resistance has been proposed as advantageous for reducing the
severity of plant diseases [7]. The use of chemical plant defense inducers is an attractive,
environmentally friendly means of plant protection [8,9]. However, several disadvantages,
such as low reproducibility and effectiveness compared to chemical pesticides, and the
difficulty to evaluate their efficacy in a timely manner, keep the use of resistance inducers
in the background of the plant disease management artillery.

Biological defense activators, such as beneficial bacteria and other biological control
agents [10], as well as several organic or inorganic defense inducers, have attracted interest.
Acibenzolar-S-methyl (benzo-[1,2,3]-thiadiazole-7-carbothioic acid-S-methyl ester, ASM),
an inorganic defense activator, is commercially available under the trade name Bion and
has been proposed as a satisfactory means to induce resistance in tomato against various
pathogens [11–13].

In plants, the induction of systemic resistance to pathogens may be triggered by the
accumulation of various signaling molecules such as salicylic acid (SA) and production of
pathogen-related proteins (PRs), or jasmonic acid (JA) and ethylene (ETH) [7]. To confirm
the alerted defense state in plants, the expression of certain genes is studied, such as:
PAL, which encodes phenylalanine ammonia-lyase, one of the key enzymes for producing
salicylic acid [14]; LOX and AOC, which encode lipoxygenase and allene oxidase cyclase,
respectively, two very important enzymes in the biosynthesis of jasmonic acid [15]; PR1,
PR3, PR5, and PR6, which are response genes to salicylic acid accumulation and activation
of the jasmonic acid/ethylene pathway [16,17].

Chlorophyll fluorescence imaging analysis has been used to analyze plant responses to
abiotic and biotic stress factors, including pathogens and pests [18]. However, chlorophyll
fluorescence imaging in primed plants has not yet been reported.

Unsupervised learning is a special form of learning that relies on clustering input data,
without considering any output information. The data clustering attempts to approximate
the probability density of the input data space by using a limited number of centroids. Self-
organizing maps (SOMs) are widely applied artificial neural networks architectures [19]
that rely on clustering and allocate the centroids according to a self-organizing learning
algorithm, offering solutions that are often employed for various different unsupervised
problems. An extension to self-organizing maps concerns supervised SOMs, which com-
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bine supervised and unsupervised learning. Their effectiveness is attributed to their special
characteristic of combining both supervised and unsupervised learning techniques [20].
The counterpropagation artificial neural networks (CPANNs) share a common character-
istic with SOMs, which is the additional layer that is appended to SOM [21]. Regarding
classification problems, CPANNs have proven capable of performing nonlinear classifi-
cation. Alterations to CPANNs layers have led to novel supervised models, including
supervised Kohonen networks (SKNs) and XY-fused networks (XY-Fs) [22].

The combination of supervised SOM models and fluorescence kinetics data can be a
revolutionary tool for diagnosing plant defense induction after the application of biological
or other defense inducers. The induction of chlorophyll kinetic fluorescence has been
shown to be a particularly sensitive indicator of various photosynthetic reactions, which are
very important for understanding the various photosynthetic activities of plants [23]. These
activities may indicate the existence of adverse effects of environmental changes, as well as
resistance to various biotic and abiotic factors [24]. It is known that kinetic fluorescence
curves (Kautsky curves) can be used to detect plant stress conditions or to classify plants in
relation to their resistance to stress [25,26].

Automation and precision in agriculture has found many applications and can pave
the way to future agricultural practices and production. However, automatic diagnosis
of an induced resistance state in plants has not yet been reported. The current paper
proposes an original method, through the development of three supervised SOM models
for the automatic recognition of systemic resistance in plants, after application of resistance
inducers. For the purpose of the study, the pathosystem Fusarium oxysporum f. sp. radicis-
lycopersici (FORL) and tomato was used, and ASM was applied as an inducer. Three
supervised SOM models were used to classify fluorescence kinetics data, in order to
determine the induced resistance state in tomato plants. To achieve this, a parameterization
of fluorescence kinetics curves was developed, corresponding to fluorometer variables
of the Kautsky curves. Gene expression data were used to confirm the accuracy of the
supervised SOMs. The proposed supervised SOM method employs three state-of-the-art
algorithms for analyzing fluorescence kinetics, which have been used for the first time in
this work to evaluate disease resistance in tomato plants. The current work is structured
as follows: Section 1 (Introduction), where the physical problem, the state of the art, and
the novelty of the current work are stated; Section 2 (Materials and Methods), where
the experimental work and the three employed supervised SOMs methods are presented;
Section 3 (Results and Discussion), where the efficiency of the proposed method is validated
and the performances of the three applied supervised SOMs models are compared and
contrasted; and Section 4 (Conclusions), where the results and the novelty of the proposed
method are summarized based on the results presented in the Section 3 (Results and
Discussion).

2. Materials and Methods
2.1. Production of Fusarium oxysporum f. sp. Radicis-Lycopersici and Inoculation

A virulent strain of FORL deposited in the Centraalbureau voor Schimmelcultures,
The Netherlands (CBS 101587), was used for artificial inoculations of tomato plants. The
protocol followed was described by Kamou et al. [27].

2.2. Growth and Inoculation of Tomato Plants

Plantlets of tomato cv. “Belladona”, at the 2-true leaf stage, grown in peat, in nursery
trays, were transplanted into 100-mL pots, containing peat. Plants were grown for 7 days
before challenge inoculation with FORL, to reach a leaf surface size that would allow
fluorescence kinetics acquisition. The defense inducer ASM was applied 4 days after
transplantation, and 72 h before challenge inoculation with FORL, by soil drenching. ASM
solution was prepared in sterile distilled water, at a concentration of 25 mg/L (25 ppm),
according to the dose recommended by the manufacturer, and 5 mL of solution was used
per plant. Bion was applied in a single treatment. The pathogenic fungus was also applied
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as soil drenching, using 5 mL per plant of the spore suspension, prepared as described
above. Plants that received no treatment were used as negative controls (hereafter referred
to as control), whereas plants treated with FORL only, at 7 days after transplantation served
as positive controls (hereafter referred to as FORL).

2.3. Fluorescence Kinetics Parameters

The chlorophyll fluorescence kinetics measurements were taken using a FluorPen
FP 100-MAX-LM by SCI, which employs the OJIP protocol. Chlorophyll fluorescence
kinetics were obtained at 48 and 72 h post challenge inoculation with FORL. For each of
the 24 tomato plants, fluorescence parameters were acquired from the two middle leaves
corresponding to treatment at 48 h, and the same procedure was followed for 12 tomato
plants corresponding to the treatment at 72 h.

The chlorophyll fluorescence kinetics features extracted from the fluorescence param-
eters were used as training sets for the three different supervised SOMs introducing a
novel, non-destructive method for recognizing the induced resistance condition in the
Bion + FORL treatment. The proposed method was used to identify the other two inves-
tigated treatments, meaning the plants of the positive control (FORL) and the negative
control (Control). Using the fluorometer, certain geometric parameters of the Kautsky
curves were acquired, as described previously [28].

2.4. Supervised Self Organizing Maps (SOMs) Models

CPANN is considered a supervised SOM that augments the Kohonen layer, which
performs the mapping of the input data, where the neurons are appended in a rectangular
or hexagonal matrix, with the Grossberg layer, which acts as a pointing device. The
constructed model consists of an input layer (Kohonen) and an output (Grossberg). The
training procedure of CPANN is presented extensively in [20]. The CPANN is capable of
generalizing on missing or faulty input data [22]. The Grossberg layer learns the target
output values (T), while the Kohonen layer learns to estimate the mean input values.
Figure 1 illustrates the structure of the CPANN model.
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In the SKN network, an input map (Xmap) and an output map (Ymap) are combined, so
as to produce a combined input and output map (XYmap). Every input set X is linked to its
corresponding output Y, so as to act in the form of an input data to XYmap [22]. The training
procedure of SKN network is extensively presented in [20]. The SKN architecture differs
from the two above mentioned supervised SOM models by augmenting the Kohonen and
output layers into a joint entity, which is updated by using the training algorithm of SOMs.
Figure 2 depicts the structure of the SKN model.
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The XY-Fused network differs from SKN networks, mainly because it seeks similarities
of both the input map (Xmap) and the output map (Ymap) in a simpler manner. The training
procedure of XY-F is extensively presented in [20]. The criterion for determining the
winning neuron is a similarity identification, which is the result of weighing similarities
with one object X and the other consisting units on the map Xmap, and similarities with the
output objects Y and the units of the map Ymap [22]. Figure 3 illustrates the structure of the
SKN model.
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2.5. RNA Extraction from Tomato Plants and Relative Gene Expression Analysis

Samples of three leaves and the whole root were collected from three plants, randomly
selected among the plants within each treatment, at 48 and 72 h after challenge inoculation
with FORL (hpi), to be used for relative gene expression analysis.

Total RNA from the tomato leaves and roots was extracted from 3 biological replicates
per treatment and time point, as described by Stavridou et al. [29]. Relative gene expres-
sion was assessed by quantitative reverse transcriptase PCR (RT-qPCR). The procedure,
conditions, and primers used were as described by Stavridou et al. [29].

2.6. Statistical Analysis for Gene Expression

Gene expression analysis data were subjected to analysis of variance (ANOVA), based
on completely randomized design (CRD), and mean values were computed from three
replicates. Differences between treatment mean values were compared using Duncan’s test,
and comparisons were made between treatments and the untreated control, at a significance
level p ≤ 0.05. All statistical analyses were performed with SPSS v 25.0 software (SPSS Inc.,
Chicago, IL, USA).

3. Results and Discussion
3.1. Classification Results Obtained from the Fluorescence Data

The CPANN, SKN, and XY-F Networks were trained with the fluorescence-based
parameters of the Kautsky Curves, in order to distinguish between the three treatments
(Control-FORL-Bion + FORL). As mentioned in the Material and Methods (Section 2.3),
a total of 24 plants were subjected to fluorescence acquisition for each treatment at 48 h
and 12 plants for each treatment at 72 h, resulting in 36 plants per treatment that were
combined into one dataset, comprising 36 plants per treatment. Gene expression at both
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time-points (Section 3.3) enabled this procedure. Cross validation was applied through
dividing in a random manner the calibration data into four classes and keeping three
classes for training, while validating on the fourth group. The aforementioned procedure
was iterated for all possible combinations of the three classes. Then, the average result
was acquired. Tables 1–3 show the performances of the three utilized supervised SOM
models (SKN, XY-F, and CPANN) with a size equal to 12 × 12 neurons. The map sizes that
were evaluated were rectangular, with 9, 25, 64, 100, 144, and 225 neurons. A common
observation was that with increasing size, the results tended to improve, up to 144 neurons,
and after that the results decreased. The best results were obtained for a (144 neurons) grid.

Table 1. Accurate identification for each of the three applied treatments from the SKN network
architecture based on the fluorescence kinetics features [28].

Real Treatment Class
Accurate

Identification of
Treatment 1 (Control)

Accurate
Identification of

Treatment 2 (FORL)
Accurate Identification of

Treatment 3 (Bion + FORL)

Control 100% 0% 0%

FORL 0% 97.22% 2.78%

Bion + FORL 2.78% 0% 97.22%

Table 2. Accurate identification of each of the three applied treatments from the CPANN network
architecture, based on the fluorescence kinetics features [28].

Real Treatment Class
Accurate

Identification of
Treatment 1 (Control)

Accurate
Identification of

Treatment 2 (FORL)
Accurate Identification of

Treatment 3 (Bion + FORL)

Control 97.22% 2.78% 0%

FORL 11.11% 88.89% 0%

Bion + FORL 5.56% 8.33% 86.11%

Table 3. Accurate identification of each the three applied treatments from the XY-F network architec-
ture, based on the fluorescence kinetics features [28].

Real Treatment Class
Accurate

Identification of
Treatment 1 (Control)

Accurate
Identification of

Treatment 2 (FORL)
Accurate Identification of

Treatment 3 (Bion + FORL)

Control 100% 0% 0%

FORL 8.33% 88.89% 2.78%

Bion + FORL 0% 2.78% 97.22%

The comparative results of the three supervised SOM models, which are presented in
the above Tables 1–3, indicate that the best performing was the SKN model, which reached
an accuracy of 97.22% for treatments 2 and 3, while for treatment 1, it reached an accuracy
of 100%.

3.2. Confirmation of the Supervised SOM Accuracy in Prediction of the Prime State of Plants with
Gene Expression Data

Figure 4 shows clusters formed on a 12 × 12 SKN supervised SOM, where the samples
are shown and where the results of Table 3 clearly show that one sample from class 3,
Bion + FORL, was misclassified as class 1, Control, while a sample from class 2, FORL, was
misclassified as Bion + FORL treated.
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Figure 4. The supervised SOM clusters demonstrates the discrimination between the three applied
treatments, represented as class 1 (Control, colored in purple), class 2 (FORL colored in red), and
class 3 (Bion + FORL, colored in green).

3.3. Gene Expression Analysis in Tomato Plants Challenged with FORL, 48 and 72 h after
Induction Treatment with Bion

Results of the relative gene expression in the leaves and roots of tomato plants chal-
lenged with FORL, 48 and 72 hpi, are presented for all treatments in Figures 5–8.
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Figure 5. Analysis of defense genes CHI3, AOC, LOX, PR-1a, and GLUA in tomato leaves challenged
with Fusarium oxysporum f. sp. radicis-lycopersici (FORL), after induction treatment with Bion, at
48 hpi. Error bars indicate the variation based on three biological replicates. The asterisk denotes
substantial deviation with respect to the control treatment, according to Duncan’s test, p ≤ 0.05.
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Figure 6. Analysis of defense genes CHI3, AOC, LOX, PR-1a, and GLUA in tomato roots challenged
with Fusarium oxysporum f. sp. radicis-lycopersici (FORL), after induction treatment with Bion, at
48 hpi. Error bars indicate the variation based on three biological replicates. The asterisk denotes
substantial deviation with respect to the control treatment, according to Duncan’s test, p ≤ 0.05.
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Figure 7. Analysis of defense genes CHI3, AOC, LOX, PR-1a, and GLUA in tomato leaves challenged
with Fusarium oxysporum f. sp. radicis-lycopersici (FORL), after induction treatment with Bion, at
72 hpi. Error bars indicate the variation based on three biological replicates. The asterisk denotes
substantial deviation with respect to the control treatment, according to Duncan’s test, p ≤ 0.05.
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Figure 8. Analysis of defense genes CHI3, AOC, LOX, PR-1a, and GLUA in tomato roots challenged
with Fusarium oxysporum f. sp. radicis-lycopersici (FORL), after induction treatment with Bion, at
72 hpi. Error bars indicate the standard deviation variation based on three biological replicates. The
asterisk indicates denotes substantial deviation with respect to the control treatment, according to
Duncan’s test, p ≤ 0.05.

The data indicated a successful priming of the plants. Figures 5 and 6 present the
relative gene expression analysis in leaves and roots of tomato, respectively, at 48 hpi.
Comparisons are made with the Control, and statistical differences are indicated with
an asterisk. More specifically, regarding the expression in tomato leaves, at 48 hpi, a
5.54-fold, 24.36-fold, and 4.96-fold induction of CHI3, PR-1a, and GLUA, respectively, was
observed, after challenge inoculation with FORL, when Bion was applied, as compared
to the untreated control (Figure 5). Regarding the same treatment and the expression in
tomato roots, the genes LOX, PR-1a, and GLUA exhibited an induction in expression of
4.46-fold, 2.68-fold, and 5.6-fold, respectively (Figure 6).

Figures 7 and 8 present the relative gene expression analysis in leaves and roots of
tomato, respectively, at 72 hpi. Comparisons are made with the Control, and statistical
differences are indicated with an asterisk. Regarding the expression in tomato leaves, at
72 hpi, the mean transcript levels of genes CHI3, AOC, PR1-a, and GLUA were higher by
11.6-fold, 3.95-fold, 20.16-fold, and 10.14-fold, respectively, in the Bion + FORL treatment,
as compared to the untreated control (Figure 4). Whereas, in the tomato roots, PR1-a
and GLUA were both induced by 3.7-fold and 2.41-fold, respectively, by exposure to the
pathogen alone (Figure 8). These two genes were also slightly upregulated (1.96-fold and
2.85-fold, respectively), after treatment with Bion and challenge inoculation with FORL
(Figure 8).

Plant defense response to pathogens is characterized by various physiological, bio-
chemical, and molecular changes [30]. Diagnosis of such changes is laborious, time-
consuming, expensive, and requires plant tissue destruction. A non-destructive, instant
method that allows fast and accurate diagnosis of the induction state would open a new
perspective in plant priming for disease treatment. Alternatives to fungicidal control means
against plant diseases are expected to have an important implication for plant pathogen
management. Chemical defense inducers act indirectly against the pathogens, by promot-
ing the orchestration of defense reactions in the plants that are governed by expression of
defense related genes [7]. Fast monitoring of this expression in vivo represents a pioneering
tool for exploitation of such disease management practices, since it would promote their
use instead of chemicals and would allow early assessment of their effectiveness and timely
decision-making.
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In the present study, several genes reported to be related to defense responses in
tomato [27,31–33] were used to study the defense induction state achieved after treat-
ments. Variable expression of CHI3, AOC, LOX, PR-1a, and GLUA was confirmed after
application of ASM and FORL in tomato leaves and roots, demonstrating the induction
of resistance in the plants with these treatments. The presented approach confirmed the
original hypothesis, according to which, physicochemical and molecular alterations in the
alerted plant organism have an impact on fluorescence kinetics, as shown in other cases
of biotic and abiotic stress, including pathogens and pests [18]. The novel combination
of supervised SOM models with fluorescence kinetics was proven to be able to recognize
different harvesting stages in lettuce plants [28]. The original contribution of the current
work is the non-destructive diagnosis of the induced resistance state of a plant. Different
expression profiles among treatments, especially, FORL, and Bion + FORL confirmed the
differences in fluorescence kinetics.

The combination of in vivo fluorescence techniques with supervised SOM models
can form a cost-efficient, yet effective, solution in the field of plant protection, since it is
non-invasive and applicable to all plants, at any time. The ability of supervised SOMs to
exploit the class separation that is already exhibited by the fluorescence feature is achieved
by tuning their weights to reflect this discriminative behavior. Moreover, their supervised
character allows the quantification of the class assignment into a crisp classification result.

More precisely, in the case of the SKN network, which demonstrated the best per-
formance of all the supervised SOM models, the input and output layers are gathered
together, so as to form a combined layer. This layer tends to scale according to the nature
of the training scheme. Thus, this behavior gives to the SKN network a more tunable
character compared to the two other networks employed (XY-F, CPANN), which explains
its successful classification rates.

The combined approach of supervised SOM models and fluorescence kinetics data for
the diagnosis of induced resistance state is capable of providing a useful tool in the field of
plant protection and is subsequently expected to have a long-term impact on sustainable
agricultural production, by improving the effectiveness of environmentally friendly plant
disease control measures, through an early assessment of their effectiveness, facilitating
decision-making and reducing the use of agrochemicals.

4. Conclusions

In the current study, three supervised SOM models, namely SKN, CPANN, and XY-F
were employed for the automatic recognition of systemic resistance in tomato plants after
application of a resistance inducer. Fluorescence parameterization was developed, corre-
sponding to the fluorometer variables of Kautsky curves. Gene expression data were used
to verify the accuracy of the supervised SOMs. The successful recognition of three different
defense induction treatments with the help of the supervised SOMs was achieved through
taking advantage of the heterogeneous nature of the fluorescence kinetics parameters.
The performance of the supervised SOM models was high, reaching accuracies from to
88.89% to 100%, demonstrating the effectiveness of the proposed automatic recognition
method. It was indicated that the supervised SOMs ability for diagnosing plant defense
induction is attributable mostly to the fluorescence features’ tendency to form clusters that
are closely related to the occurrence of defense induction. Operational application of the
supervised SOMs models is dependent on the deployment of the trained models under
controlled conditions, so as to monitor the expression of resistance in tomato plants. The
indication of specific fluorescence features with close correlations to defense induction
offers an opportunity for precise classification, with less fluorescence features included,
introducing an effective, yet non-destructive, solution for plant pathogen management.
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