
Citation: Chen, Y.-S.; Cheng, K.-H.;

Hsu, C.-S.; Zhang, H.-L. MiniDeep: A

Standalone AI-Edge Platform with a

Deep Learning-Based MINI-PC and

AI-QSR System. Sensors 2022, 22,

5975. https://doi.org/10.3390/

s22165975

Academic Editor: Juan M. Corchado

Received: 17 July 2022

Accepted: 6 August 2022

Published: 10 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

MiniDeep: A Standalone AI-Edge Platform with a Deep
Learning-Based MINI-PC and AI-QSR System
Yuh-Shyan Chen 1,* , Kuang-Hung Cheng 1, Chih-Shun Hsu 2 and Hong-Lun Zhang 1

1 Department of Computer Science and Information Engineering, National Taipei University, No. 151,
University Rd., San Shia District, New Taipei City 237, Taiwan

2 Department of Information Management, Shih Hsin University, No. 1, Ln. 17, Sec. 1, Muzha Rd.,
Wenshan District, Taipei City 116, Taiwan

* Correspondence: yschen@mail.ntpu.edu.tw; Tel.: +886-2-8674-1111 (ext. 68821)

Abstract: In this paper, we present a new AI (Artificial Intelligence) edge platform, called “MiniDeep”,
which provides a standalone deep learning platform based on the cloud-edge architecture. This AI-
Edge platform provides developers with a whole deep learning development environment to set up
their deep learning life cycle processes, such as model training, model evaluation, model deployment,
model inference, ground truth collecting, data pre-processing, and training data management. To the
best of our knowledge, such a whole deep learning development environment has not been built
before. MiniDeep uses Amazon Web Services (AWS) as the backend platform of a deep learning
tuning management model. In the edge device, the OpenVino enables deep learning inference
acceleration at the edge. To perform a deep learning life cycle job, MiniDeep proposes a mini deep
life cycle (MDLC) system which is composed of several microservices from the cloud to the edge.
MiniDeep provides Train Job Creator (TJC) for training dataset management and the models’ training
schedule and Model Packager (MP) for model package management. All of them are based on several
AWS cloud services. On the edge device, MiniDeep provides Inference Handler (IH) to handle deep
learning inference by hosting RESTful API (Application Programming Interface) requests/responses
from the end device. Data Provider (DP) is responsible for ground truth collection and dataset
synchronization for the cloud. With the deep learning ability, this paper uses the MiniDeep platform
to implement a recommendation system for AI-QSR (Quick Service Restaurant) KIOSK (interactive
kiosk) application. AI-QSR uses the MiniDeep platform to train an LSTM (Long Short-Term Memory)-
based recommendation system. The LSTM-based recommendation system converts KIOSK UI (User
Interface) flow to the flow sequence and performs sequential recommendations with food suggestions.
At the end of this paper, the efficiency of the proposed MiniDeep is verified through real experiments.
The experiment results have demonstrated that the proposed LSTM-based scheme performs better
than the rule-based scheme in terms of purchase hit accuracy, categorical cross-entropy, precision,
recall, and F1 score.

Keywords: MiniDeep; edge computing; deep learning; cloud computing; recommendation system

1. Introduction

Deep learning is a fast growing technology that has attracted lots of attention recently.
The deep learning makes a lot of applications feasible. Deep learning has been widely
adopted in many fields, such as computer vision, image recognition, speech recognition,
and natural language processing.

However, the effectiveness of deep learning is based on the machine computing
capability. Deep learning has two main aspects which are relative to computing power, i.e.,
the training aspect and the inference aspect. The training aspect is an important part to
determine the overall outcome of deep learning. As a typical neural network model, deep
learning requires training data to learn what the high dimension feature of the dataset is.

Sensors 2022, 22, 5975. https://doi.org/10.3390/s22165975 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22165975
https://doi.org/10.3390/s22165975
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-2784-9616
https://orcid.org/0000-0003-0386-2231
https://doi.org/10.3390/s22165975
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22165975?type=check_update&version=1


Sensors 2022, 22, 5975 2 of 35

On the other hand, the inference aspect is the step of putting a deep learning model into
the production environment for prediction. The inference aspect relies on the weights of
the trained model to provide a prediction of the outcome by passing input to the neural
network model and then obtaining the prediction output. Both the training aspect and the
inference aspect rely on the computing power. Both of them need a powerful graphics card,
which is good at a large number of parallel instruction operations and has enough memory
space to perform high-performance data handling.

The other issue is the software dependency with deep learning. In order to use the
deep learning model, we need to prepare the entire deep learning software environment,
such as TensorFlow, Nvidia CUDA library, Keras, python, etc. This is a barrier when we
deploy our applications. We also need to make sure that other libraries work fine. The
limitation described above makes the deployment more difficult.

In order to overcome the deep learning hardware restriction and software dependency,
an idea that can make deep learning environment stand alone from the local machine is
proposed. Using the cloud service to perform deep learning is an easier and effective way
to do that. Cloud computing is a distributed system to provide highly scalable and resilient
environments. It provides the hardware resource by means of on-demand and moving
training, and making inferences on the cloud platform is a solution that is not limited by the
hardware computing power. In addition, the software dependency effort will be reduced
significantly because all of the software dependency such as the library and environment
can be moved to the cloud side. The local machine only needs to handle the software
dependency about the application itself.

Although moving the training and inference process to a cloud platform to help
our hardware computing demand and software dependency reduction is a good choice,
the issue relative to the network behavior needs to be discussed. In principle, we need
to send the inference request to the cloud service, triggering the inference process with
provided predict input data, obtain the output from the inference result, and then send
a response to the local machine, which requests the inference result. In this case, deep
learning on the cloud will cause a lot of delays due to network packet exchange. Obtaining
a real-time inference response is hard. However, most of the popular deep learning
applications, such as face detection, object recognition, semantic segmentation, rely on real-
time predictions. They need to upload large amounts of image data to the cloud service,
then use a well-known model such as convolution neural network (CNN) to perform
the inference processing with many CPU intensive operations and the high-dimension
nonlinear calculation going through the CNN model, and finally send the data back to the
local device. The latency of inference response is unacceptable for real-time predictions.

The other problem is the loading of the cloud server. Assume that we have a cluster
system, which is composed of the central cloud and branches of the local device application.
This application will send the inference request to the central cloud. Because all of the
applications need to obtain the inference resources from the central cloud, deep learning
computing on the cloud will produce a large amount of packets, and the cloud service needs
to handle those requests. Deep learning computing on the cloud will cause a huge loading
on the cloud service. Even though we can choose higher performance cloud services and
more sustainable cloud machines, deep learning computing on the cloud will cost more
and more money on this issue.

Deep learning on the edge is a solution for the above issue. Deep learning on the edge
can reduce the bandwidth and latency when we send our packet to the nearby edge device.
Deep learning on the edge can make it easier for the network to work effectively. Therefore,
if we move the inference process from the cloud to the edge, real-time inference through
the network becomes feasible.

In summary, edge inference/cloud training is a robotic architecture to achieve the two
main goals. One is the standalone ability. This feature resolves the hardware restriction and
software dependency on the local machine application by moving the deep learning process
away from the local machine. The other is traffic-free; this feature reduces a large amount



Sensors 2022, 22, 5975 3 of 35

of traffic effort by using the edge device as the nearest computing resource. Therefore,
building a standalone and traffic-free platform is necessary. In this paper, we provide
developers with a whole deep learning development environment called MiniDeep to
set up their deep learning life cycle processes. To the best of our knowledge, the existing
AI-Edge platforms [1–3] do not provide a whole deep learning development environment
for the developers or just provide a framework for the development of the deep learning
system [4].

The contributions of the proposed scheme are listed as follows.

• We have proposed and built a new AI-Edge platform called “MiniDeep”.
• The proposed MiniDeep can provide developers with a whole deep learning develop-

ment environment to set up their deep learning life cycle processes, such as model
training, model evaluation, model deployment, model inference, ground truth collect-
ing, data pre-processing, and training data management. To the best of our knowledge,
such a whole deep learning development environment has not been built before.

• The proposed MiniDeep can use a stand-alone mini-size PC as the edge device. Hence,
it can be deployed on the nearby local machine easily, and it has the ability to provide
a plug and play feature.

• In the proposed platform, a cloud-edge based deep learning software system can use
the edge device to perform inference and use the cloud service to train the neural
network model.

• A recommendation system for AI-QSR (Quick Service Restaurant) KIOSK (interactive
kiosk) application has been implemented on the proposed platform. The experiment
results have demonstrated the effectiveness of this recommendation system.

The remainder of this paper is organized as follows. Section 2 describes the related
works and motivations. Section 3 describes the system architecture, the basic idea, and
system components of our platform. Section 4 describes the MiniDeep system architecture.
Section 5 introduces the AI-QSR system architecture. Section 6 provides the experimental
results. The conclusion is finally given in Section 7.

2. Related Work
2.1. Literature Review

Jacob et al. [5] use Raspberry Pi 3 plug with an Intel Neural Compute Stick to perform
real-time object recognition for vehicular edge computing. The paper shows that an embedded
system such as Raspberry Pi 3 with an Intel Neural Compute Stick is capable of performing
real-time object recognition by edge computing. Jaewon et al. [6] propose a new design of the
Cloud-Edge Collaboration framework for IoT data analytics. The platform uses the crawler
to obtain the IoT training data and training model on the cloud, and they select the best
performance model to deploy on the edge device. The edge device considers the inference
result and control the device by the interaction rule. Hongxing et al. [7] propose a platform
“WiCloud” to provide edge networking, proximate computing and data acquisition for
innovative services. Nam et al. [1] propose a novel edge computing platform, Distributed-
Node-RED, that uses a distributed data flow programming model based on an open-source
Node-RED tool. They address challenges for building fog application across the edge
network to the cloud. Preethi et al. [8] introduce a sentiment analysis recommendation
system based on Recursive Neural Networks (RNN); the sentiment analysis is performed
on the different reviews, which are obtained from different social media. Yanik et al. [2]
introduce the edge computing platform for smart building, names Qarnot architecture,
which locally builds and calibrates smart-building systems for processing of the natural
acoustic flow. Shangyu et al. [9] present a resource allocation scheme call Mobile-I, which
optimizes both computing and storage resources so that the processing delay can be
reduced and the resource can be utilized on the edge device. Velasco-Montero et al. [10]
compare different deep learning models on the embedded edge device, and they define
a Figure of Merit (FoM) that merges the performance metrics into a representation of
computational and energy efficiency models and frameworks on the hardware platform.



Sensors 2022, 22, 5975 4 of 35

Jonghwan et al. [11] introduce the feature space encoding, which performs the inference
to the middle layer; then, they encode the feature and transfer it from the edge device
to the local device to complete the subsequent inference process. They also provide the
method of compressed (loss-less and lossy) for feature space encoding before transmitting
to the local device. Chunwei et al. [12] test different DNN models on different paltforms.
The result shows that modern edge CPUs are suitable for inference with DNN models
such as LSTM, MLP, and mobile-optimized CNNs. Rothe et al. [13] propose a state-of-art
age recognition by considering the age estimation problem as a fused of regression and
classification combination. The used network is VGG-16, which is classified by a pre-
training model on ImageNet and then trained on the IMDB-WIKI dataset. The contribution
of re-processing methods is that the face feature point extraction is not used in this article.
Sergey et al. [14] present the Wide Residual Networks, which is a model that is used to
more effectively improve the performance of the model. The authors make the model wider
by increasing the number of output channels, so that network depth N can maintain a small
value, and the network can achieve good results. Jiaxi et al. [15] propose a Convolutional
Sequence Embedding Recommendation Model (Caser). They find that it is important that
the sequential patterns have a larger effect on the next item. Cheng et al. [16] propose
a matrix factorization method, namely FPMCLR, to embed the personalized Markov
chains and the localized regions. The experimental results show that is effective and
efficient, and they compared it to several state-of-the-art methods to prove the performance.
Ruining et al. [17] propose a new method, called TransRec, for large-scale sequential
prediction. They indicate a “transition space” that is embedded from items, and the user is
represented as translation vectors operating on item sequences. This approach has good
performance in real-world datasets. Balázs Hidasi et al. [18] apply RNN to the Session-
based Recommendation for the first time, and they design the RNN training, evaluation
method and ranking loss for this task. Balázs Hidasi et al. [19] explore how to add the item
property information such as text and images to the RNN framework, and they explore
several model frameworks that incorporate item properties. Massimo et al. [20] propose
a hierarchical RNN model. Compared with the previous work, they can describe the
personal interest changes of the users in the session and make the user’s personalized
session recommendation. Jannach et al. [21] show that the RNN model in the session can be
combined with the KNN method to improve the recommendation effect. Tossawat et al. [22]
propose a recommendation system which uses a deep learning model to extract ingredients
from the user’s favorite dishes, and it also collects the history of dish-selecting information
with a user profile in a database. Pui et al. [23] develop a framework for medical KIOSK
call MedKIOSK, which has the ability to perform intelligent conversation with the user by
deep learning with natural language processing. Wang et al. [24] propose a heterogeneous
brain storming (HBS) online knowledge distillation (KD) scheme for object recognition
in real-world Internet of Things (IoT) scenarios. This scheme converts the traditional
temperature hyperparameter to a trainable parameter to find optimal temperature for
different networks, tasks, and methods. Kasi et al. [25] address the edge server placement
problem within an existing network infrastructure. The problem of edge server placement
is formulated as a multiobjective constraint optimization problem to balance between
the workloads of edge servers and reduce access delay between the base stations and
edge servers. The genetic algorithm and local search algorithms are adopted to find the
best solution. Riggio et al. [4] describe the challenges and conceptual architecture of the
AI@EDGE project. The AI@EDGE project aims to provide a flexible AI/ML (Artificial
Intelligence/Machine Learning) platform at the network edges where the next generation
AI-enabled application and services can be deployed. Choi et al. [3] present real-time
object detection models for AI edge platforms using a modified head structure of the
refinement detector (RefineDet). Through performance tests and model analysis, a balanced
performance in terms of accuracy and speed for real-time detection on edge platforms can
be achieved.



Sensors 2022, 22, 5975 5 of 35

2.2. Motivations

Through the above discussion, we can summarize that edge computing and cloud-
edge collaboration can be adopted to applications such as inference and object recognition.
Many AI-based recommendation systems have been proposed and proven to be effective.
However, the AI-based recommendation systems have not been built on an AI-Edge
platform. To build an AI-based recommendation system on the AI-Edge platform, we have
proposed a novel AI-Edge platform called “MiniDeep”. MiniDeep provides developers
with a whole deep learning development environment to set up their deep learning life
cycle processes. With MiniDeep, developers can build an AI-based edge-cloud system
more easily. Although many AI-Edge platforms have been proposed [1–3], these AI-Edge
platforms do not provide developers with a whole deep learning development environment.
The AI@EDGE project [4] aims to provide a flexible AI/ML platform at the network edges
where the next generation AI-enabled application and services can be deployed. However,
the AI@EDGE project has just provided a framework for the development of the deep
learning system. The whole deep learning development environment has not been built yet.

3. Preliminaries

This section describes the knowledge of the edge-cloud architecture and introduces
the cloud service and edge environment that are used in this paper.

3.1. Edge-Cloud Architecture for Deep Learning

Typically, a deep learning life cycle contains many detailed procedures. There are
several procedures in a life cycle such as data collecting, data pre-possessing, model
training, model evaluation, model deployment, inference monitoring, and starting a new
life cycle by going back to data collecting. Implementing the deep learning life cycle on
the production machine may incur challenges because deep learning needs to compute
tons of neural forward operations to obtain the model inference output. Training a model
on a production machine is also a very difficult solution because of the poor hardware
computing power on the production machine. In summary, separating the computing
resource of the production machine from actual deep learning computing is a good choice
to prevent deep learning computation from occupying the whole computing power of the
production machine. In this paper, we propose a standalone deep learning platform in
mini pc. Mini pc is based on the edge-cloud architecture and has the ability to train and
inference a deep learning model for the production machine.

The system architecture of the edge-cloud model for deep learning is shown in Figure 1.
The system architecture is divided into two major aspects, the cloud side and the edge side.
The cloud side is based on the machine learning services such as AWS sagemaker, Google
Cloud ML Engine, Azure Machine Learning, IBM Watson Machine Learning, etc.

The machine learning service gives the developer a deep learning developing envi-
ronment to train a deep learning model with various computing hardware instances. The
machine learning service generally provides the script coding, model training, hyperpa-
rameter tuning, and model storing when developing on the cloud.

The remaining part of the cloud side is the continuous training management and AI
deployment service. The continuous training management is a process to manage model
training scripts and schedule the period to obtain training data and perform online training
automatically. Deploying a deep learning service on the edge device needs to rely on
the AI deployment service. The AI deployment service provides the ability to deploy a
trained model automatically to the edge device when the deep learning model has been
trained successfully.

The edge side is based on the embedded system device or the PC for deep learning
inference. The edge side uses the computing hardware to compute the deep learning
model inference. There are many options for choosing computing hardware, such as an
embedded system board, AI Chips, AI USB, etc. An Nvidia Jeston TX2 embedded board
has a dual-core NVIDIA Denver2, a quad-core ARM Cortex-A57 CPU, and a 256-core Pascal



Sensors 2022, 22, 5975 6 of 35

GPU. Nvidia Jeston TX2 is suitable for developing deep learning inference work on the
edge side. The other choice is to use mini pc with an external computing resource. Using
an Intel neural compute stick is a good choice for the edge device whose computing power
is not enough to cope with the deep learning inference.

Figure 1. The system architecture of the edge-cloud model.

The AI acceleration platform on the edge side is an environment that helps the edge
device to enable hardware computing acceleration. The edge device acceleration platform
has many optimizing operations to accelerate the deep learning inference, such as parallel
computing, heterogeneous calculation, neural network optimization, etc. OpenVino enables
CNN-based deep learning inference at the edge and supports heterogeneous execution
across computer vision accelerators [26].

The remaining part of the edge side is the data synchronizer and deployed environ-
ment. The data synchronizer is a local data storage management system which has the
ability to handle the data uploading process from the edge to the cloud. The data synchro-
nizer also provides the definition of the pre-processing process for new data collected from
the inference. The deployed environment is a model deployment and model inference
execution environment on the edge device. This environment is often based on the AI
acceleration platform to perform deep learning inference. This environment also needs to
provide a restful API interface so that the local application device can send a request and
obtain a response from the deep learning inference to the edge device.

3.2. Deep Learning Cloud Service Overview

In this paper, MiniDeep uses Amazon Web Service (AWS) as a deep learning model
management platform. MiniDeep uses AWS to handle some deep learning jobs, such as
data storing, model training, model evaluation, and model deployment. Sagemaker is
one of the AWS that provides a platform to host a deep learning runtime environment.
The runtime environment can train the model and evaluate the model with the uploading
model script from the developer. Sagemaker provides the training hardware which you
need so that the developer can only focus on the deep learning operation without worrying



Sensors 2022, 22, 5975 7 of 35

about hardware maintenance. AWS IoT GreenGrass is one of the AWS that can bring AWS
services to the edge device. GreenGrass can choose the serverless instance with user scripts
and the package serverless instance as a GreenGrass core which can be deployed to the
edge device. With this feature, GreenGrass can provide a solution to package the deep
learning model to the edge and keep tracking the edge device status by the GreenGrass
core feature.

The above two services are the main services which MiniDeep deep learning operations
are based on. Other than this, the basic serverless service as a platform module is needed
to be used to implement the core function. MiniDeep uses AWS Lambda service to host a
serverless runtime to compute the application logic by demand. Using the AWS lambda
service can only focus on what system logic you care about, and you do not need to care
about what infrastructure and operation environment you used. For data storing, MiniDeep
uses AWS DynamoDB to support the platform for storing the training data uploaded from
the edge side. With AWS Lambda service and DynamoDB service, MiniDeep can build a
suitable serverless architecture with our system.

3.3. Deep Learning Edge Environment Overview

This section introduces the runtime environment which is built in the MiniDeep edge
device. The edge device uses Intel OpenVino as the hardware acceleration platform so
that MiniDeep can make inferences more efficient by hardware acceleration. We know
that OpenVino has its limitations. However, we aim to use a non-Nvidia (mainstream)
architecture. We want to confirm that using OpenVino plus Intel Movidius is more suitable
for an environment with small space, no fan, and less maintenance. The Intel OpenVino is
used in the CNN-based deep learning inference at the edge, and it supports heterogeneous
execution on the hardware resource of the edge device. With the acceleration ability, Open-
Vino executes deep learning acceleration on CPU, GPU, Intel Movidius Neural Compute
Stick, and FPGA. OpenVino is composed of the Model optimizer and Inference engine.

A model optimizer is a command-line tool that performs static model analysis and
adjusts deep learning models for the optimal execution on edge devices. After that, the
model optimizer produces an Intermediate Representation (IR) of the network, which can
be loaded with the Inference Engine.

The Inference Engine is a C++ library with a set of C++ classes to obtain the inference
result. The C++ library provides an API to read IR which is obtained from the model
optimizer. The input and output formats are set, and the inference result on edge devices is
executed. The Inference Engine allows high-performance inference by paralleling execution
and heterogeneous execution on many hardware types including Intel CPU, GPU, FPGA,
and an Intel Movidius Neural Compute Stick.

In order to accelerate with the help of external hardware, the Intel Movidius Neural
Compute Stick is plugged into the MiniDeep edge device. With Neural Compute Stick
(NCS), Intel NCS can help to accelerate the inference for poor hardware computing devices.
NCS may provide an environment with fast response inference for real-time applications.

3.4. Problem Definition

In this paper, there is an AI-QSR (Artificial Intelligence Quick Service Restaurant)
KIOSK (interactive kiosk) application based on the MiniDeep platform. The AI-QSR has
a recommendation system to recommend to the end-users which food they may like
to purchase. The goal of the recommendation system aims to provide a high purchase
intention QSR recommendation service.

The food item is the basic element in the AI-QSR system. The composition of the
multiple food items can be a combo suit. For example, one hamburger food item and drink
food item can be a basic hamburger combo suit. The AI-QSR has a menu category where
each element in the menu category is a food item or a food combo suit. In this case, all the
food items in AI-QSR can be represented as a set F = ( f1, . . . fi, . . . , fn), where n is the total
number of food items in the AI-QSR application. For each food item fi in F, fi contains the



Sensors 2022, 22, 5975 8 of 35

information of the food feature. Each food item fi is represented as fi = { f p
i , f ca

i , f m
i , f co

i }.
f p
i represents the food price, where f p

i = {N+}. f ca
i is the number of food item categories,

where f ca
i = {0, 1, . . . , c− 1} and c is the number of categories. f m

i represents the number of
menus, where f m

i = {0, 1, . . . , m− 1} and m is the number of menus. f co
i represents a food

item content vector with six elements, where f co
i = (cv

1, cv
2, . . . , cv

6) and cv
k is a content vector

element. For each content vector element in f co
i , the content vector element represents a

hamburger, chicken, drink, snack, sandwich, and suit, respectively.
The user’s information data contain the important descriptions to represent a user’s

feature, which can be obtained from a camera, user interface, or usage flow. For each user
ui in user set U, there is a ui = {da

i , dg
i , dc

i , dp
i }. da

i is the user age scalar number, where
da

i = {N+}. dg
i is the user gender binary data, where dg

i = {0, 1}. dc
i is the user click

event which is a variable-length vector, where dc
i = (ei

1, . . . , ei
j, . . . , ei

t) and t is the time step

of the most current click event, and each click event ei
j is the positive number given by

ei
j = {N+}. The click event ei

j is a flow sequence element which represents a click step of
user usage flow. dc

i is a whole flow sequence which represents a whole step of purchase
flow generated by the user. dp

i is a list of food items that contains the food item purchased
by the user previously. dp

i is represented as dp
i = (pi

1, . . . , pi
j, . . . , pi

k), where k is the total
number of food items purchased by the user. Each purchased item is a food item given by
pi

j ∈ F = ( f1, f2, . . . , fn)

For the symbol representation of food item fi and user information ui, there is a recom-
mendation accuracy problem in QSR-FS (Quick Service Restaurant Flow Sequence). In the
QSR-FS problem, AI-QSR KIOSK application needs to maximize the recommendation accu-
racy. The higher recommendation accuracy can be considered as the higher user purchase
intention. Once this problem has been resolved, the KIOSK application with a recommen-
dation system for food suggestion can be widely used in a quick service restaurant.

3.5. Problem Formulation

The QSR-FS problem described in the previous paragraph can be formulated as follows.

A ≈ arg max
θ∗

{QSR_FS(θ∗)} (1)

The purpose of Equation (1) is to find the highest accuracy A in the QSR-FS problem.
θ∗ is the output of the loss function which can be found by the given θ in Equation (2). The
loss function tries to find a θ which minimizes the output of the loss function to fit with
the dataset. The loss function is used to estimate the degree of inconsistency between the
predicted value f (x, θ) of the model and the true value y that is a non-negative real-valued
function, which is usually represented as L(Y, f (X)). The smaller the loss function is, the
better the robustness of the model becomes. There is a representation X for the input data
of the QSR-FS formula, as shown in Equation (3), and Y for the labeled data of the QSR-FS
formula, as shown in Equation (4). In this case, r is the number of training data in X, and s
is the number of purchased food item in one training data.

θ∗ = arg min
θ

{
1
N .

n
∑

i=1
.L(yi, f (xi, θ)) + λΦ(θ)

}
, where

{
X = (x0, · · · , xi, · · · , xn)
Y = (y0, · · · , yi, · · · , yn)

(2)

xi ∈ {u1, · · · , ui, · · · , ur}, subject to

{
ui = {da

i , dg
i , dc

i , ( f1, · · · , f j, · · · , fs)},
f j = { f p

j , f ca
j , f m

j , f co
j } (3)

yi ∈ { f1, . . . , fi, . . . fr} (4)

In Equation (2), L(yi, ŷi) is the category cross-entropy function to classify multiple
cases of output, as shown in Equation (5). There are also the regularization Φ and the
regularization constant λ that Φ can be placed as L1 regularization and L2 regularization,



Sensors 2022, 22, 5975 9 of 35

as shown in Equations (6) and (7), respectively. The regularization is the part to prevent
over-fitting and improve the generalization ability in the loss function.

L(yi, ŷi) = −
m
∑

j=1
ŷij log yij. (5)

ΦL1(θ) =
n
∑

i=1
‖θi‖. (6)

ΦL2(θ) =
n
∑

i=1
θ2

i . (7)

Furthermore, Equation (8) is the QSR-FS function which uses exponential function
with −θ∗. This equation obtains the cross-entropy result of the loss function to obtain the
approximate accuracy A. The cross-entropy is the probability of being correctly classified
for a single sample. When the learning algorithms of the training machines are using
batch-based and cross-entropy loss, the accuracy can be roughly calculated according to
loss, and the error decreases as the batch size increases. When the batch size is set as
100—that is, between e-loss and accuracy–the error is usually less than 0.01.

QSR_FS(θ∗) ≈ e−θ∗ (8)

Finally, by combining all the above formulas, the QSR-FS problem can be formulated
as shown in Equation (9).

A ≈ arg max
θ∗

e
−arg min

θ

{
1
N .

n
∑

i=1
.L(yi , f (xi ,θ))+λΦ(θ)

}
, subject to

{
X = (x0, · · · , xi, · · · , xn)
Y = (y0, · · · , yi, · · · , yn)

(9)

4. MiniDeep Edge-Cloud Platform

In this section, the MiniDeep system architecture is described in Section 4.1 to realize
the detailed module inside the MiniDeep platform. The training procedure and details of
the inference procedure are described in Section 4.2.

4.1. Minideep System Architecture

Figure 2 shows the internal architecture of the MiniDeep platform, which is concate-
nated with the end-device system. The KIOSK application is used as an end-device system.
The MiniDeep’s deep learning provider module is installed, which contains the GreenGrass
IoT device SDK to call the GreenGrass core function and obtain access with the MiniDeep
edge device. The edge device is set at the nearby end device connecting with the Ethernet
cable. Communication can be accomplished by the HTTP protocol. The system contains
four microservice modules, i.e., Train Job Creator (TJC), Model Deployer (MD), Inference
Engine Handler (IEH), and Data Provider (DP). The first and second microservice modules
are on the cloud. The third and last microservice modules are on an edge device.

In the MiniDeep system, deep learning model management relies on cloud microser-
vice modules, i.e., Train Job Creator and Model Deployer. The MiniDeep user uploads
their model handling script on Train Job Creator. The model handling script contains the
procedure of how the model will be trained, the model will be evaluated, and the dataset
will be used. The dataset can be provided by Data Provider, which collects the ground
truth data on the end device and synchronizes to Train Job Creator or is provided directly
by DeepLearning Provider SDK, which sends the ground truth data to Train Job Creator
directly. After the MiniDeep user uploads their model handling script, the MiniDeep can
start model training and model evaluation by using the MiniDeep management tool. The



Sensors 2022, 22, 5975 10 of 35

model deployer can take a trained model from the Train Job Creator and package model
as a serverless runtime function base on the AWS lambda service. The MiniDeep user can
choose which model they want to package and how many of the different models they
want to bring together.

Figure 2. The system archicture of the MiniDeep platform.

After the MiniDeep user finishes their model tuning work on the cloud, the model can
be pulled from the Model Deployer to the Inference Engine Handler in the edge device by
the MiniDeep management tool. Then, the Inference Engine Handler obtains the model
that is packaged as GreenGrass core and then deploy GreenGrass core in the runtime
environment of the Inference Engine Handler. The end device can send the RESTful API
request to the edge device and then obtain the inference result from the edge device.

When the end device obtains the inference result, the edge device can also obtain the
ground truth from the correct feedback of the end-user in the application. The end-device
application can send back the correct label of the user as the new training data to the
MiniDeep system. The MiniDeep user uses the MiniDeep management tool to upload the
new training data to the Data Provider on the edge device or send the new training data
directly to the Train Job Creator dataset database. The Data Provider itself also manages
the new training data and synchronizes the new training data by mechanisms between the
Data Provider and Train Job Creator.

4.2. Minideep Platform Usage Design

This section describes how the individual microservice module works in the training
and inference phases. This section also describes how the microservice modules co-work
together to upload training data and deploy the inference model by our protocol.

The detailed functions of the Data Provider (DP) and Train Job Creator (TJC) are
described as follows.

4.2.1. Data Provider

Figure 3 shows the detailed functions of Data Provider (DP). The functionality of Data
Provider is to store the new training data in the edge device temporarily and then send the
stored new training data to the cloud service if the cloud service requests Data Provider.



Sensors 2022, 22, 5975 11 of 35

There are two core services and one management component. The two core services are the
data_collection_service and training_dataset_service.

Figure 3. The detailed functions of the Data Provider (DP).

The training_dataset_management component is a MongoDB-based training database.
The component, which is called the training_dataset_management component, stores
the data uploaded from the local device, manages data as a JSON format data in the
database, and then returns the unsynchronized training data to the Train Job Creator.
The training_dataset_management component represents the dataset as Dd̂

i , one training
datum as dd̂

i , one feature datum as xd̂
i , and one label datum as yd̂

i . The data stored in the
training_dataset_management can be represented as follows:

Dd̂ =
n

∑
i=1

Dd̂
i =

m

∑
j=1

n

∑
i=1

dd̂
(i,ji) =

m

∑
j=1

n

∑
i=1

(xd̂
(i,ji), yd̂

(i,ji)) (10)

The data stored in training dataset management can also be divided into two parts,
synchronized training dataset Dd̂_S

i and unsynchronized training dataset Dd̂_U
i , which are

represented as follows:

Dd̂ = Dd̂_S
i + Dd̂_U

i (11)

The data_collection_service is a RESTful endpoint which listens to the HTTP con-
nection and accepts post requests from the local device which sends a new training da-
tum (xd̂

(i,ji), yd̂
(i,ji)). The service called data_collection_service uses the data upload end-



Sensors 2022, 22, 5975 12 of 35

point to obtain the new training data from the outside and uses a database controller
to control training data storage on training dataset management. In addition, the Data
Provider has a dataset status checker function that handles the dataset status report. The
data_collection_service asks the data_collection_service and sends back to the local device
after the data_collection_service obtains the dataset status.

The training_dataset_service is also a RESTful endpoint which listens to the HTTP
connection and accepts the HTTP GET request to obtain the unsynchronized training data
Dd̂_U

i and upload to the Train Job Creator. This service contains a data retrieve function, a
batch queue, and a training dataset updater. The Train Job Creator will take the training
dataset updater as an endpoint entry and request the new unsynchronized training data
Dd̂_U

i . The training dataset updater checks the batch queue to find if there are enough new

data or not. If the batch queue has enough new data Dd̂_U
i , the training dataset updater

will pop the new data and download new data to Train Job Creator to store and train it.
The data retrieve function can ask the database controller to obtain new data and push new
data in the batch queue every time when the training_dataset_service accepts a connection.

4.2.2. Train Job Creator (TJC)

After obtaining the training data from the edge, the TJC can manage the training data, train-
ing script, training job, and model artifacts on the cloud. Figure 4 shows the detailed functions
of TJC. There are five lambda-based core services, such as data_synchronize_trigger_service,
event_schedule_service, model_instance_launch_service, training_status_handle_service, and
the model_artifact_service. Each service is also a serverless microservice in which if one core
service does not work, other microservices will not be affected and still work independently.
The core services of TJC operating resource elements are managed by management in-
stances, such as dataset_management. The management is called model_script_management
and model_artifact_ management. The management instances are based on the AWS Dy-
namoDB or Simple storage service. The end device or edge device can communicate with
the Train Job Creator by MiniDeep SDK or the MiniDeep cloud interface, respectively.

The dataset_management is used to manage the training dataset. The training dataset
T is given by:

T = {(Dt̂
1, rt̂

1, it̂
1), (Dt̂

2, rt̂
2, it̂

2), . . . , (Dt̂
n, rt̂

n, it̂
n)}, (12)

where the dataset database D is represented as Dt̂
i = (dt̂

(i,1), dt̂
(i,2), . . . , dt̂

(i,j)), the route table

of the dataset Rt̂ is represented as Rt̂ = (rt̂
1, rt̂

2, ..., rt̂
i ), and the data identification record I t̂ is

represented as I t̂ = (it̂
1, it̂

2, . . . , it̂
i ). Each dataset database element Dt̂

i represents a training
data composed of feature data Xi and label data Yi. For each dataset, the database element
Dt̂

i is given by,

Dt̂
i =

{
Xi, where Xi = (xi

1, xi
2, . . . , xi

n)
Yi, where Yi = (yi

1, yi
2, . . . , yi

n)
(13)

The route table of the dataset is used to record what model script is used in training the
database Dt̂

i . For Equations (12) and (13), there is a training dataset complete representation:

T = {((X1, Y1), rt̂
1, it̂

1), ((X2, Y2), rt̂
2, it̂

2), . . . , ((Xn, Yn), rt̂
n, it̂

n)} (14)

When MiniDeep manages the deep learning model training, MiniDeep needs the model
script to know how to train deep learning model for the dataset by the procedure written in
the model script. The model script is managed by the model_script_management component.
The model_script_management component uses simple storage service as a backend service to
handle model script storing, and the model script St̂ in model_script_management component
is represented as:

St̂ = {st̂
1, st̂

2, · · · , st̂
n} (15)



Sensors 2022, 22, 5975 13 of 35

Figure 4. The detailed functions of the Train Job Creator.

Each model script St̂ in the model_script_management component has the script
itself and the script meta-data. The script meta-data defines the type of the deep learning
algorithm and the application of this script. The script meta-data also record the deep
learning hyperparameters to define how to train this script: by which epochs, batch size,
input dimension, output dimension, and so on. The model script St̂ is also recorded in the
dataset_management component. The route table of the dataset Rt̂ of the dataset_management
component records the model script and the used dataset to perform model training. The
one dataset route table Rt̂ may record many model scripts St̂ such that multiple training



Sensors 2022, 22, 5975 14 of 35

scripts use the same dataset to do similar things. In summary, the one dataset route table rt̂
i

in Rt̂ is given by:
rt̂

i ∈ {st̂
1, · · · , st̂

i , · · · , st̂
n}, where st̂

i ∈ St̂ (16)

With this dataset route table Rt̂, MiniDeep can find the model script St̂, so the training
trigger can invoke the training schedule when the training script request is arranged or
called. The data_synchronize_trigger_service is a service that manages the triggers to
control when to collect new training data on the edge device and when to start the training
job on the cloud by scheduling. This data_synchronize_trigger_service contains a trigger
route controller and a data synchronize handler. The trigger route controller has the
function to handle how to obtain the dataset to feed new data in dataset_management and
obtain the script to find the dataset and launch dataset. The data synchronize handler has
the function to synchronize the new training data from the edge side when the trigger is
announced. This data_synchronize_trigger_service is placed in the lambda service to serve
as a microservice.

The data_synchronize_trigger_service has a lambda runtime which hosts a trigger
route controller. The controller uses a device_trigger table to find which trigger is needed
to forward to which device. The service handles the new trigger event to perform data
fetching from the end device, and the trigger finds the end device De_id and assigns a
trigger to the data_synchronize_handler to obtain the new training data, and then, it stores
the new training data to dataset_management.

The event schedule service has the ability to set an event rule on the CloudWatch
service. This service provides an interface to set an event, and the event is used to announce
the service which is called the data_synchronize_trigger_service to obtain the new training
data and to launch the training script St̂. This service contains an event controller as the
host. The event set component is the event rule to handle which CloudWatch trigger
rule should be announced. The event controller has the HTTP endpoint to obtain the
edge device message Event_setting (event_type, event_opt). CloudWatch is an AWS service
which provides the service to set the event emitter and track the metric to know when to
emit. The event setting component has the sync trigger to be a trigger endpoint for the
MiniDeep system. The event setting message decides the event type and event opt; then,
the event controller can find the correspond sync trigger. Then, the sync trigger can set
the AWS CloudWatch trigger according to the event setting. The event schedule service is
placed in the lambda service to serve as a microservice.

If MiniDeep wants to manage training script St̂, the model instance’s launch service
is a core function to handle this demand. This service provides the API interface for the
MiniDeep user to control the train model script St̂. The model instance’s launch service con-
tains the model script controller, job queue, and the instance launcher functions. The model
script controller handles the whole life cycle and operation on a training job. The model
script controller can control all of the training jobs in the training_job_management_service.
The job queue is a queue implementation which arranges the training launch requests in
a queue. The instance launcher is a function to start the training script training life cycle
and handle the training dataset feeding, hyperparameters forwarding, and job metadata
checking. The model instance launch service is placed in the lambda service to serve as
a microservice.

The training job management is a component that provides the training job envi-
ronment with the full management of the service runtime. This management service is
based on the sagemaker runtime, and it provides the setting option to define the hardware
acceleration solution being applied on the training job. The training job is represented
as a training script process which provides the sagemaker runtime to know what model
architecture needs to be trained and how to train a deep learning model by the method
written in the script. The training job tt̂

i is followed with the training instance and metrics;
one is the training hardware, the other is the model analysis metrics that the MiniDeep can
obtain by the training_status_handle_service.



Sensors 2022, 22, 5975 15 of 35

The training job tt̂
i is represented as below:

tt̂
i = (st̂

i , tt̂_h
i , tt̂_m

i , at̂
i), where st̂

i ∈ St̂ (17)

Equation (17) shows the training instance content. The training instance contains a
training job, where st̂

i is the model script, tt̂_h
i is the model hardware training instance,

tt̂_m
i is the model metrics, and at̂

i is the model artifact. The model artifact is the model
training product after the training is completed. The model is stored in the Model artifact
management component.

The training_status_handles_service provides an API that the MiniDeep user can use
to obtain the training job status, training log, training metrics, or set the resulting trigger
so that the MiniDeep can obtain the result event when the MiniDeep user sets the result
trigger callback. The training_status_handle_service contains an instance result trigger and
model status publisher. The instance trigger is an event handler which listens to the model
train job status and records d_set in an instance. If the training job tt̂

i is completed, failed, or
suspended, the instance result trigger can announce an event to trigger the model status
publisher. The model status publisher provides the function to publish the event to the
edge side. If the instance result trigger announces the trigger, the model status publisher
catches the result and sends the event data back to the edge device according to De_id and
trigger reference. The training_status_handle_service is placed in the lambda service to
serve as a microservice.

The model artifact management is a component that manages the model artifact at̂
i in

the MiniDeep platform. The model artifact at̂
i is the deep learning model product that is

produced by the sagemaker service training instance. The model artifact can be treated as
a deep learning model product and applied to the deep learning inference environment.
The model artifact management contains many artifact elements. Each element contains
one model at̂_m

i and one model meta at̂_mt
i . The model at̂_m

i is a product available model
instance, which can be loaded in the deep learning framework and produce the inference
result by predicting data. The model meta at̂_mt

i is a file that records the whole model
training log, model status, model training metrics. The model artifact at̂

i can be retrieved by
model_artifact_service. The model artifact element at̂

i in model_artifact_management_service
can be represented as:

at̂
i = (at̂_m

i , at̂_mt
i , st̂

i), where st̂
i ∈ St̂ (18)

The model_artifact_service provides the function to control the model artifact on the
cloud, the model_artifact_service can obtain, update, and delete the model artifact in model
artifact management. The model_artifact_service also provides the API to let another
service obtain the artifact to perform deep learning. The model_artifact_service contains a
model artifact controller and artifact switching host. The model artifact controller provides
the ability to manage the model artifact and handle the model retrieve request. The artifact
switching host can provide the model switching feature. The mode switching is a function
that can record which MiniDeep edge device uses the artifact service. If the model artifact
has been updated, the next time, the MiniDeep edge device will know the new model
available and download it. The training_status_handle_service is placed in the lambda
service to serve as a microservice.

All of the above management components and microservices are the core feature of
the Train Job Creator. The whole functionality can be access by the AWS console. The
MiniDeep edge also provides API to control the Train Job Creator. After all, if the MiniDeep
user finishes the model training logic, the model deployer manages and controls the
model management.



Sensors 2022, 22, 5975 16 of 35

4.3. Training Procedure Details

For the training procedure, the Data Provider (DP) and Train Job Creator (TJC) are
important modules to complete the deep learning training process. The detailed procedure
of MiniDeep training is shown in Figure 5. This procedure contains a local device. A
Data Provider is in the edge device and a Train Job Creator is in the cloud platform. The
MiniDeep training procedure uploads the new training data and launches a new training
job in this procedure. The detailed procedure is given as:

S1. In the beginning, the user sends an ESR_message(De_id, event_type, event_opt, d_set_name) to
the event_schedule_service and creates an f_event on the cloud. The event_schedule_service
sets the event by event_type and event_opt. After setting the event, if the APP has the
new training data, the APP will send the training data to the new training cycle. The
APP sends a message which is called DP_ins(De_id, d_set_name, dset

i −→ dset
i+d_num)

to the data_collection_service for training data insertion. After receiving DP_ins, the
data_collection_service indicates the d_set_name, performing StoreUnsync(d_set_name,
dset

i −→ dset
i+d_num) to store data in the edge database on the training_dataset_service.

S2. After the edge data are stored in S1, the cloud will fetch data when a fetch event occurred,
and the fetch event is named f_event. When f_event occurred, the event_schedule_service
calls CloudWatchTriggerEmit(d_set_name, event_id) to control the data_synchronize_trigger_
service and the data_synchronize_trigger_service to send a DS_fetch_message( fetch_id,
d_set_name) so as to fetch the new training data. The training_dataset_service receives
the DS_fetch_message and issues an SD_response ( f etch_id, dset

i −→ dset
i+num, d_set_name)

with the new training data.
S3. When the APP starts a new training job, the user sends ILTJ_message(De_id, d_set_name, st̂

i),
determining the training script, to the model_instance_launch_service. After the model_
instance_launch_service receives the ITLJ_message, the model_instance_launch_service
will obtain dataset dset_i from d_set_name in the cloud database and obtain the training
script st̂

i from the cloud database. After obtaining all elements, the model_instance_
launch_service makes a T_JOB object which records training job information and
pushes training job information into JOB_QUEUE. The JOB_QUEUE can adjust re-
source usage to prevent resource usage overloading by setting. When the T_JOB
object is popped out, the model_instance_launch_service launches training job by
T_JOB_Launching( T_JOB, st̂

i , dset_i) and then performs model training on the cloud
service provided by AWS.

S4. When the model training is finished, the model_instance_launch_service calls MS_artifact
(ai, d_set_name, st̂

i ) on the model_artifact_service to store the model artifact in the cloud
database. The model_instance_launch_service also calls MTC_event(ai_id, DE_id) to the
training_status_ handle_service. The training_status_handle_service obtains MTC_event
and knows which APP device needs to be noticed. The training_status_handle_service
sends the TJS_publish(ai_id, T_JOB_INFO) message as successful training job infor-
mation to the APP.

As shown in Figure 5, the model runs S1 (Edge data storing) by sending an ESR_message
to perform event schedule registration on TJC. The user can insert new data by sending
DP_ins to DP in the edge device, and the edge device stores the new data temporar-
ily until S2 (Cloud data fetching) is executed. When S2 is executed, the TJC sends a
DS_fetch_message to DP, and then DP sends back a SD_response. When the APP wants
to launch a new training job, the training procedure runs S3 (Performing model training
process). In S3, the user sends an ILTJ_message to create the new T_JOB object and then
pushes into JOB_QUEUE. The model training will start when the T_JOB object is popped
from JOB_QUEUE. After the model training is completed, the training procedure runs S4
(Handling model training result). This step handles the model result storing by performing
MS_artifact and sends a notification by sending TJS_publish.



Sensors 2022, 22, 5975 17 of 35

Figure 5. The training procedure on the MiniDeep platform.

4.4. Model Deployer

Figure 6 shows the detailed functions of Model Deployer (MD). Model Deployer on
the cloud contains many core services and resource management components. The man-
agement components in Model Deployer are the inference script management, inference
instance management, and greengrass core management. The inference script management
component has the inference script set Sm̂ uploaded from the local device and stores Sm̂ to
the simple storage service on AWS. The inference script set Sm̂ has many inference script
elements sm̂

i in it. One inference script element sm̂
i contains an inference script which defines

the code of inference. The script meta defines the extra configuration and descriptions of
the inference script, such as the model algorithm, model training dataset, etc.

The inference instance management component has several lambda environment
definitions, which are deployed to the local device. The lambda environment set Lm̂ has
many lambda environments lm̂

i . Each lambda environment lm̂
i has a lambda instance being

used in running specific code in the edge device. env_var is the environment variable
setting which is stored in this component and will be applied on lambda instance after
lambda instance is deployed in the edge device. The inference resource rm̂

i is a resource
definition of the lambda instance. The lambda function can achieve the model artifact at̂

i and
the inference script sm̂

i . The inference instance lm̂
i uses inference script sm̂

i to be a bootstrap
role to launch the inference process. am̂

i is the deep learning model with trained weight.



Sensors 2022, 22, 5975 18 of 35

Figure 6. The detailed functions of Model Deployer.

The greengrass core management contains greengrass core set Cm̂ in which the green-
grass core element Cm̂

i is the whole package which can be deployed to the edge device
with many inference instance elements lm̂

i , · · · , lm̂
n . A greengrass core element has one

core component that is a service endpoint of greengrass. Many inference instances in the
greengrass core have different inference purposes in the edge device. There also is a D_list
that contains many edge device information pieces dm̂

i , · · · , dm̂
n . Each dm̂

i indicates one edge
device that the user marked as a tag. Finally, there is a sub_list that contains many elements
of subscription information, sub_list uses to manage how the edge device can communicate
with the local device by subscribing a pattern style.



Sensors 2022, 22, 5975 19 of 35

The service in model deployer is the core function to finish our deployment job. The
inference_package_service in Model Deployer can be called by the outside local appli-
cation request. The inference_package_service can download model artifact at̂

i from the
model_artifact_service of Train Job Creator and package the at̂

i and sm̂
i into the inference

instance element. The service contains an inference template which is used to create the
base inference lambda instance and also uses env_var to assign the environment variable
to the inference instance.

The core_packager_service also can handle a local application request that creates the
greengrass core and deploys a greengrass core in the edge device. The core packager has
an inference instance controller to choose several inference instances lm̂

i and package all the
choosing inference instances lm̂

i into a greengrass core cm̂
i . Then, the core package handler

can handle the request that is responsible for deploying greengrass core cm̂
i to inference

engine handler in the edge device. The service contains several subscription settings, which
is used in the MiniDeep system and also has the device configuration template to set the
greengrass device configuration with the uniform format in MiniDeep. We also have a
functions definition for the MiniDeep system, which defines a template function creation
and assignment in our system.

4.5. Inference Engine Handler

The inference engine handler is a core module whose main mission is to host a deep
learning inference environment to help the local device access the deep learning computing
resource. The inference engine handler contains a greengrass_core_loader_service and
openvino_handler_service to achieve the main mission. The overview of the detailed
function of the inference engine handler is shown in Figure 7.

The greengrass_core_loader_service has a greengrass core updater to obtain the new
greengrass core cm̂

i from the greengrass service of AWS. The greengrass core updater
loads the greengrass core and unpacks the greengrass core to several lambda inference
instances lm̂

i . Each lambada inference instance contains a model artifact at̂
i that can be

put into openvino as an inference model, and an inference script sm̂
i can be called as an

inference entry point. Each lambda inference instance lm̂
i contains the lambda instance,

env_var, and all of the basic elements are a host on the local lambda runtime. The green-
grass_core_loader_service also has an inference function selector, which can control what
lambda inference instance is enabled or not, and the local application can decide each
lambda inference instance process.

The openvino_handler_service hosts an openvino inference engine and an openvino
model optimizer. The openvino model optimizer is an openvino core function which
can parse the deep learning model generated from the deep learning platform, such as
tensorflow, Mxnet, caffe, etc. The model optimizer converts the deep learning model to
the IR (Intermediate Representation) file. The IR file consists of the *.bin file as the model
weight and *.xml as the deep learning model architecture. The inference engine reads the IR
files, and it hosts a deep learning computing acceleration environment for the IR model. In
our openvino_handler_service, MiniDeep has an inference endpoint to handle the outside
HTTP request for inference and a model loader to load the deep learning model to the
model optimizer to obtain the IR file. The openvino host function can read the inference
instance resource and bring the inference instance resource to the model loader to obtain
the IR and put the IR to the inference endpoint. The local application can send HTTP to
obtain the request of the inference and then obtain the response of the inference.



Sensors 2022, 22, 5975 20 of 35

Figure 7. The detailed function of the inference engine handler.

4.6. Inference Procedure Details

There are two main microservices, the model deployer and the inference engine
handler. Figure 8 shows the procedure of how two microservices work together to perform
the inference procedure.

S1. The user sends an IIC_message(De_id, ai
id, sm̂

i ) to the inference_packager_service to
instantiate the lambda instance Lm̂

i . The inference_packager_service receives the
IIC_message and tries to obtain data by sending the MA_get_message(ai

id) to the
model_artifact_service. The model_artifact_service receives the MA_get_message
and responds with an MA_res_message(ai) which contains the designated model
artifact ai. After the inference_packager_service obtains the model artifact ai, the
inference_packager_service starts LII_start(ai, sm̂

i ). After finishing LII_start, the infer-
ence_packager_ service produces an L_ins, sends an IIC_ok_message(L_ins_id) and
then finishes the setup of the inference instance.

S2. The user creates a package with multiple L_ins. The APP sends a message IIP_message(De_
id, [L_ins_id · · · ], ENVV AR) to the core_packager_service. The core_packager_service
receives an IIP_message and starts the packaging process. The core_packager_service
first retrieves many L_ins from the inference_packager_service by performing the



Sensors 2022, 22, 5975 21 of 35

II_retrieve([L_ins_id]), and the inference_packager_service provides many L_ins to the
core_packager_service by performing II_retrieve_res([L_ins · · · ]). The core_packager_
service obtains the list of L_ins, packages L_ins as a L_ins_set and creates a GGCore
instance. After that, the core_packager_service sends back a message which is called
IIP_ok_message (GGCore_id) with the green grass core ID.

S3. The user deploys the inference-able model to the edge device. The APP sends a
GGC_deploy_ message(De_id, GGCore_id) to the greengrass_core_loader_service
to request a deployment. The greengrass_core_loader_service receives a request
message called GGC_deploy_message and sends a GGC_get_message(GGCore_id)
to the core_packager_service. Then, the core_packager_ service responds with a
GGC_get_res(GG
Core) which contains the GGCore instance. The greengrass_core_loader_service loads
the GGCore and then passes GGCore into Model Optimizer to obtain the IR file. The
IR file is passed to the openvino_handler_service by performing GGC_serve (IR) to
host an inference serving endpoint.

S4. In this step, the user wants to send an inference response and train new data if the
data are the new ground true data. The APP sends an Infer_req(Deid, xi, GGCore_id,
L_ins_id) to the openvino_handler_service. The openvino_handler_service handles an
inference request and passes xi into the L_ins in the GGCore and then obtains an infer-
ence result yi. After producing inference results in yi, the openvino_handler_service
sends back a Infer_res(yi) to the APP. The APP can realize that the result is accurate or
not by human selection. If the human selection is not good, the APP can choose to
send a DP_ins to send new data.

As shown in Figure 8, the user executes S1 (inference instance setup) by sending a
IIC_message to perform inference instance creation on MD (Model Deployer). MD obtains
artifact ai by sending the MA_get_message to TJC in the cloud, and performs LII_start
to instantiate the lambda instance L_ins. In step S2 (Inference instance packaging), the
user sends an IIP_message to select many L_ins to package L_ins together and then creates
a GGCore instance in MD. In step S3 (Inference Instance Deployment), the user sends a
GGC_deploy_message to assign GGCore into IEH (Inference Engine Handler). The IEH
loads the GGCore and converts GGCore into OpenVino-known file format, IR file, and
hosts an inference request endpoint by performing GGC_serve. In step S4 (Inference Re-
quest Handling), the user sends Infer_req to the IEH inference endpoint, and the IEH
infers the data by performing DNN computation on OpenVino. The IEH sends Infer_res
back to APP with inference result yi. After producing inference results in yi, the open-
vino_handler_service sends back an Infer_res(yi) to the APP. The APP can realize that the
result is accurate or not by human selection. If the human selection is not good, the APP
can choose to send a DP_ins.



Sensors 2022, 22, 5975 22 of 35

Figure 8. The inference procedure on the MiniDeep platform.

5. AI-QSR KIOSK Application Software Architecture

This section introduces the AI-QSR system architecture in Section 5.1. An LSTM-based
recommendation system design for the AI-QSR system is described in Section 5.2. The
MiniDeep platform constructed in the AI-QSR system is described in Section 5.3.

5.1. AI-QSR System Architecture

In this paper, the AI-QSR (Artificial Intelligence-Quick Service Restaurant) KIOSK
(interactive kiosk) is proposed to demonstrate the MiniDeep platform result. The AI-QSR
system architecture is shown in Figure 9. There are two environments in the system: one



Sensors 2022, 22, 5975 23 of 35

is a quick service restaurant environment, and the other is the MiniDeep cloud service
environment. The quick service restaurant environment has one KIOSK instance with a
camera device, and the KIOSK instance contains a quick service restaurant application
in this KIOSK. There is a MINI-PC with a MiniDeep platform inside the KIOSK, and the
MINI-PC uses a network cable to connect with the KIOSK. The role of the MINI-PC is an
edge device and provides a deep learning inference resource to quick service restaurant
application. To provide a real-time experiment of the inference process, the MINI-PC uses
an Intel Movidius Neural Compute Stick to speed up the computation time of the neural
network operations. The MINI-PC also runs a recommendation system which is written
with the python language and hosts as a RESTful API endpoint to handle the HTTP request
from the quick service restaurant application. On the cloud environment, MiniDeep uses
two main services to serve the model training and model deployment. The model training
uses the sagemaker service to manage the training environment. The model deployment
uses the greengrass service to manage the model packaging and configuration deployment.

Figure 9. The AI-QSR system architecture.

In the AI-QSR system architecture, the quick service restaurant application served in
KIOSK can provide a friendly user interface to show the menu, food, suit, and applications.
The AI-QSR has a feature that can recommend the most likely purchased food to the user.
When the KIOSK user clicks the element of application such as food, menu, or suit, the
application will check the condition and decide to make a recommendation to the user.
When the application needs a recommendation, the application will send a request to the
recommendation system on the MINI-PC, and the recommendation system collects the
user face images taken from the camera and the click event as a flow-sequence to request
the inference result from the MiniDeep platform. The Inference Engine Handler accepts
the inference request and computes an inference result for the recommendation system.
This recommendation system sends back the inference result to the application. Then, the
application shows the recommendation result.

5.2. LSTM-Based Recommendation System Design for AI-QSR

The recommendation problem in the scenario of the AI-QSR system is regarded as
the QSR-FS problem, which is described in Section 3.4, and the formulation of the QSR-FS
problem is described in Section 3.5. The problem of the QSR-FS is to achieve the highest hit
purchase accuracy. An LSTM-based recommendation system is designed for the QSR-FS
problem of the AI-QSR system. The system is shown in Figure 10. There are three system
structures that perform the transfer learning technology. The three system structures of



Sensors 2022, 22, 5975 24 of 35

the AI-QSR are the pre-trained age–gender estimator, the purposed LSTM of the QSR-FS
problem, and the food classified DNN.

Figure 10. The AI-QSR system.

Except for the deep learning model, the QSR-FS problem also needs two function
blocks and three function triggers to work together. The two function blocks are the
recommend controller and the food item aggregator. The recommend controller controls
the trigger event and operates the other function block. The food item aggregator collects
the food item candidate from the LSTM of the QSR-FS problem. If the recommend controller
sends a control message to the food item aggregator, the food item aggregator will send
its output to calculate the recommendation result. The three function triggers are the
event entries that every event entry can use to trigger the recommend controller to start a
recommendation candidate selection and food item recommendation. The three function
triggers are the popup trigger, the wait trigger, and the browsing trigger. The popup trigger
comes from the popup event in the AI-QSR. The wait trigger comes from the user’s waiting
time exceeding the timeout. The browsing trigger comes from the user’s clicking count that
without purchasing anything.

For the QSR-FS problem, our training data are represented as xi = {da
i , dg

i , dc
i , ( f1, · · · ,

f j, · · · , fs)}, and the labeled data are represented as yi = { f p
j , f ca

j , f m
j , f co

j }. To obtain the
recommend food result, each element in xi and yi needs to be provided. In our system, the
pre-trained age–gender estimator can generate the da

i and dg
i information from the user’s

face image information. The pre-trained age–gender estimator is a Wide Residual Network
with the age and gender recognition functionality, which is proposed by Yusuke Uchida
(yu4u) on github [27]. For the transfer learning in this scenario, QSR-FS uses a pre-trained



Sensors 2022, 22, 5975 25 of 35

model to obtain the middle feature and then uses this middle feature to perform the behind
training. The age–gender estimator has an input layer with (64× 64) input shape and
then connects with three wide residual layers that use a residual model design to solve the
gradient descent problem. The end of the wide residual layer connects with an average
pooling. The average pooling connects with two fully connective layers for different task
purposes. This technology is called the multi-task learning. Two fully connective layers
share the whole network’s feature information so that the model can learn more general
features to solve the different tasks. One fully connective output da

i represents the user
age, and the other fully connective output dg

i represents the user gender. The two pieces of
information will combine with the food item aggregator result.

The purposed LSTM-based scheme of the QSR-FS problem is an LSTM which parses
the QSR-FS click event sequence. This sequence is called the Flow Sequence (FS). The Flow
Sequence is a serial of the click events. The user’s clicking of each QSR element on the
AI-QSR user interface will be recorded. The click event is converted to the AI-QSR element
character. All the AI-QSR element characters are combined as a flow sequence. Each flow
sequence contains very lengthy AI-QSR element characters which use one-hit-encoding to
represent it. The flow sequence X = (x1, · · · , xn) is an input of LSTM which is sent to LSTM
(many-to-one) to compute the time-series flow sequence data and obtain the label yi. Then,
label yi is fed into the two fully connective layers: one is the buy-or-not fully connective
layer, and another is the food-item fully connective layer. The buy-or-not fully connective
layer produces one dimension output f buy

i , and the food-item connective layer produces
f ood_item_num. In summary, the detailed procedure of obtaining the recommendation
food result with the MiniDeep platform is given below:

S1. The LSTM of the QSR-FS problem can compute the f buy
i and f item

i by feeding the flow
sequence FS. In our problem, the AI-QSR needs to collect different Flow Sequences
FS to find many food item candidates F_item_c, so that the AI-QSR computes N flow
sequences (FS) as a Flow Sequence Set (FSS) and collects FSS at the FI_aggregator
(food item aggregator).

S2. The FI_aggregator collects the food item candidates F_item_c from which the user

may buy the food item by checking f buy
i . The candidate F_item_c that the user may

buy can be combined as F_List (Food List). The F_List is combined and flattened to
the high dimension vector. The recommendation system continually collects the user
Flow Sequence FS and maintains the F_List to hit the recommendation result.

S3. When the user hits the T_condition (trigger condition) defined on the AI-QSR ap-
plication, the AI-QSR application sends an RL_message(recommendation launch
message) to R_controller (recommend controller), and the R_controller manages the
FI_aggregator and pops out the F_List result.

S4. The camera takes a picture of the user and passes the user’s face image to the pre-
trained age–gender estimator to obtain dg

i and da
i . The FI_aggregator sends an F_list

and combines F_list with dg
i and da

i to a high dimension vector for a food-classified
DNN. The food-classified DNN parses the high-dimension vector and passes the
vectors with shape 512 and shape 64 to two fully connective layers.

S5. At the end of the fully connective layer, the output result is called RF_Result (recom-
mend food result). The RF_Result is a one-hot-encoding vector in which only the
suggested food will be 1 and the other output will be 0.

The AI-QSR in S1 converts the Flow Sequence to the food items candidates. In S2,
the AI-QSR performs food items aggregation to combine food item candidates together.
In S3, AI-QSR launches a recommendation when the user hits the T_condition. In S4, the
age–gender detection is going to find the user’s age and gender. Finally, in S5, the AI-QSR
calculates the recommendation result by the result of the last fully connective layer.



Sensors 2022, 22, 5975 26 of 35

5.3. AI-QSR Recommendation System Implemented By MiniDeep Platform

In the paper, the MiniDeep platform is used to implement the LSTM solution of
the QSR-FS problem in the AI-QSR application and is shown in Figure 11. There are
three modules in the recommendation system. One is a local hardware devices module,
another is the AI-QSR application, and the other is the MiniPc core microservices. With the
MiniDeep platform, there is a model deployer that makes a greengrass core which contains
a pre-trained age–gender estimator, the LSTM solution of the QSR-FS problem, and a
food-classified DNN. The greengrass core of the AI-QSR is deployed to the inference engine
handler of the edge device and the greengrass_core_loader_service updates the openvino
runtime to host three models. The local KIOSK has two hardware modules, the camera
module and the screen module. Every time the user clicks on the KIOSK, the screen module
will send a Flow Sequence (FS) to the purposed QSR-FS problem in the inference engine
handler, and the LSTM output is stored in the food item aggregator (FI_aggregator). When
the user starts using the KIOSK, the user may trigger the popup trigger, the wait trigger, and
the browsing trigger. If the user hits the trigger, the trigger sends a trigger_hit_event to the
Recommend Controller (RC). RC starts a food-classified recommendation by sending the
food_list_message in the FL_aggregator to the inference engine handler, and it combines
with the age–gender vector. The age–gender vector comes from the output of the pre-
trained age–gender estimator such that the KIOSK camera module takes a photo on the
user’s face and send the user’s face image to the pre-trained age–gender estimator to obtain
an age–gender vector. After combining the food_list_message and age–gender vector into
food-classified feature (FC_feature), the FC_feature is sent to the food-classified DNN and
produces the output of the recommending food result, which is the top food the user wants
to buy.

Figure 11. The AI-QSR recommendation system.



Sensors 2022, 22, 5975 27 of 35

6. Experimental Result

The experimental environment of the AI-QSR application and the performance analy-
sis of the LSTM-based solution of the QSR-FS problem are shown in this section.

6.1. Experimental Environment

There is a big touch-screen KIOSK with a camera in the experimental environment.
KIOSK uses a LIVA X Mini PC as the host PC with Intel Bay Trail-M/Bay Trail-I SOC 2.25
GHz and 2GB DDR3 RAM. The AI-QSR front-end interface is the host in LIVA X Mini PC.
A MiniDeep platform uses a Liva Q Mini PC as the edge PC with Intel Apollo Lake Celeron
N3350 SOC and 4GB/32GB eMMC. The edge PC is connected with the host PC with a
network cable, and the edge PC uses LAN to communicate with the host PC. The MiniDeep
platform also has the Ethernet capability to access AWS services. An Intel Movidius neural
compute stick is plugged in the edge PC so that the MiniDeep platform can perform
high-speed acceleration for inference. Figure 12 shows the AI-QSR user interface.

(a) (b)

Figure 12. The AI-QSR user interface: (a) The AI-QSR KIOSK system. (b) The using of the AI-QSR
KIOSK system.

The training data are collected from the Computex 2019 exhibition in Taipei. In total,
623 users’ click data and face data are collected during the 5 days. The training data are
collected through the AI-QSR user interface (UI) in the demo mode. Here, 80% of the
collected data is used for training and 20% of the collected data is used for testing. After
the Computex exhibition, the training result is stored on AWS cloud storage, and then, our
team trains the LSTM-based model of the QSR-FS problem with the new training data on
the sagemaker cloud service. After completed training, the trained model is deployed to
the edge PC of AI-QSR KIOSK.

When the AI-QSR UI uses AI mode, the AI-QSR recommends food order with the
inference result of the LSTM-based solution of the QSR-FS problem. In Section 6.2, many
performance analyses of the deep learning classification problem are discussed. Our ap-
proach shows that the accuracy and system performance is higher than the rule-based
recommendation system which is the baseline to evaluate the performance. Furthermore,
our AI-QSR KIOSK system has the following recommendation options: the popup-triggered



Sensors 2022, 22, 5975 28 of 35

recommendation, the idle-triggered recommendation, and the browsing-triggered recom-
mendation, which are shown in Figures 13 and 14.

young handsome man

Western Cowboy Burger Set: NT$89

Meal Included:
Western Cowboy Burger x 1

Cola x1

Thai Boneless Chicken Thigh Steak x1

Great! I want this meal Try again No need

Wow! You are a young and handsome man! You must be very hungry. 

     Let me recommend you a meal that is cost-effective and filling!

Figure 13. The UI of the popup-triggered recommendation.

Hesitate to order something?

Why not take a look at the meals 

       recommended for you

Western Cowboy Burger Set

Price: NT$89

No needPurchase

(a)

Can not find the desired meal?

I think this will be the meal you want

Blue Cheese Burger Set

Price: NT$89

Purchase No need

(b)

Figure 14. Different types of notifications on the AI-QSR UI. (a) The UI of the idle-triggered recom-
mendation. (b) The UI of the browsing-triggered recommendation.



Sensors 2022, 22, 5975 29 of 35

6.2. Performance Analysis

The performance analysis is presented in this section. There are three recommend
triggers: the popup trigger, the idle trigger, and the browsing trigger. Figure 15 shows
the time slot definitions of the three triggers. The three types of time proportion (p̂, ŵ, b̂)
are set as (0.8, 0.1, 0.1), (0.1, 0.8, 0.1), and (0.1, 0.1, 0.8) so as to demonstrate the impact
of the recommendations by the three different triggers, where p̂ represents the popup
proportion, ŵ represents the idle proportion, and b̂ represents the browsing proportion.
The popup-triggered recommendation appears after identifying the gender and age of
the users. The browsing-triggered recommendation appears during the browsing of the
webpages. The idle-triggered recommendation appears when the user stays (or idles) on a
webpage for a certain period of time.

Figure 15. Overview of the AI-QSR time slot definitions.

The experiment compares the rule-based scheme with the proposed LSTM-based
scheme and uses some metrics to evaluate the performance of the two schemes. The
performance metrics are defined as follows.

• Purchase hit accuracy: The matching possibility of the food recommending by the
scheme and users’ purchases.

• Categorical cross-entropy: By calculating the size of the loss function, categorical
cross-entropy is the main basis in the learning process and an important criterion for
judging the merits of the algorithm after learning.

• Precision: Precision is the ratio of all “correctly retrieved results (True Positive)” to all
“actually retrieved (True Positive + False Positive)”.

• Recall: Recall is the ratio of all “correctly retrieved results (True Positive)” to all
“results that should be retrieved (True Positive + False Negative)”.

• F1 score: F1 score is the weighted harmonic average of Precision and Recall. When the
F1 score is high, it can be proved that the test scheme is effective.

6.2.1. Purchase Hit Accuracy

The purchase hit accuracy is defined as follows.

A ≈ arg max
θ∗

e
−arg min

θ

{
1
N .

n
∑

i=1
.L(yi , f (xi ,θ))+λΦ(θ)

}
, subject to

{
X = (x0, · · · , xi, · · · , xn)
Y = (y0, · · · , yi, · · · , yn)

(19)



Sensors 2022, 22, 5975 30 of 35

Figure 16 shows that when θ∗ becomes greater during the training process, the higher
the purchase hit accuracy becomes. The purchase hit accuracy of the LSTM-based scheme
is higher than that of the rule-based scheme when the epoch is greater than 1800. Since we
use the users’ age, gender, and the click event sequences to train our AI-QSR recommen-
dation system, the proposed LSTM-based scheme can make a more accurate prediction
(or recommendation), and thus, the proposed LSTM-based scheme can achieve higher
purchase hit accuracy.

Figure 16. Purchase hit accuracy vs. per epoch.

Among the three types of time proportion, the browsing-triggered recommendation
recommends products from the contents the users repeatedly search and browse, and thus,
it is the most accurate. The click rate of the products recommended by the idle-triggered
recommendation is the lowest because the recommendation is made through too little
information of the users. The accuracy of the popup-triggered recommendation is worse
than that of the browsing-triggered recommendation because the identification accuracy of
age and gender is not accurate enough or because of the regional cultural differences.

6.2.2. Categorical Cross-Entropy

The cross-entropy loss function is shown as follows, where n is the total number of
the training data, xj is the j-th training input, yj is the j-th desired output, and aj is the j-th
output of the neural network.

C = − 1
n ∑

x
∑
j
[yj ln aj + (1− yj) ln (1− aj)] (20)

The categorical cross-entropy loss is the sum of the cross-entropy loss of each category.
The smaller the categorical cross-entropy loss is, the training result is more likely to fit
the true world data. Figure 17 shows that the longer the training process is, the lower
the categorical cross-entropy loss becomes. The loss of the LSTM-based scheme is lower
than that of the rule-based scheme when the epoch is greater than 1800. Since the pro-
posed LSTM-based scheme can make a more accurate prediction (or recommendation), the
proposed LSTM-based scheme can achieve lower categorical cross-entropy loss.



Sensors 2022, 22, 5975 31 of 35

Figure 17. Categorical cross-entropy loss vs. per epoch.

Among the three types of time proportion, since the browsing-dominated time pro-
portion is the most accurate, followed by the popup and idle-dominated time proportion,
the categorical cross-entropy loss of the browsing-dominated time proportion is the lowest,
which is followed by the popup and idle-dominated time proportion.

6.2.3. Precision

The precision of the confusion matrix is shown as follows.

precision = TP
TP+FP (21)

Figure 18 shows that the longer the training process is, the higher the precision
becomes. The precision of the LSTM-based scheme is higher than that of the rule-based
scheme when the epoch is greater than 1800. Since the proposed LSTM-based scheme can
make a more accurate prediction (or recommendation), the proposed LSTM-based scheme
can achieve higher precision.

Figure 18. Precision vs. per epoch.

6.2.4. Recall

The recall of the confusion matrix is shown as follows.



Sensors 2022, 22, 5975 32 of 35

recall = TP
TP+FN (22)

Figure 19 shows that when the training process is longer, the higher the recall becomes.
The recall of the LSTM-based scheme is higher than that of the rule-based scheme when
the epoch is greater than 1500. Since the proposed LSTM-based scheme can make a more
accurate prediction (or recommendation), the proposed LSTM-based scheme can achieve
higher recall.

Figure 19. Recall vs. per epoch.

6.2.5. F1 Score

The F1 score of the confusion matrix is shown as follows.

F1 = 2∗TP
2∗TP+FP+FN (23)

Figure 20 shows that when the training process is longer, the higher the F1 score
becomes. The F1 score of the LSTM-based scheme is higher than that of the rule-based
scheme when the epoch is greater than 1500. Since the proposed LSTM-based scheme can
make a more accurate prediction (or recommendation), the proposed LSTM-based scheme
can achieve a higher F1 score.

Figure 20. F1 score vs. per epoch.



Sensors 2022, 22, 5975 33 of 35

6.2.6. Iterations

The training iterations is a hyperparameter. Figure 21 shows that as the iteration
increases, the purchase hit accuracy, recall, and F1 score also increases, but the categorical
cross-entropy loss decreases. Overall, the proposed LSTM-based scheme performs better
than the rule-based scheme.

(a) (b)

(c) (d)

Figure 21. The comparison of iteration between different analysis metrics. (a) Purchase hit accuracy
vs. per iteration. (b) Categorical cross-entropy loss vs. per iteration. (c) Recall vs. per iteration. (d) F1
score vs. per iteration.

7. Conclusions

In this paper, we have proposed a new AI-Edge platform called MiniDeep. The
MiniDeep platform provides developers with a whole deep learning development environ-
ment to set up their deep learning life cycle processes, such as model training, model evalu-
ation, model deployment, model inference, ground truth collecting, data pre-processing,
and training data management. To the best of our knowledge, such a whole deep learning
development environment has not been proposed before. We build a Deep Learning-Based
MINI-PC and an AI-QSR KIOSK system with food recommendations on the MiniDeep
platform. The recommendation system uses an LSTM-based scheme to solve the QSR-FS
problem. The experiment results show that the proposed LSTM-based scheme performs
better than the rule-based scheme in terms of purchase hit accuracy, categorical cross-
entropy, precision, recall, and F1 score. These results demonstrate the effectiveness of
the proposed AI-Edge platform. In the future, we plan to improve the generality and
usability of the MiniDeep platform so that more AI-based applications can be built on the
MiniDeep platform.



Sensors 2022, 22, 5975 34 of 35

Author Contributions: Conceptualization, Y.-S.C.; Data curation, H.-L.Z.; Formal analysis, C.-S.H.;
Funding acquisition, Y.-S.C.; Investigation, K.-H.C.; Methodology, Y.-S.C. and K.-H.C.; Project ad-
ministration, Y.-S.C.; Resources, Y.-S.C.; Software, H.-L.Z.; Supervision, Y.-S.C.; Validation, C.-S.H.;
Writing—original draft, H.-L.Z.; Writing—review & editing, C.-S.H. All authors have read and agreed
to the published version of the manuscript.

Funding: This work was supported by the Ministry of Science and Technology of Taiwan under
Grants MOST 108-2622-E-305-002-CC3 and MOST 109-2221-E-305-004-MY3.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Giang, N.; Lea, R.; Blackstock, M.; Leung, V. Fog at the Edge: Experiences Building an Edge Computing Platform. In Proceedings

of the IEEE International Conference on Edge Computing (EDGE), San Francisco, CA, USA, 2–7 July 2018; pp. 9–16. [CrossRef]
2. Ngoko, Y.; Cérin, C. An Edge Computing Platform for the Detection of Acoustic Events. In Proceedings of the IEEE International

Conference on Edge Computing (EDGE), Honolulu, HI, USA, 25–30 June 2017; pp. 240–243.
3. Choi, M.; Jung, H. Development of Fast Refinement Detectors on AI Edge Platforms. In Pattern Recognition, Proceedings of the

ICPR International Workshops and Challenges, Virtual, 10–15 January 2021; Springer: Cham, Switzerland, 2021; pp. 592–606.
4. Riggio, R.; Coronado, E.; Linder, N.; Jovanka, A.; Mastinu, G.; Goratti, L.; Rosa, M.; Schotten, H.; Pistore, M. AI@EDGE: A Secure

and Reusable Artificial Intelligence Platform for Edge Computing. In Proceedings of the Joint European Conference on Networks
and Communications & 6G Summit (EuCNC/6G Summit), Porto, Portugal, 8–11 June 2021; pp. 1–6.

5. Hochstetler, J.; Padidela, R.; Chen, Q.; Yang, Q.; Fu, S. Embedded Deep Learning for Vehicular Edge Computing. In Proceedings
of the IEEE/ACM Symposium on Edge Computing (SEC 2018), Seattle, WA, USA, 25–27 October 2018; pp. 341–343. [CrossRef]

6. Moon, J.; Cho, S.; Kum, S.; Lee, S. Cloud-Edge Collaboration Framework for IoT Data Analytics. In Proceedings of the
International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Korea, 17–19 October 2018;
pp. 1414–1416. [CrossRef]

7. Li, H.; Shou, G.; Hu, Y.; Guo, Z. Mobile Edge Computing: Progress and Challenges. In Proceedings of the 4th IEEE International
Conference on Mobile Cloud Computing, Services, and Engineering (MobileCloud), Oxford, UK, 29 March–1 April 2016;
pp. 83–84. [CrossRef]

8. Preethi, G.; Krishna, P.; Obaidat, M.; Saritha, V.; Yenduri, S. Application of Deep Learning to Sentiment Analysis for Recommender
System on Cloud. In Proceedings of the International Conference on Computer, Information and Telecommunication Systems
(CITS), Dalian, China, 21–23 July 2017; pp. 93–97. [CrossRef]

9. Wu, S.; Wang, Y.; Zhou, A.; Mao, R.; Shao, Z.; Li, T. Towards Cross-Platform Inference on Edge Devices with Emerging
Neuromorphic Architecture. In Proceedings of the Design, Automation Test in Europe Conference Exhibition (DATE), Florence,
Italy, 25–29 March 2019; pp. 806–811. [CrossRef]

10. Velasco-Montero, D.; Fernández-Berni, J.; Carmona-Galán, R.; Rodríguez-Vázquez, A. Optimum Selection of DNN Model and
Framework for Edge Inference. IEEE Access 2018, 6, 51680–51692. [CrossRef]

11. Ko, J.; Na, T.; Amir, M.; Mukhopadhyay, S. Edge-Host Partitioning of Deep Neural Networks with Feature Space Encoding for
Resource-Constrained Internet-of-Things Platforms. In Proceedings of the 15th IEEE International Conference on Advanced
Video and Signal Based Surveillance (AVSS), Auckland, New Zealand, 27–30 November 2018; pp. 1–6. [CrossRef]

12. Xia, C.; Zhao, J.; Cui, H.; Feng, X. Characterizing DNN Models for Edge-Cloud Computing. In Proceedings of the IEEE
International Symposium on Workload Characterization (IISWC), Raleigh, NC, USA, 30 September–2 October 2018; pp. 82–83.
[CrossRef]

13. Rothe, R.; Timofte, R.; Van Gool, L. Deep Expectation of Real and Apparent Age from a Single Image Without Facial Landmarks.
Int. J. Comput. Vis. 2018, 126, 144–157. [CrossRef]

14. Zagoruyko, S.; Komodakis, N. Wide Residual Networks. arXiv 2016, arXiv:1605.07146.
15. Tang, J.; Wang, K. Personalized Top-N Sequential Recommendation via Convolutional Sequence Embedding. arXiv 2018,

arXiv:1809.07426.
16. Cheng, C.; Yang, H.; Lyu, M.R.; King, I. Where You Like to Go Next: Successive Point-of-interest Recommendation. In Proceedings

of the Twenty-Third International Joint Conference on Artificial Intelligence, Beijing, China, 3–9 August 2013; pp. 2605–2611.
17. He, R.; Kang, W.; McAuley, J. Translation-based Recommendation. arXiv 2017, arXiv:1707.02410.
18. Hidasi, B.; Karatzoglou, A.; Baltrunas, L.; Tikk, D. Session-based Recommendations with Recurrent Neural Networks. arXiv

2016, arXiv:1511.06939.

http://doi.org/10.1109/EDGE.2018.00009
http://dx.doi.org/10.1109/SEC.2018.00038
http://dx.doi.org/10.1109/ICTC.2018.8539664
http://dx.doi.org/10.1109/MobileCloud.2016.16
http://dx.doi.org/10.1109/CITS.2017.8035341
http://dx.doi.org/10.23919/DATE.2019.8715021
http://dx.doi.org/10.1109/ACCESS.2018.2869929
http://dx.doi.org/10.1109/AVSS.2018.8639121
http://dx.doi.org/10.1109/IISWC.2018.8573514
http://dx.doi.org/10.1007/s11263-016-0940-3


Sensors 2022, 22, 5975 35 of 35

19. Hidasi, B.; Quadrana, M.; Karatzoglou, A.; Tikk, D. Parallel Recurrent Neural Network Architectures for Feature-rich Session-
based Recommendations. In Proceedings of the 10th ACM Conference on Recommender Systems, Boston, MA, USA, 15–19
September 2016; ACM: New York, NY, USA, 2016; pp. 241–248. [CrossRef]

20. Quadrana, M.; Karatzoglou, A.; Hidasi, B.; Cremonesi, P. Personalizing Session-based Recommendations with Hierarchical
Recurrent Neural Networks. arXiv 2017, arXiv:1706.04148.

21. Jannach, D.; Ludewig, M. When Recurrent Neural Networks Meet the Neighborhood for Session-Based Recommendation.
In Proceedings of the Eleventh ACM Conference on Recommender Systems (RecSys 2017), Como, Italy, 27–31 August 2017;
pp. 306–310. [CrossRef]

22. Mokdara, T.; Pusawiro, P.; Harnsomburana, J. Personalized Food Recommendation Using Deep Neural Network. In Proceedings
of the Seventh ICT International Student Project Conference (ICT-ISPC), Nakhonpathom, Thailand, 11–13 July 2018; pp. 1–4.
[CrossRef]

23. Leong, P.; Goh, O.; Kumar, Y. MedKiosk: An Embodied Conversational Intelligence via Deep Learning. In Proceedings of the
13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), Guilin, China,
29–31 July 2017; pp. 394–399. [CrossRef]

24. Wang, C.; Yang, G.; Papanastasiou, G.; Zhang, H.; Rodrigues, J.J.P.C.; de Albuquerque, V.H.C. Industrial Cyber-Physical
Systems-Based Cloud IoT Edge for Federated Heterogeneous Distillation. IEEE Trans. Ind. Inform. 2021, 17, 5511–5521. [CrossRef]

25. Kasi, S.K.; Kasi, M.K.; Ali, K.; Raza, M.; Afzal, H.; Lasebae, A.; Naeem, B.; ul Islam, S.; Rodrigues, J.J.P.C. Heuristic Edge Server
Placement in Industrial Internet of Things and Cellular Networks. IEEE Internet Things J. 2021, 8, 10308–10317. [CrossRef]

26. OpenVino. Available online: https://software.intel.com/en-us/openvino-toolkit (accessed on 10 July 2022).
27. yu4u/age-gender-estimation. Available online: https://github.com/yu4u/age-gender-estimation (accessed on 10 July 2022).

http://dx.doi.org/10.1145/2959100.2959167
http://dx.doi.org/10.1145/3109859.3109872
http://dx.doi.org/10.1109/ICT-ISPC.2018.8523950
http://dx.doi.org/10.1109/FSKD.2017.8393301
http://dx.doi.org/10.1109/TII.2020.3007407
http://dx.doi.org/10.1109/JIOT.2020.3041805
https://software.intel.com/en-us/openvino-toolkit
https://github.com/yu4u/age-gender-estimation

	Introduction
	Related Work
	Literature Review
	Motivations

	Preliminaries
	Edge-Cloud Architecture for Deep Learning
	Deep Learning Cloud Service Overview
	Deep Learning Edge Environment Overview
	Problem Definition
	Problem Formulation

	MiniDeep Edge-Cloud Platform
	Minideep System Architecture
	Minideep Platform Usage Design
	Data Provider
	Train Job Creator (TJC)

	Training Procedure Details
	Model Deployer
	Inference Engine Handler
	Inference Procedure Details

	AI-QSR KIOSK Application Software Architecture
	AI-QSR System Architecture
	LSTM-Based Recommendation System Design for AI-QSR
	AI-QSR Recommendation System Implemented By MiniDeep Platform

	Experimental Result
	Experimental Environment
	Performance Analysis
	Purchase Hit Accuracy
	Categorical Cross-Entropy
	Precision
	Recall
	F1 Score
	Iterations


	Conclusions
	References

