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Abstract: In this paper, we investigate a resource allocation and computation offloading problem in a
heterogeneous mobile edge computing (MEC) system. In the considered system, a wireless power
transfer (WPT) base station (BS) with an MEC sever is able to deliver wireless energy to the mobile
devices (MDs), and the MDs can utilize the harvested energy for local computing or task offloading
to the WPT BS or a Macro BS (MBS) with a stronger computing server. In particular, we consider
that the WPT BS can utilize full- or half-duplex wireless energy transmission mode to empower
the MDs. The aim of this work focuses on optimizing the offloading decision, full/half-duplex
energy harvesting mode and energy harvesting (EH) time allocation with the objective of minimizing
the energy consumption of the MDs. As the formulate problem has a non-convex mixed integer
programming structure, we use the quadratically constrained quadratic program (QCQP) and semi-
definite relaxation (SDR) methods to solve it. The simulation results demonstrate the effectiveness of
the proposed scheme.

Keywords: mobile edge computing; offloading; wireless power transfer; full-duplex; half-duplex

1. Introduction

It is expected that future wireless networks can not only provide data and voice
services to a massive number of MDs but also bring computational and artificial intelligence
(AI) capabilities to the MDs. However, due to the size limitation, the MDs are typically
constrained by computing capacity, storage capacity and battery capacity, which will
prevent MDs from performing seamless computational tasks. Therefore, tackling the
energy and battery capacity challenges urgently demand for developing new wireless
network paradigms [1].

With the development of Internet technology and mobile network, the data generated
by MDs and application have significantly increased [1]. In addition, the increasing demand
for computing and data service from massive MDs have urged the development of a
wireless network, which integrates the computing capability into the wireless network.
Cloud computing emerges as a new computing paradigm which provides computing
services to a large amount of MDs. The cloud computing server has powerful computing
processing capacity, and MDs can offload computing tasks to the cloud server for computing
processing. However, the cloud computing servers are usually distant from the MDs [2].
Therefore, during the process of task transmission, a large delay and a large amount
of energy consumption will be induced, which is unfavorable to solving real-time task
processing with the low time delay requirement of MDs.

In order to provide MDs with more proximity, lower latency and reduced energy
consumption for computing services, MEC has been attracted considerable attention. MEC
has the potential to provide computing capabilities close to the MDs within the radio access
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network, aiming to reduce transmission delay [3,4], improve network operational efficiency,
and promote the service experience. In particular, MEC can be thought of as a cloud
computing server running on the network edge to perform specific tasks that traditional
network infrastructure cannot provide [5]. The applications or intensive computation
tasks can be offloaded in a dynamic or statical mode to the resource-rich edge servers for
execution, which helps reduce the transmission delay and decrease energy consumption so
as to improve the quality of service [6,7] in a better way. For the partitioning of user tasks,
it is possible to offload computational processing in binary and partial task divisions. In
MEC systems, a large amount of existing works focus on optimizing offloading process
based on the system energy consumption, time delay, and transmission throughput. It is
also worth noticing that the MEC server can allocate computing resources to user tasks to
improve the energy efficiency and reduce the overall energy consumption of the system [8].

Meanwhile, how to provide sustainable and efficient power supply for MDs to execute
long-term task processing has also become a challenge in the current MEC network system.
Due to the limitation of battery capacity, it is difficult or even impossible for MDs to
maintain the processing of computing tasks for a long time. In order to solve the issue
of energy supply, wireless energy harvesting is a promising technology which has been
widely developed in MEC systems. In general, EH plays a crucial role in addressing the
issue of battery capacity constraint and furthermore to support MDs to realize green energy-
oriented and sustainable computing offloading services [9]. MDs with EH technology are
capable of harvesting green energy from solar panels, wind and wireless energy sources
for task offloading and locally computing. WPT is able to take radio frequency signals as
energy sources, and it provides energy for MDs [4]. Therefore, integrating EH and WPT
technology into the MEC network system enables systems and MDs to perform long-term
stable and sustainable computation, and it also has the potential to improve computing
performance [10].

Although quite a lot of researchers have investigated EH, most of these researchers
have only considered general EH methods. Comparatively, there is a relative lack of
studies that focus on energy-harvesting techniques based on full-duplex and half-duplex
modes, and few studies have investigated three-layer heterogeneous MEC network systems
simultaneously. Therefore, it is desirable to jointly consider the resource allocation and
decision schemes based on a novel full/half-duplex EH modes enabled with heterogeneous
MEC network systems.

In this work, we primarily consider a WPT model based on the full/half-duplex
transmission technique, which is combined with the designed three-tier heterogeneous
MEC architecture. The aim of this work seeks to minimize the overall energy consumption
and optimize the offloading decision, EH time allocation and mode selection. We formulate
the optimization program as a mixed integer programming problem, which is NP-hard. To
address the formulated problem, the main objective can be reformulated as a non-convex
quadratically constrained quadratic program (QCQP) form [11], and the separable Semi-
Definite Relaxation (SDR) method can be adopted to find the optimal offloading decision
strategy and the EH time allocation [12].

Comparing with the recent research work, the main research work and the key contri-
butions of this paper can be summarized as follows:

• In the proposed MEC system, we consider full-duplex and half-duplex WPT modes
and analyze the energy consumption problems under these two different energy
transfer modes separately with the aim to derive the optimal mode selection strategy.

• In particular, we design a three-tier heterogeneous MEC offloading network archi-
tecture that considers the multi-level computational task offloading problem, where
the tasks of MDs can be executed locally, offloaded to a server with energy source for
computing, or transformed to a remote MEC server for processing;

• In addition, we investigate an optimization problem involving the minimization of
transmission and computational energy consumption based on complete time and
energy constraints, which is a non-convex mixed-integer programming problem. We
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derive the optimal offloading decision strategy and WPT mode by adopting QCQP
and SDR methods;

• Moreover, we analyze the optimal time of EH for MDs under the half-duplex energy
transfer mode with a linear form of WPT. Finally, we propose an iterative algorithm
with the aim to solve the joint optimal offloading decision, time allocation of WPT
under the half-duplex EH mode, as well as the mode selection.

The reminder of this paper is organized as follows. Section 2 is concerned with
giving a brief review of relevant research work. In Section 3, we present the system model.
The problem formulation and constraints are proposed in Section 4. In Section 5, we
demonstrate the simulation results. Finally, Section 6 concludes this research and discusses
future directions.

2. Related Work

MEC technology has been widely used in the communication field and different
scenarios to provide services to network edge users by taking advantage of mobile edge
computing servers closer to users and abundant computing resources [13]. To solve the
resource allocation problem in a dynamic computational offload environment, in [14],
the authors used a deep reinforcement learning-based approach and proposed a deep
deterministic policy gradient (DDPG) dynamic policy to solve the dynamic offload, com-
putational offload and resource allocation problems. With the development of blockchain
technology [15], MEC technology is used in blockchain, and MEC technology can be used to
solve the challenge of insufficient computational power of MDs in mining tasks [16]. MEC
technology has been further applied to vehicle networking for driver assistance services
to improve the safety and intelligence of vehicle driving [17]. However, how to ensure
that MDs in the MEC network system perform a long time computing task offloading,
maintain the MDs with enough power for computing task offloading, and guarantee that
the MEC network system can operate for a long time is also one of the main challenges
currently faced.

More recently, there has been a growing research interest in exploring the application
of EH and WPT in MEC systems [1]. In [18], the authors proposed an actor–critic learning
algorithm based on mixed decision making, and a deep reinforcement learning algorithm
of multi-MD mixed actor–critic for dynamic computing and offloading was proposed.
Similarly, in [19], a deep reinforcement learning-based online offloading algorithm was
proposed with the goal of maximizing the weighted sum of computational rates and op-
timizing the time allocation for the user task offloading decisions scheme and wireless
EH. In the single-user MEC system, the authors propose an energy-efficient resource al-
location scheme for WPT and task allocation for the local and offloading computation of
MDs. Considering the unpredictability of EH and the situation of dynamic offloading
of computation tasks, in [6], the authors presented an online algorithm of the Lyapunov
method to optimize the stability of the battery queue and minimize the power consump-
tion. Considering the nonlinear energy collection mode [20], the authors investigated the
resource allocation to maximize the computational efficiency and optimized the EH time,
the CPU cycle frequency of the local computation, the offloading time, and the power
allocation to obtain the optimal solution. In [21], in order to minimize the system cost,
the authors proposed a distributed optimization problem to solve the optimal offloading,
charging and discharging energy and renewable energy utilization rate of MBSs. In [22],
the authors investigated the computational offloading and resource allocation problem in
IoT networks, which simultaneously support end-device mobility and energy harvesting,
and they proposed a Lyapunov optimization and semi-definite programming (SDP)-based
online mobility-aware offloading and resource allocation algorithm.

Several studies have revealed that wireless information and power transfer technol-
ogy provides a potential solution to increase the data transmission rate and long-term
service of user equipment in the wireless network. Meanwhile, EH technology can also
be implemented to enhance the energy efficiency of network [23,24]. In [23], the au-
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thors investigated resource allocation for the orthogonal frequency division multiplexing
(OFDM)-based nonorthogonal multiple access (NOMA) system empowered by WPT tech-
nology with the aim to obtain secure and energy efficient transmission. Similar to [24], the
authors researched an energy-efficient resource allocation for the WPT-enabled orthogonal
frequency division multiple access (OFDMA) multicell networks. In order to achieve long
battery life, in [25], the authors introduce an online learning algorithm with a distributed
execution approach for computational offloading in WP-MEC networks, which aims to
minimize the long-term average task completion delay of mobile clients. In [26], the authors
combined social networking techniques and EH techniques for enhancing the performance
of fog computing systems. In [27], the authors introduced a wireless energy harvesting
(WEH)-based industrial Internet of Things (CIIoT) to harvest RF energy from primary user
signals, and they proposed energy-efficient resource allocation under different spectrum
access methods to maximize the average transmission rate of the CIIoT while maintaining
energy-saving requirements. In [28], the authors proposed an MEC offloading scheme
for cellular IoT networks with a large number of NOMA-assisted energy harvesting MDs
based on social relationships among the user communication devices to optimize the pro-
cessing mode selection, device clustering, channel and power allocation for the purpose of
maximizing the total network rate and under the constraints of power, energy and delay.

With the application and development of wireless networks, it has become an im-
portant research field to apply full-duplex and half-duplex technology to the current
communication system based on wireless energy transform technology. To solve the re-
source allocation problem in multi-access edge computation offloading, the full-duplex
assisted multi-access edge computation offloading system is investigated in [29], and they
proposed a step-wise resource allocation method for enhancing the performance of the
computation offloading subject to data rate constraint. In [30], the authors studied an
unmanned aerial vehicle (UAV) wireless communication system with EH, where the UAV
transmits energy to MDs in half-duplex or full-duplex manner, and the user first collects
energy and then offloads the data to the UAV, with the goal of minimizing the total energy
consumption of the UAV and achieving minimal delay requirement of the data transmis-
sion of the user. Considering the security of wireless communication system, in [31], the
authors examined the energy-constraint secrecy performance of a wireless network with
passive eavesdroppers and wireless information and power energy transmission, and they
proposed a full-duplex automatic jamming scheme. In [32], the authors investigate the
problem of opportunity mode selection and user scheduling in both single-carrier and
multi-carrier OFDM full-duplex systems with the objective of maximizing the system utility
(e.g., sum rate) for long-term and short-term time fairness.

3. System Model

The three-tier WPT MEC system model is shown in Figure 1. The system model con-
sists of multiple MDs, WPT BS, and MBS. The WPT BS transmits energy to the neighboring
users in a broadcast mode, and each MD has a wireless energy-harvesting capability, and
the harvested energy is stored. The MD is closer to the WPT BS, while the distance to the
MBS is relatively long. Throughout this paper, we use U = { 1, 2, 3 . . . , i, . . . , U} , i ∈ U to
represent the set of MDs. Each MD i is equipped with an EH battery, and the computing
capacity of i is defined as Fl

i ∈ [0, Fmax
i ]. Furthermore, MDs have full/half-duplex EH

modes, and the harvested energy will be stored in the battery. The WPT BS is represented
by WPT BS and adopts full-duplex or half-duplex mode to carry out WPT for MDs, and it
can also provide computing services with computing capacity FR. In order to enhance the
computing capacity of the system, a server with powerful computing capacity is integrated
into MBS, and the computing capacity of the MBS server is represented by FM. In the
three-tier heterogeneous MEC system, MDs are able to choose to perform local computing,
either offloading computing tasks to a server at the WPT BS for executing or offloading to a
remote MBS server for processing. The uplink between the MD and the WPT BS or MBS
employs a wireless connection for the communication and offloading of computation tasks,



Sensors 2022, 22, 6002 5 of 21

while in the downlink, the WPT BS and MBS return the processed computation task results
to the MD, and since the data size of the computation results is relatively small, hence, we
ignore the transmission delay and communication energy consumption of the computation
result return in the downlink in this case.

MBS WPT BS Mobile device

Task offloading Energy harvesting Self-interference

Figure 1. MEC offloading system model for wireless energy transmission.

In the proposed MEC system, we suppose that the task of MD i is completed within
a time interval ti. We assume that MDs take the EH and task processing simultaneously
based on full-duplex mode. In half-duplex mode, the MD i performs EH during time slot τi
firstly, and then, the task will be processed within time slot ti − τi. We express the data size
of the computing task for MD i in terms of di, and w represents the number of CPU cycles
required to calculate each bit of data. The term Ai = [ai,l , ai,R, ai,M], i ∈ U will be used in
this paper to refer the set of computing task offloading decision factors. The computational
tasks of each MD can be optionally computed locally or be offloaded to the wPT BS or MBS
server for computing. Specifically, ai,l = 1 represents the selection factor calculated locally
by the MDs, ai,R = 1 means that the MD i chooses the WPT BS for offloading computation,
and ai,M = 1 indicates that the MDs choose the MBS server for the offloading process;
otherwise, ai,l = ai,R = ai,M = 0. The key notation can be found in Table 1. Due to the fact
that the computation task of the MDs can only choose one of the offloading decisions for
computing, we can obtain the offloading decision strategy constraints as follows:

ai,l + ai,R + ai,M = 1, ai,l , ai,R, ai,M ∈ {0, 1}, ∀i ∈ U. (1)
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Table 1. Summary of the key notations.

Notations Meanings

U The set of MDs in the system

Ai The set of offloading decision of MD i

R The representation of WPT BS

Fl
i The computing capacity of MD i

FR The computing capacity of WPT BS

FM The computing capacity of MBS server

di The data size of MD’s computing task

w Represents the number of CPU cycles required to calculate each bit of data

ai,l The decision for local computing of MD i

ai,R Implies the MD i to select the server of WPT BS to calculate

ai,M Denotes that the MD i selects the MBS server for execution

ω The number of effective capacitors related to chip structure

σ The path loss factor

pi,R The transmitted power of the MD i

gi,R The wireless channel transmission gain between MD i and WPT BS

Bi,R The wireless transmission bandwidth between MD i and WPT BS

DR
i The distance between MD i and WPT BS

Di,M The distance between the MD i and the MBS

gi,M Gain of wireless channel transmission between the MD i and MBS

Bi,M The wireless transmission bandwidth between MD with the MBS

pi,M Represents the wireless transmission power of the MD i to MBS

ϕ Represents the amount of energy consumed per CPU cycle by the MBS server
to perform computing tasks for MDs

PR The power of energy transmission

ti The time slot

τi The time of EH in half-duplex mode

ς The efficient of EH

I The Gaussian noise

3.1. Local Computing Mode

When the local computing is adopted, the processing capacity of MDs can be dynam-
ically adjusted according to the size of the task and the completion time of the task by
employing dynamic voltage and frequency expansion technology [18,33]. We assume that
the computing capability Fl

i of the MD i remains unchanged. Accordingly, the time for local
computation processing can be defined as follows:

Dt
i =

diw
Fl

i
. (2)

Furthermore, the energy consumption of local computing of the MD i can be expressed
as follows:

Et
i = ωdiw(Fl

i )
2, (3)
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where ω is the number of effective capacitors related to chip structure [34], and w represents
the number of CPU cycles required to calculate each bit of data.

3.2. WPT BS Server Model

Given that the WPT BS is capable of transmitting energy to the MDs via wireless
transmission during the computation offloading, in the current system, we consider the
use of half-duplex and full-duplex methods for energy transmission. The distance between
MD i and WPT BS is DR

i , and the channel gain between MD i and WPT BS is gi,R = (Di,r)
σ,

where σ = −4 is the path loss factor.

3.2.1. Half-Duplex Mode

In the half-duplex mode [30], WPT BS firstly transmits energy to the MD i in the time
τi, where 0 < τi < ti is the time allocation for EH under half-duplex mode. Then, the
computational task of MD i will be processed locally or offloaded to the server during the
remaining time (ti − τi).

With the half-duplex mode, the achievable uplink transmission rate between the MD i
and the WPT BS can be given by:

rHD
i,R

= Bi,R log(1 +
pi,Rgi,R

I
), (4)

where pi,R is the transmit power of MD i and and Pi,R ≤ Pmax
i . I is the noise power, Bi,R is

the transmission bandwidth. The harvested energy and transmission energy consumption
in half-duplex mode are respectively calculated by [35],

eHD
i = ςPRτi, (5)

EHD
i,R =

pi,Rdi

rHD
i,R

. (6)

3.2.2. Full-Duplex Mode

In full-duplex mode, WPT BS transmits wireless energy to the MD i, and the transmit
power is PR. Meanwhile, the MD i can choose to offload the task to the base station for
computing within the time through the harvested energy. We consider linear EH in the
proposed MEC network system; thus, during time ti, the energy harvested by the MD i can
be given by [35]

eFD
i = ςPRti. (7)

In full-duplex WPT mode, the WPT BS can simultaneously transmit to and receive
task offloading from the MDs. In this case, self-coherent interference is generated. Then,
the achievable uplink transmission rate between the MD i and the WPT BS becomes:

rFD
i,R

= Bi,R log(1 +
pi,Rgi,R

I+σPR
). (8)

PR denotes the transmit power of the WPT BS, and σ denotes the effective self-
interference coefficient in full-duplex mode [30]. The transmission energy consumption of
MD i for transmitting to WPT BS can be expressed by

EFD
i,R =

pi,Rdi

rFD
i,R

. (9)

3.3. MBS Server Model

In the considered system, MDs can also choose to offload computation tasks to an
MBS server. The server of MBS is integrated with powerful computing units. Let us assume
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that the distance between the MD i and the MBS is Di,M, and the channel gain between the
MD i and MBS is gi,M = (Di,M)σ. The uplink transmission rate is given as follows:

ri,M = Bi,M log(1 +
pi,Mgi,M

I
), (10)

where pi,M represents the transmit power of MD i, and Bi,M is the transmission bandwidth.
The transmission energy consumption is given by:

Ew
i,M =

pi,Mdi

ri,M
. (11)

The computing energy consumption of the MBS server can be expressed by:

Ec
i,M = ϕ

diw
FM

, (12)

where ϕ represents the amount of energy consumed per CPU cycle by the MBS server to
perform computing tasks for MDs.

4. Problem Formulation

In this section, we formulate an optimization problem with the aim to minimize the
overall energy consumption of computation tasks of MDs. We optimize the offloading
decision strategy Ai, EH time allocation {τi}, and full/half-duplex mode optimal decision
xHD

i , xFD
i based on the energy constrained of MD i and the delay of the computation task.

Mathematically, the optimization problem is shown as follows:

P1 : min
{Ai ,xHD

i ,xFD
i ,τi}

U

∑
i=1

ai,lωdiw(Fl
i )

2 + ai,R(
xHD

i pi,Rdi

rHD
i,R

+
xFD

i pi,Rdi

rFD
i,R

+
ωdiw

FR
) + ai,M(

pi,Mdi

ri,M
+

ϕdiw
FM

)

C1 : ai,l + ai,R + ai,M = 1,

C2 : {ai,l , ai,R, ai,M} ∈ {01},
C3 : xHD

i + xFD
i = 1,

C4 : {xHD
i , xFD

i } ∈ {0, 1},

C5 : xFD
i ςPRti+xHD

i ςPRτiti − ai,lωdiw(Fl
i )

2 − ai,R(
xHD

i pi,Rdi

rHD
i,R

+
xFD

i pi,Rdi

rFD
i,R

)− ai,M pi,Mdi

ri,M
≤ 0.

C6 : 0 ≤ τi ≤ ti,

C7 : FR ≤ Fmax
R ,

C8 : FM < Fmax
M ,

C9 : Fl
i ≤ Fmax

i ,

C10 : xFD
i TF

i ≤ ti,

C11 : xHD
i TH

i ≤ ti − τi, (13)

where TF
i = ai,l

diw
Fl

i
+ ai,R(

di
rFD

i,R
+ diw

FR
) + ai,M( di

ri,M
+ diw

FM
), and TH

i = ai,l
diw
Fl

i
+ ai,R(

di
rHD

i,R
+ diw

FR
) +

ai,M( di
ri,M

+ diw
FM

).
C1 and C2 represent the constraints of the offloading decision of MD i. C3 and C4

indicate the EH mode of MD i, xHD
i indicates that the MD selects a half-duplex EH mode,

xFD
i indicates that the MD i selects a full-duplex EH mode, and only one of the EH modes

decision can be selected. C5 makes sure that the energy consumption is less than the
harvested energy. C6 denotes the time allocation for EH with half-duplex mode. C7–C9 are
utilized to guarantee that the computing resources allocated to an MD should be limited.
C10 indicates that the task processing latency for different task computation and offloading
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methods under the selected full-duplex mode by the MD i is lower than the maximum
allowable time slot ti. C11 denotes that in half-duplex mode, the MD performs EH first
before the task processing in time τi; i.e., the delay of the task processing cannot exceed the
remaining time slot ti − τi.

The computation offloading decision factor Ai = {ai,l , ai,R, ai,M} and the full-duplex
and half-duplex mode decision strategy xi = {xFD

i , xHD
i } are integer variables, and the EH

time allocation τi is a continuous variable. In this case, we note that the formulated problem
P1 is a mixed integer programming problem. The computational complexity of addressing
this problem is high. Therefore, we employ an iterative method to solve the optimization
problem P1. Firstly, the optimization problem P1 can be transformed into separable QCQP,
and then, the method of SDR is used to obtain the binary computing offloading decision
and the optimal mode selection [36]. Then, we will use the convex optimization program
method to solve the time τi for EH based on the half-duplex mode.

4.1. Computation Offloading Decision Strategy

We assume that xi = {xFD
i , xHD

i } and τi are given. Initially, we can convert the problem
P1 with an equivalent QCQP form so as to achieve the SDR formulation finally according
to [37].

4.1.1. QCQP Form and SDR

The variable set of Ai is integer variable. Thus, we rewrite constraint C2 as follows:

C2a : ai,l(ai,l − 1) = 0, ai,R(ai,R − 1) = 0, ai,M(ai,M − 1) = 0, (14)

P1 can be formulated as follows:

P2 : min
Ai

U

∑
i=1

ai,lωdiw(Fl
i )

2 + ai,R(
xHD

i pi,Rdi

rHD
i,R

+
xFD

i pi,Rdi

rFD
i,R

+
ωdiw

FR
) + ai,M(

pi,Mdi

ri,M
+

ϕdiw
FM

)

C1 : ai,l + ai,R + ai,M = 1,

C2a : ai,l(ai,l − 1) = 0, ai,R(ai,R − 1) = 0, ai,M(ai,M − 1) = 0,

C5 : ai,lωdiw(Fl
i )

2+ai,R(
xHD

i pi,Rdi

rHD
i,R

+
xFD

i pi,Rdi

rFD
i,R

)+
ai,M pi,Mdi

ri,M
≤ xFD

i ςPRti+xHD
i ςPRτiti,

C10, C11. (15)

The problem P2 is still non-convex, and it is difficult to be solved as C2a are non-convex
quadratic constraints. In the following, the problem is transformed into a convex problem
based on QCQP transformation, and then, we adopt SDR to obtain the fractional solution.

We vectorized the parameters and variables in P2 as

v = [a1,l , a1,R, a1,M, . . . , aU,l , aU,R, aU,M]T , (16)

u′i = [ωd1w(Fl
i )

2,
xHD

1 p1,Rdi

rHD
1,R

+
xFD

1 p1,Rd1

rFD
1,R

+
ωd1w

FR
,

p1,Md1

r1,M
+

ϕd1w
FM

, . . . ,

ωdUw(Fl
i )

2,
xHD

U pU,RdU

rHD
1,R

+
xFD

U pU,RdU

rFD
U,R

+
ωdUw

FR
,

pU,MdU

rU,M
+

ϕdUw
FM

].

(17)

Accordingly, the problem P2 is converted into an equivalent QCQP problem as follows:

P3 : min
v

U

∑
i=1

(u′i)
Tv
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C1′ : (ui)
Tv = 1, ∀i ∈ U,

C2′ : vTdiag(ej)v− (ej)
Tv = 0, j = 1, . . . , 3U,

C5′ : (ue
i )

Tv 6 (xFD
i ςPRti + xHD

i ςPRτiti), ∀i ∈ U,

C10′ : (uF
i )

Tv 6 ti, ∀i ∈ U,

C11′ : (uH
i )Tv 6 ti − τi, ∀i ∈ U. (18)

where

ui = e3i−2 + e3i−1 + e3i, (19)

ue
i = [ωdiw(Fl

i )
2,

xHD
i pi,Rdi

rHD
i,R

+
xFD

i pi,Rdi

rFD
i,R

,
ai,M pi,Mdi

ri,M
], (20)

uF
i = xFD

i [
diw
Fl

i
,

di

rFD
i,R

+
diw
FR

,
di

ri,M
+

diw
FM

], (21)

uH
i = xHD

i [
diw
Fl

i
,

di

rHD
i,R

+
diw
FR

,
di

ri,M
+

diw
FM

]. (22)

However, the formulated problem of P3 is still a non-convex separable QCQP problem
which results in the problem remaining intractable. For the purpose of finding approximate
solutions, we utilize SDR, which is an effective method to simplify the QCQP problem [36].

4.1.2. Semi-Definite Relaxtion

We define a semi-definite matrix V = [vT ,1]T [vT , 1] of rank one. The problem P3 will
be relaxed into a separable semi-definite programming problem as shown below:

P3′ : min
V

U

∑
i=1

Tr(ZV)

C1′′ : Tr(ZiV) = 1, ∀i ∈ U,

C2′′ : Tr(ZjV) = 1, j = 1, 2, . . . , 3U,

C5′′ : Tr(Ze
i V) 6 (xFD

i ςPRti + xHD
i ςPRτiti),

C10′′ : Tr(ZF
i V) 6 ti,

C11′′ : Tr(ZH
i V) 6 ti − τi,

C12 : V(3U + 1, 3U + 1) = 1,

C13 : V � 0,

C14 : rank(V) = 1. (23)

where

Zi =

[
03U

1
2 ui

1
2 (ui)

T 03U

]
, Ze

i =

[
03U

1
2 ue

i
1
2 (u

e
i )

T 03U

]
,

Zj =

[
diag(ej) − 1

2 ej
1
2 (ej)

T 0

]
, Z=

[
03U

1
2 u′ i

1
2 (u
′
i)

T 03U

]
,

ZF
i =

[
03U

1
2 uF

i
1
2 (u

F
i )

T 03U

]
, ZH

i =

[
03U

1
2 uH

i
1
2 (u

H
i )

T 03U

]
.



Sensors 2022, 22, 6002 11 of 21

P3′ is still non-convex due to the rank constraint C14. The problem can be relaxed to a
semi-positive definite programming problem by discarding the rank constraint as follows:

P3′′ : min
V

U

∑
i=1

Tr(ZV)

s.t. C1′′, C2′′, C5′′, C10′′, C11′′, C12, C13. (24)

Therefore, the original problem is reformulated to the standard convex optimization
problem, and we adopt standard CVX tools to address problem P3′′ [38].

4.1.3. Extracting Offloading Decision

Hereafter, we extract a feasible solution v for P3 from the global optimal solution V* of P3′′,
and we obtain the optimal offloading decision from the feasible solution v according to [39,40].

According to the definition of V, we know that only the submatrix of V* topmost
coordinates 3N × 3N, defined as V′*, is necessary to obtain the offloading decision Ai,
and that all diagonal elements of V* are positive numbers from 0 to 1. Let us define

pr= [pr1,l , pr1,R, pr1,M, . . . , prU,l , prU,R, prU,M]T
∆
= diag(V′*), where each of these terms pr

represents the probability of corresponding entry of Ai being 1.
We define Ki,l = pri,l(1− pri,R)(1− pri,M), Ki,R = pri,R(1− pri,l)(1− pri,M), Ki,M =

pri,M(1− pri,l)(1− pri,R) to satisfy the constraint ai,l + ai,R + ai,M = 1. According to the
probabilities of local computing, the WPT BS server execution and the MEC server execution
are expressed as Pri,l = Ki,l/(Ki,l +Ki,R +Ki,M), Pri,R = Ki,R/(Ki,l +Ki,R +Ki,M), Pri,M =
Ki,M/(Ki,l + Ki,R + Ki,M), respectively. The computation task offloading decision of MD i
is given in the following:

On=


(1, 0, 0)
(0, 1, 0)
(0, 0, 1)

. (25)

On = (1, 0, 0) means that the computation task will be calculated with probability Pri,l
in local computing.

On = (0, 1, 0) shows that the computation task can be calculated with probability Pri,R
in the WPT BS server.

On = (0, 0, 1) defines the computation task will be computed with probability Pri,M
in the MBS server.

As a result, by randomly setting the value of the vector according to (25), P3 can be
resolved and the offloading decisions ai,l , ai,R, ai,M can be obtained.

4.2. Time Allocation on the Half-Duplex Mode

In this part, we will dedicate to solve the EH time allocation in half-duplex mode
based on a given offloading decision Ai and EH pattern xi. Based on half-duplex mode,
xHD

i = 1. The MD performs EH and task calculation independently. Considering that
in the half-duplex mode, the time of τi is used for EH, and that the remaining time of
(ti − τi) is used for task offloading and computing, the energy consumption includes the
energy consumption of local computation and the energy consumption of computation
task processing. The energy consumption problem is shown below:

P4 : min
{τi}

U

∑
i=1

ai,lωdiw(Fl
i )

2 + ai,R(
pi,Rdi

rHD
i,R

+
ωdiw

FR
) + ai,M(

pi,Mdi

ri,M
+

ϕdiw
FM

)
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C5 : ςPRτi − ai,lωdiw(Fl
i )

2 − ai,R pi,Rdi

rHD
i,R

− ai,M pi,Mdi

ri,M
≥ 0,

C6 : 0 < τi ≤ ti,

C11 : TH
i ≤ ti − τi, (26)

where
TH

i = ai,l
diw
Fl

i
+ ai,R(

di

rHD
i,R

+
diw
FR

) + ai,M(
di

ri,M
+

diw
FM

). (27)

Due to the fact that the objective function is independent of the time variable τi, we
represent the energy consumption in the objective function of P4 with ψHD

i , thus

ψHD
i =ai,lωdiw(Fl

i )
2 + ai,R

ωdiw
FR

+ ai,M(
pi,Mdi

ri,M
+

ϕdiw
FM

) +
ai,R pi,Rdi

rHD
i,R

.

The constraint C3 can be expressed as:

C5h : ςPRτi + ai,R
ωdiw

FR
+ ai,M

ϕdiw
FM
− ψHD

i ≥ 0. (28)

Problem P4 can be rewritten to the problem P4′ as follows:

P4′ : min
{τi ,ψHD

i }

U

∑
i

ψHD
i

s.t. C5h, C6, C11. (29)

To resolve the problem P4’, so that ψHD
i achieves the minimum value and the trans-

mission and computation time constraints of the computation task are met, we use tight
operation, let

ςPRτi + ai,R
ωdiw

FR
+ ai,M

ϕdiw
FM

= ψHD
i . (30)

Then, problem P4′ can be transformed into the following form of problem P4′′:

P4′′ : min
{τi}

U

∑
i=1

ςPRτi + ai,R
ωdiw

FR
+ ai,M

ϕdiw
FM

s.t. C5, C6, C11. (31)

From the constraints C3 and C9, the dominant of τi can be expressed as:

τi ≤ ti − ai,l
diw
Fl

i
− ai,R(

di

rHD
i,R

+
diw
FR

)− ai,M(
di

ri,M
+

diw
FM

), (32)

τi ≥ (ai,lωdiw(Fl
i )

2 +
ai,R pi,Rdi

rHD
i,R

+
ai,M pi,Mdi

ri,M
)/ςPR. (33)

The objective function and constraint conditions in P4′′ are linear about the variables
τi, so it is a convex optimization problem. The minimum optimal value is obtained at the
boundary point, and the optimal value of τi is:

τ∗i = min{ai, bi}, (34)

ai = ti − ai,l
diw
Fl

i
− ai,R(

di

rHD
i,R

+
diw
FR

)− ai,M(
di

ri,M
+

diw
FM

), (35)
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bi = (ai,lωdiw(Fl
i )

2 +
ai,R pi,Rdi

rHD
i,R

+
ai,M pi,Mdi

ri,M
)/ςPR. (36)

4.3. Full/Half-Duplex Mode Selection

For the given solution of Ai and τi, we can solve the selection decision of full/half-
duplex EH model. Similar to the optimize offloading decision strategy, the variables of
the full/half-duplex EH mode decision are still integer variables. Thus, we determine the
main objective problem, which is related to variables about xi = {xFD

i , xHD
i }; then, the

objective problem will be converted to the QCQP form, and we adopt the SDR to obtain the
fractional solution.

P5 : min
{xHD

i ,xFD
i }

U

∑
i=1

ai,lωdiw(Fl
i )

2 + ai,R(
xHD

i pi,Rdi

rHD
i,R

+
xFD

i pi,Rdi

rFD
i,R

+
ωdiw

FR
) + ai,M(

pi,Mdi

ri,M
+

ϕdiw
FM

)

C3 : xHD
i + xFD

i = 1,

C4 : {xHD
i , xFD

i } ∈ {0, 1},

C5 : xFD
i (ςPRti −

ai,R pi,Rdi

rFD
i,R

) + xHD
i (ςPRτiti −

ai,R pi,Rdi

rHD
i,R

) 6 ai,lωdiw(Fl
i )

2 +
ai,M pi,Mdi

ri,M
,

C10 : xFD
i TF

i ≤ ti,

C11 : xHD
i TH

i ≤ ti − τi. (37)

We can reformulate the constraint of C4 as follows:

C4(b) :xHD
i (xHD

i − 1) = 0, xFD
i (xFD

i − 1) = 0. (38)

The problem P5 can be formulated as shown:

P6 : min
{xHD

i ,xFD
i }

U

∑
i=1

ai,lωdiw(Fl
i )

2 + ai,R(
xHD

i pi,Rdi

rHD
i,R

+
xFD

i pi,Rdi

rFD
i,R

+
ωdiw

FR
) + ai,M(

pi,Mdi

ri,M
+

ϕdiw
FM

)

s.t. C3, C4(b), C5, C10, C11. (39)

Due to the fact that the constraint C4(b) is a non-convex quadratic constraint, the
problem P6 is still non-convex and challenging to solve. In order to obtain the optimum
decision strategy, we transform the problem into QCQP form initially and SDR to obtain
the fractional solution.

4.3.1. QCQP Form

By defining x = [xHD
1 , xFD

1 , . . . , xHD
U , xFD

U ], the problem can be converted into an
equivalent QCQP problem as below:

P7 : min
x

U

∑
i=1

(q′i)
Tx +

U

∑
i=1

Ei
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C3′ : (qi)
Tx = 1, ∀i ∈ U,

C4′ : xTdiag(ek)x− (ek)
Tx = 0, k = 1, . . . , 2U,

C5′ : (qa
i )

Tx ≤ ai,lωdiw(Fl
i )

2 +
ai,M pi,Mdi

ri,M
,

C10′ : (qF
i )

Tx ≤ ti,

C11′ : (qH
i )Tx ≤ ti − τi. (40)

where

Ei = ai,M(
pi,Mdi

ri,M
+

ϕdiw
FM

) +
ωdiw

FR
+ ai,lωdiw(Fl

i )
2, (41)

q′i = [
a1,R p1,Rd1

rHD
1,R

,
a1,R p1,Rd1

rFD
1,R

, . . . ,
aU,R pU,RdU

rHD
U,R

,
aU,R pU,RdU

rFD
U,R

]T , (42)

qi = e2i−1 + e2i, qF
i = [TF

i ,0]T , qH
i = [TH

i ,0]T , (43)

qa
i = [ςPRti −

ai,R pi,Rdi

rFD
i,R

, ςPRτi −
ai,R pi,Rdi

rHD
i,R

]. (44)

Similarly, the QCQP formulation is still a non-convex separable QCQP problem and
hard to be solved. Therefore, we take the SDR method to simply the QCQP problem.

4.3.2. Semi-Definite Relaxtion

In order to utilize the SDR method, we define X = [xT ,1]T[xT ,1], X is a rank one

symmetric positive semi-definite matrix and disregard the constant term
U
∑

i=1
Ei from the

objective function of P7. Hence, we can obtain the equivalent form as follows:

P7′ : min
X

Tr(QX)

C3′′ : Tr(QiX) 6 ai,lωdiw(Fl
i )

2 +
ai,M pi,Mdi

ri,M
,

C4′′ : Tr(QkX) = 0,

C5′′ : Tr(Qa
i X) = 0,

C10′′ : Tr(QF
i X) = 0,

C11′′ : Tr(QH
i X) = 0,

C15 : X(2U, 2U) = 1,

C16 : X � 0,

C17 : rank(V) = 1. (45)

where

Qi =

[
02U×2U

1
2 qi

1
2 (qi)

T 02U×2U

]
, Qk =

[
diag(ek) − 1

2 ek
1
2 (ek)

T 0

]
,

Qa
i =

[
02U×2U

1
2 qa

i
1
2 (q

a
i )

T 02U×2U

]
, Q =

[
02U×2U

1
2 q′ i

1
2 (q
′
i)

T 02U×2U

]
,

QF
i =

[
02U×2U

1
2 qF

i
1
2 (q

F
i )

T 02U×2U

]
, QH

i =

[
02U×2U

1
2 qH

i
1
2 (q

H
i )

T 02U×2U

]
.
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However, in problem P7′, the rank constraint (45) is the only non-constraint. Therefore,
we will relax problem P7′ into a semi-definite programming problem by dropping the rank
constraint as follows:

P7′′ : min
X

Tr(QX)

s.t. C3′′, C4′′, C5′′, C10′′, C11′′, C15, C16. (46)

Now, we have reformulated the problem into a standard convex optimization problem,
and it can be solved in polynominal time with standard CVX tools such as SeDuMi [36].

4.3.3. Full/Half-Duplex Mode Decision Extraction

In this part, we extract a feasible solution x from the global optimal solution X∗ of
the above problem, and we obtain the optimal offloading decision in feasible solution x
according to the method proposed in [39,40].

According to the definition of X, we know that only the submatrix of X∗ whose topmost
coordinate is 2N × 2N, defined as X∗, is necessary to obtain the optimal full/half-duplex
decision x, and that all diagonal elements of X′∗ are positive numbers from 0 to 1. We define

p = [p1, f , p1,h, . . . , pU, f , pU,h]
T ∆
= diag(X′∗), where each term of p represents the probability

of corresponding term of xi being 1.
In order to satisfy xHD

i + xFD
i = 1, we define Ki, f = pi, f (1− pi,h), and based on this, the

probabilities of full/half-duplex are pi, f = Ki, f /(Ki, f +Ki,h) and pi,h = Ki,h/(Ki, f +Ki,h),
respectively.

According to the above solution, the full/half-duplex EH mode decision of MD i is
given by the following formula:

Ωi =

{
(1, 0)
(0, 1)

}
. (47)

Ωi = (1, 0) means that we choose half-duplex mode with probability pi, f ;
Ωi = (0, 1) means that we choose full-duplex mode with probability pi,h.
By randomly setting the value of the vector according to the probabilities in (47), P6

can be resolved, and we can obtain the offloading decisions xHD
i , xFD

i .

4.4. Algorithm Analysis

To this end, we design an algorithm for optimizing the offloading decision strategy, EH
time allocation and full/half-duplex mode optimization based on the proposed approach.
First of all, the system parameters of computation tasks and network are initialized. Since
the offloading decision is randomly obtained based on the obtained probability, we can
run the aforementioned procedure several times to obtain a more precise decision. Based
on the given EH mode xi and EH time allocation τi, we can obtain An

i , which is denoted
as the offloading decision for the nth time. Then, based on the An

i and τi, we can perform
EH mode optimization. After that, based on An

i and xi
n, we can carry out half-duplex

EH time allocation, and the solution with smallest energy consumption target value is the
final solution. The complexity of the internal for-loop is O(N), and the external iterative
loops are iterations needed are O(N6) and O(N4), so the overall complexity is calculated
as O(N7) = O((N6 + N4)N). We present the overall algorithm in Algorithm 1.
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Algorithm 1 Jointly optimize the computation offloading decision, EH time allocation and
mode selection

1: Initialize:
2: Initialize ti, Fl

i , FR, FM, di, pi,R, pi,M, PR.
3: Initialize all the matrixes involved in P3′′ and P7′′;
4: Iteration:
5: Solve the SDR problem P3′′ by using the standard CVX tool SeDuMi and to obtain

optimal solution of V′∗.
6: Extract the top left corner 3N × 3N sub-matrix V′∗ from matrix V∗ and define the

values of diagonal elements in V′∗ as pr= [pr1,l , pr1,R, pr1,M, . . . , prU,l , prU,R, prU,M]T .
7: Solve the SDR problem P7′′ by using the standard CVX tool SeDuMi and to obtain

optimal solution of X′∗.
8: Extract the top left corner 2N × 2N sub-matrix X′∗ from matrix X∗, and define the

values of diagonal elements in X′∗ as p = [p1, f , p1, f , . . . , pU, f , pU,h]
T .

9: for l = 1, 2, . . . , L do
10: Extract Ai

n from pr(n)= [pr1,l , pr1,R, pr1,M, . . . , prN,l , prU,R, prU,M]T(n) according
to (25).

11: Extract xi
n from p(n) = [p1, f , p1,h, . . . , pU, f , pU,h]

T(n) according to (47).
12: Perform EH time allocation {τi(n)} based on half-duplex mode, respectively.
13: Compare the objective value of all the N solutions, and select the solution with

minimum objective value.
14: end for
15: Output: The optimal solutions of the offloading strategy A∗i , EH time allocation τ∗i and

the EH mode scheme x∗i .

5. Numerical Results

In this section, we conduct extensive simulations to verify the feasibility and superior-
ity of the proposed scheme. In this simulation, we used a hardware setup with a desktop
computer with 8 G memory capacity, hard disk data size of 1 T, 3.20 GHz CPU frequency,
and 64-bit Windows system as the operating system. The software used was MATLAB
software for the simulation experiments. We set the number of MDs to 10, one WPT BS,
and a macro base station with an integrated powerful server. We set the data size for any
task between 10 and 110 KB, and the maximum transmission power of MDs was 30 dbm.
The bandwidth size between the MDs and the WPT BS was set to be 20 MHZ, and the
bandwidth between the MDs and the MBS was 50 MHZ. The average distance between the
MDs and the WPT BS was 100 m, and the maximum distance between the MDs and the
MBS is 500 m. We set the transmission power of the WPT BS as 40 dbm.

In Figure 2, we plot the energy consumption of the computation tasks with different
data sizes when adopting different computing strategies. From Figure 2, we can see that the
energy consumption of all different computation methods increases as the size of the task
keeps increasing. Under the local computing approach, the MD is limited by the battery
capacity and computing capability, which consumes more energy compared to offloading
the task to WPT BS and the MBS server for computing. Self-interference will be generated
when MDs employ full-duplex EH technology, which affects the transmission rate of task
offloading, thus increasing the transmission energy consumption during task offloading.
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Figure 2. The energy consumption vs. different task size and different task computing.

In Figure 3, we show the effect of the distance between the MD and the BSs on the
energy consumption of MD. As shown in this figure, it can be found that the computational
energy consumption of the task does not vary with distance when the MD chooses to
compute locally. On the contrary, when the MD chooses to offload to the WPT BS or the
MBS for computing, the transmission energy consumption during task offloading increases
as the distance between the MDs and the BS increases. When the MD selects full-duplex
mode for EH, it will reduce the data transmission rate and thus requires more transmission
energy consumption because the full-duplex mode receives and transmits wireless signals
at the same time. However, under the half-duplex mode, MDs will harvest energy at first,
and then, the task will be offloaded to servers for computing. It can also be found that the
MDs that offload to the MBS consume less energy because the channel bandwidth between
the MDs and the MBS is larger than the bandwidth between the WPT BS and the MD.

Figure 3. Energy consumption vs. different distance between MDs with BS servers.

Moreover, in Figure 4, we present a three-dimensional diagram of the energy con-
sumption by changing the distance between the MDs and WPT BS as well as the task data
size. Such a phenomenon indicates that the energy consumption of the computation task
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becomes larger as the distance between the MD and the WPT BS increases. Meanwhile, as
the data size of the computation task increases, the energy consumption for computation
task offloading and task processing tends to increase.

Figure 4. Energy consumption vs. different distances and data sizes of tasks.

In Figures 5 and 6, we describe the transmission rate of computation task offloading
data and the EH by MD regarding the number of MDs in the network system proposed
in the paper under the full-duplex EH technique based on the MD. We assume that the
transmission power of the WPT BS is PR = {8w, 10w, 12w}. From Figure 5, we can observe
that as the number of MDs increases, the task offloading rate between the MDs and the
WPT BS decreases subsequently. This is because under the full-duplex EH model, self-
interference is easily generated, which increases the interference of computation task
offloading in the wireless channel and thus decreases the rate of data transmission. It can
be seen from Figure 6 that as the number of MDs increases, the offloading transmission
rate decreases, which increases the offloading time. In order to complete the task within
the maximum allowed delay, the MDs need to harvest more energy provided by the WPT
BS. It can be seen from both Figures 5 and 6 that in order to increase the offloading rate, the
transmission power between the MDs and the WPT BS needs to be increased.

Figure 5. Energy consumption vs. the number of MDs.
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Figure 6. Energy consumption vs. the number of MDs.

In Figure 7, we plot the harvested energy of the MDs based on full-duplex and
half-duplex mode. From Figure 7, we can see that the harvested energy by the MDs in full-
duplex and half-duplex modes increases linearly with the increment of time. In full-duplex
mode, the MDs can perform task offloading at the same time or perform EH during local
computation, while in half-duplex mode, the MDs performs EH before task offloading and
computation, which will reduce the time for EH, so more energy is harvested in full-duplex
mode than in half-duplex mode. In the half-duplex mode, when the MD adopts local
computing, the time for task processing increases due to the limited computing capacity
of MD, thus reducing the time for EH. On the contrary, when the MDs choose to offload
to the WPT BS and MBS server for task computation, the MBS server has a powerful task
processing capacity and the time for offloading and computation is reduced; then, the time
for EH will increase, and more energy can be obtained.

Figure 7. Energy consumption v.s. the time for EH.
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6. Conclusions

In this paper, we have considered a three-tier heterogeneous MEC based on an in-
telligent network system for offloading energy harvesting. The system model consists of
MDs, WPT BS, and MBS integrated with powerful servers, where tasks generated by the
user’s MD can be computed locally or offloaded to the wireless energy supply base station
servers and the MBS server for computation. In this work, the full/half-duplex energy
harvesting-based technology is adopted. To minimize the overall energy consumption
for task offloading and computation in heterogeneous network systems, the computation
task offloading decision, the energy-harvesting time in full/half-duplex mode, and the
energy-harvesting mode selection decision for full/half-duplex is optimized. We show
that this optimization problem is a non-convex separable QCQP, which is an NP-hard
problem, and the SDR method and the binary recovery method are employed to obtain the
optimal decisions while solving for the optimal time resource allocation in different energy-
harvesting modes. Simulation results showed that the proposed method and algorithm
can achieves the optimal solution. Furthermore, the joint dynamic computation offloading
of the computation task and mobility of MDs which based on WPT-based MEC network
system is one of the interest for future research.
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