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Abstract: Correlation between 3D surface roughness and characteristic features extracted from
laser speckle pattern was done using an inexpensive laser pointer and a digital single lens reflex
(DSLR) camera in previous research work. There had been no comparison work done between the
experimental setup which uses a laser pointer, which has a diode laser as the laser source, and the
experimental setup, which uses a He-Ne laser as the laser source. As such, in the current work,
a comparison study between two experimental setups was carried out. One experimental setup
was using a He-Ne laser, spatial filter, and charged coupled device (CCD) camera, while another
experimental setup was using a laser pointer and DSLR camera. The laser beam was illuminated
at angles of 30◦, 45◦, and 60◦ from the horizontal. When a laser beam falls on the surface, the beam
gets scattered, and the scattered beam undergoes interference and produces speckle patterns which
are captured using a camera. Using a Matlab program, the gray level co-occurrence matrix (GLCM)
characteristic features, such as contrast (GLCM), correlation (GLCM), energy (GLCM), entropy
(GLCM), homogeneity (GLCM), and maximum probability, and non-GLCM characteristic features,
such as mean, standard deviation (STD), uniformity, entropy, normalized R, and white-to-black
ratio (W/B), were extracted and correlated with 3D surface roughness parameters. The coefficient
of determination (R2) was determined for each case. Compared to the setup using a laser pointer,
the setup using a He-Ne laser gave better results. In the setup using the He-Ne laser, there were
correlations with a coefficient of determination R2 ≥ 0.7 at illumination angles of 30◦, 45◦, and 60◦,
whereas in the setup using a laser pointer, there were correlations with R2 ≥ 0.7 at illumination
angles of 30◦ and 45◦. Mean characteristic features had more correlations with R2 ≥ 0.7 in the case of
the angle of illumination of 45◦ (7 out of 36 correlations) and 60◦ (11 out of 82 correlations), while
R-normalized characteristic features had more correlations with R2 ≥ 0.7 in the case of the angle
of illumination of 30◦ (9 out of 38 correlations) for the setup using the He-Ne laser. Correlation
(GLCM) had more correlations with R2 ≥ 0.7 in the case of the setup using a laser pointer (2 out of
2 correlations for illumination angle of 30◦, and 4 out of 19 correlations for an illumination angle
of 45◦). Roughness parameters Sa and Sq had more correlations with R2 ≥ 0.7 for an illumination
angle of 30◦ (1 out of 2 correlations each), and Sp and Sz had more correlations with R2 ≥ 0.7 for
an illumination angle of 45◦ (4 out of 19 correlations each) in the case of the setup using a laser
pointer. The novelty of this work is (1) being a correlation study between 3D surface roughness and
speckle pattern using a He-Ne laser and spatial filter, and (2) being a comparison study between two
experimental setups on the correlation between 3D surface roughness and speckle pattern.
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1. Introduction

Surface roughness refers to finely spaced irregularities formed during the machining
process [1]. Surface roughness influences mechanical part parameters such as fit, wear
resistance, fatigue strength, contact stiffness, vibration, and noise. These variables have
an impact on a product’s service life and dependability [2]. As a result, surface roughness
measurement is critical in the production process. Surface roughness can be measured
with either a contact or non-contact method. The stylus probe is a widely used contact
method in the industry. This technology, however, has some drawbacks, including a long
measuring time and the stylus accuracy being dependent on its tip radius, which means it
may not be able to reliably detect surfaces with crevices smaller than the stylus tip [3].

On the surface of soft materials, the stylus tip could cause a scratch. White light
interferometers [4,5], the focus variation method [6], and confocal microscopy [7] are the
most common non-contact methods for assessing 3D roughness parameters currently
accessible. Machine vision has a high measurement efficiency, a big data acquisition
capacity, high measurement accuracy, and flexibility [2].

Statistical properties [8–10], wavelet transform [11], Tsallis threshold [12], neural
network [3], gray level co-occurrence matrix (GLCM) [10,13], lacunarity [14], spectral
speckle correlation [15–18], and contrast [19,20] are some of the techniques used in vision
methods for correlating characteristics features with surface roughness. Profile roughness
parameters and areal roughness parameters are two types of surface roughness parameters.
The profile roughness parameters are also referred to as two-dimensional or 2D roughness
parameters, whereas the areal roughness parameters are referred to as three-dimensional
or 3D roughness parameters [8,21–23].

Current vision approaches extract characteristics to correlate with 2D roughness
parameters [9,13,20,24,25]. However, machined surfaces are 3D in nature and, hence, 3D
surface roughness parameters should be measured [8]. Jayabarathi and Ratnam [10] used
characteristic features extracted from laser speckle patterns for correlation with 3D surface
roughness. The researchers used a laser pointer instead of a He-Ne or diode laser which
are widely used in the research works involving speckle patterns. However, no literature is
available on how the results obtained with the setup used by Jayabarathi and Ratnam [10]
compared to the experimental setup used by other researchers. It is essential to compare the
two different setups, as replacing the He-Ne laser and spatial filter setup with a laser pointer
simplifies the experimental setup, and is also inexpensive compared to the commercial
He-Ne laser. This is a continuation of the work of Jayabarathi and Ratnam [10], where a
comparison is carried out between an experimental setup using a laser pointer and digital
single lens reflex (DSLR) camera and an experimental setup using a He-Ne laser, spatial
filter, and charged coupled device (CCD) camera. In addition to that, there is no publication,
to the authors’ best knowledge, on any research work involving a correlation study between
3D surface roughness and characteristic features extracted from laser speckle pattern where
the experimental setup consists of a He-Ne laser, spatial filter, and CCD camera. Moreover,
no comparison studies were done between the experimental setup using the He-Ne laser
and the experimental setup used by Jayabarathi and Ratnam [10].

2. Materials and Methods
2.1. Sample Preparation

Two samples with five surfaces each were machined on a CNC 5-axis milling machine
(DMU 40 monoBLOCK by Deckel Maho, Bielefeld, Germany) with a four flute high-
speed steel (HSS) end mills cutter with a diameter of 12 mm. One of the most essential
advantages of high-speed steel is its ability to cut through materials at high speeds. Because
of the alloy’s unique combination of hardness, wear resistance, and high-temperature
characteristics, one may make use of this benefit. HSS tools are also less expensive than
carbide tools, making them an excellent choice for high-mix, low-volume applications.
Sample 1 and sample 2 are the names of the two reference samples. Figure 1 shows the two
machined samples. Each sample has 5 surfaces, and the surfaces are labeled 1 to 10.
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Figure 1. (a) Sample 1 and (b) Sample 2 with numbering [10]. 

Each surface was machined at different machining parameters, and using the Ali-
cona Infinite Focus Microscope by Bruker Alicona, Austria, the following 3D surface 
roughness parameters [26] of each surface were measured. The roughness values are 
tabulated in Table 1 [10]. 
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• Developed interfacial area ratio (Sdr). 
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(µm) 

Sp 
(µm) 

Sv 
(µm) 

Sz 
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S10z 
(µm) Ssk Sku Sdq 
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(%) 

1 1000 120 1 0.931 1.117 4.070 3.889 7.959 6.187 −0.044 2.415 0.161 1.305 
2 1000 280 1 1.046 1.322 8.081 7.774 15.855 9.217 0.281 3.398 0.177 1.553 
3 1000 440 1 1.325 1.675 9.809 6.795 16.605 10.826 0.146 3.442 0.191 1.790 
4 1000 600 1 1.162 1.567 11.639 13.136 24.775 14.423 0.275 6.054 0.242 2.636 
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Figure 1. (a) Sample 1 and (b) Sample 2 with numbering [10].

Each surface was machined at different machining parameters, and using the Alicona
Infinite Focus Microscope by Bruker Alicona, Austria, the following 3D surface roughness
parameters [26] of each surface were measured. The roughness values are tabulated in
Table 1 [10].

• Arithmetic mean height (Sa);
• Root-mean-square height (Sq);
• Maximum peak height (Sp);
• Maximum valley depth (Sv);
• Maximum height (Sz);
• Ten point height (S10z);
• Skewness (Ssk);
• Kurtosis (Sku);
• Root-mean-square gradient (Sdq);
• Developed interfacial area ratio (Sdr).

Table 1. Tabulation of machining parameters and 3D roughness parameters of each surface [10].

Surface
No.

Spindle
Speed
(rpm)

Feed Rate
(mm/min)

Depth
of Cut
(mm)

Sa
(µm)

Sq
(µm)

Sp
(µm)

Sv
(µm)

Sz
(µm)

S10z
(µm) Ssk Sku Sdq

Sdr
(%)

1 1000 120 1 0.931 1.117 4.070 3.889 7.959 6.187 −0.044 2.415 0.161 1.305
2 1000 280 1 1.046 1.322 8.081 7.774 15.855 9.217 0.281 3.398 0.177 1.553
3 1000 440 1 1.325 1.675 9.809 6.795 16.605 10.826 0.146 3.442 0.191 1.790
4 1000 600 1 1.162 1.567 11.639 13.136 24.775 14.423 0.275 6.054 0.242 2.636
5 1000 760 1 1.254 1.816 10.948 8.678 19.626 16.608 0.360 6.142 0.318 4.565
6 2500 120 1 0.748 0.902 5.681 6.960 12.641 5.122 0.335 2.473 0.185 1.722
7 2500 280 1 0.968 1.156 5.437 8.607 14.045 6.387 −0.177 6.528 0.185 1.749
8 2500 440 1 0.974 1.225 7.169 6.327 13.496 7.440 −0.124 4.374 0.196 1.830
9 2500 600 1 1.058 1.326 8.617 9.490 18.106 8.325 0.000 3.152 0.192 1.888
10 2500 760 1 1.113 1.417 9.640 6.377 16.016 10.246 0.257 3.715 0.193 1.811

2.2. Experimental Setup 1

Figure 2 shows experimental setup 1. Experimental setup 1 consisted of a He-Ne laser
used as the laser source; the laser beam was cleaned and expanded using a spatial filter
setup. The laser beam then fell onto the milled surface and was scattered, and this scattered
beam underwent interference which resulted in a laser speckle pattern.

This laser speckle pattern was captured using a CCD camera (JAI CV-M50, JAI, Japan)
fitted with a TV zoom lens (1:1.2/12.5–75) and an extension tube of size 20 mm. The viewing
direction of the CCD camera was placed normal to the machined surfaces. The images
were stored in Tag Image File Format (TIFF). The CCD camera and the machined surface
together could be rotated. Experiments were conducted for the combination of illumination
angle of the laser beam of 30◦, 45◦, and 60◦, and camera aperture sizes (f -number) of 4,
5.6, 8, 11, and 16. The CCD camera was fixed relative to the machined surface. Figure 3
shows the laser speckle pattern from experimental setup 1 for one of the machined surfaces.
Laser speckle images for each of the 10 machined surfaces were captured. The laser speckle
pattern image was 768 × 576 pixels and saved in TIFF format.
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Figure 2. Experimental setup 1.

Figure 3. Laser speckle pattern from experimental setup 1.

2.3. Experimental Setup 2

Because this is a continuation of the work reported by Jayabarathi and Ratnam [10],
experimental setup 2 was the same as that previously published. Experimental setup 2
is shown in Figure 4. As illustrated in Figure 4a,b, a laser beam from a commercial laser
pointer (LX1 by Legamaster, Ahrensburg, The Netherlands) with a 5 mm diameter red
laser dot, wavelength between 630 and 680 nm, and maximum output less than 1 mW,
was focused onto the sample at the necessary angle. The scattered beam underwent
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interference, resulting in a laser speckle pattern. The laser speckle pattern image of size
3872 × 2592 pixels was acquired using a Sony Camera DSLR-A230, Japan (image resolution
of 3872 × 2592 pixels) paired with an 18-55 mm smooth autofocus motor (SAM) Sony lens
and close up +8 lens, as illustrated in Figure 5. The lens was set to manual focus with a
focal length of 55 mm. The experiment apparatus was covered with black fabric to ensure
that no external lighting was present.
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Figure 5. Laser speckle pattern [10].

The laser speckle patterns obtained from all the ten milled surfaces were captured
at various combinations of the f -number and shutter speed setting of the camera. The
illumination angle of the laser pointer used was 30◦, 45◦, and 60◦, the f -number used were
8, 16, 22, and 32, while the shutter speeds used were 1/50, 1/100, 1/200, and 1/400 s,
resulting in 48 speckle pattern images. All experimental work and analysis were carried
out one time only.

2.4. Characteristic Features Extraction

In the case of experimental setup 1, using MATLAB 2021a software, the speckle pattern
image was cropped to a size of 51 × 51 pixels (maximum possible size) and converted from
an RGB image to a grayscale image. Figure 6 shows the cropped grayscale image for the
speckle pattern obtained for surfaces 1 to 10 at an illumination angle of 45◦ and f -number
of 8 for experimental setup 1.
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Figure 6. (a–j) The grayscale images of the laser speckle pattern image for each surface at an
illumination angle of 45◦, and f -number of 8.

In the case of experimental setup 2, using MATLAB 2021a software, the speckle pattern
image was cropped to a size of 101 × 101 pixels (maximum possible size) and converted
from an RGB image to a grayscale image. Figure 7 shows the cropped grayscale image for
the speckle pattern obtained for surfaces 1 to 10 at an illumination angle of 45◦, f -number
of 16, and shutter speed of 1/100 s for experimental setup 2.

The grayscale image was not subjected to any filtering process to avoid the loss of
data caused by filtering. Characteristic features based on the histogram, such as mean
intensity, root-mean-square intensity, energy, entropy, and texture-based parameters, such
as normalized roughness, and gray level co-occurrence matrix (GLCM)-based parameters,
such as maximum probability, correlation, contrast, energy, homogeneity, and entropy, were
extracted from the grayscale images. To differentiate the energy and entropy descriptors
that are obtained from histogram-based and GLCM-based parameters, energy and entropy
descriptors based on GLCM shall be addressed as energy (GLCM) and entropy (GLCM).
From the binary image, the white-to-black pixels ratio was obtained as a characteristic
feature. Coefficients of determination (R2) from the correlation study between the extracted
characteristic features and 3D surface roughness were evaluated.
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Figure 7. (a–j) Grayscale images of the laser speckle pattern image for each surface at an illumination
angle of 45◦, f -number of 16, and shutter speed of 1/100 s.

Equations (1)–(12) [10,27] that were used to extract the characteristic features from the
image are as follows:

• Histogram-based (statistical) features

◦ Mean

Mean of the gray value of the image m obtained from original image f(x,y) of size
M × N, given by Equation (1).

m =
1

MN

M−1

∑
x = 0

N−1

∑
y = 0

f (x, y) (1)

where f (x,y) is the gray value of the pixel at coordinate (x,y).

◦ Standard deviation

The standard deviation σ of an image is given by Equation (2).

σ =

√√√√ L−1

∑
j = 0

(
rj −m

)2 p
(
rj
)

(2)
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where

rj is the jth gray level;
L is the total possible gray level value;
p(rj) is the probability of occurrences of rj;
m is the mean of gray values of the image.

◦ Energy

The energy descriptor, which is also known as uniformity, measures how pixel values
are distributed, along with the gray level range, and can be calculated for the grayscale
image using Equation (3).

energy =
L−1

∑
j = 0

[
p
(
rj
)]2 (3)

where

rj is the jth gray level;
L is the total possible gray level value;
p(rj) is the probability of occurrences of rj.

◦ Entropy

The entropy descriptor provides information about the complexity of the image, as
given by Equation (4).

entropy = −
L−1

∑
j = 0

p
(
rj
)
log2

[
p
(
rj
)]

(4)

where

rj is the jth gray level;
L is the total possible gray level value;
p(rj) is the probability of occurrences of rj.

• Texture features

◦ The normalised descriptor of roughness

The normalised descriptor of roughness R is as given in Equation (5).

R = 1− 1

1 + σ2

(L−1)2

(5)

where

σ2 is variance;
L is the total possible gray level value.

• Gray level co-occurrence matrix (GLCM)

Histogram-based texture descriptors do not provide any information about the spatial
relationship among pixels. This information can be obtained using the gray level co-
occurrence matrix (GLCM). The matrix holds the information of the number of times pixels
with intensities ri and rj occur in image f (x,y) in the position specified by the displacement
vector (distance between two pixels d, and angle between the two pixels from horizontal,
θ). In this work, as in the MATLAB software, default values of the displacement vector and
orientation of d = 1 and θ = 0◦ were used. The matrix is normalized as given in Equation (6).

Ng (i, j) =
g(i, j)

∑i ∑j g(i, j)
(6)

where

Ng(i,j) is the normalized gray level co-occurrence matrix;



Sensors 2022, 22, 6003 9 of 18

g(i,j) is the element of the gray level co-occurrence matrix.

The following texture-based features are computed using a normalized GLCM, Ng(i,j).

◦ Maximum probability (GLCM) is given by Equation (7).

Maximum probability (GLCM) = max Ng(i, j) (7)

◦ Correlation (GLCM) is given by Equation (8).

Correlation (GLCM) =
∑i ∑j(i− µi)

(
j− µj

)
Ng(i, j)

σiσj
(8)

where

µi is the mean of the row sums of Ng(i,j);
µj is the mean of column sums of Ng(i,j);
σi is the standard deviation of row sums of Ng(i,j);
σj is the standard deviation of column sums of Ng(i,j).

◦ Contrast (GLCM) is given by Equation (9).

Contrast (GLCM) = ∑
i

∑
j
(i− j)2Ng(i, j) (9)

◦ Energy (GLCM) is given by Equation (10).

Energy (GLCM) = ∑
i

∑
j

N2
g(i, j) (10)

◦ Homogeneity (GLCM) is given by Equation (11).

Homogeneity (GLCM) = ∑
i

∑
j

Ng(i, j)
1 + |i− j| (11)

◦ Entropy (GLCM) is given by Equation (12).

Entropy (GLCM) = −∑
i

∑
j

Ng(i, j)log2Ng(i, j) (12)

• From the binary image, the following characteristic features were extracted:

◦ Total white pixels to total black pixels ratio (W/B).

3. Results and Discussion

Table 2 is the tabulation of R2 ≥ 0.7 for an illumination angle of 30◦ for experiment
setup 1. There are 38 correlations with an R2 ≥ 0.7. GLCM characteristic features account
for 11 of the 38 correlations, while non-GLCM characteristic features account for 27 of the 38.
Figure 8 shows the bar chart of the number of times a characteristic feature correlates with
R2 ≥ 0.7. A characteristic feature, R normalised, had 9 out of 38 correlations with R2 ≥ 0.7.
Figure 9 shows the bar chart of the number of times 3D surface roughness correlates with
R2 ≥ 0.7. The 3D roughness parameter S10z had 15 out of 38 correlations. Figure 10 shows
the bar chart of the number of times correlations with R2 ≥ 0.7 occurs for each f -number
setting. The camera setting with f -number 8 had 19 correlations with R2 ≥ 0.7. Maximum
probability (GLCM) vs. Sdr had the highest R2 of 0.8742.
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Table 2. Tabulation of the number of times a correlation between characteristic features and 3D
surface roughness occurs with R2 ≥ 0.7 for an illumination angle of 30◦ for experimental setup 1.

Characteristic Features
3D Surface Roughness Parameters

Sa Sq Sp Sv Sz S10z Ssk Sku Sdq Sdr

Correlation (GLCM).

Energy (GLCM) 1 1 1

Contrast (GLCM)

Entropy (GLCM) 1 3 2

Homogeneity (GLCM)

Maximum probability
(GLCM) 1 1 1

Mean

STD 1 4 1 1

Uniformity 1 1 2

Entropy 1 3 2

R normalised 1 4 2 2

Contrast

W/B

Figure 8. Bar chart showing the number of times a characteristic feature was involved in a correlation
with R2 ≥ 0.7 for an illumination angle of 30◦ for experimental setup 1.
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Figure 9. Bar chart showing the number of times a 3D surface roughness parameter was involved in
correlation with R2 ≥ 0.7 for an illumination angle of 30◦ for experimental setup 1.

Figure 10. Bar chart showing the number of times there was correlation with R2 ≥ 0.7 for each
f -number setting, for an illumination angle of 30◦ for experimental setup 1.

Table 3 is the tabulation of R2 ≥ 0.7 for an illumination angle of 45◦ for experiment
setup 1. It was found that there were 36 correlations with R2 ≥ 0.7. Of these, 11 out
of 36 correlations were GLCM characteristic features, and 25 out of 36 correlations were
non-GLCM characteristic features. Figure 11 shows the bar chart of the number of times a
characteristic feature correlates with R2 ≥ 0.7. The mean characteristic feature had 7 out
of 36 correlations with R2 ≥ 0.7. Figure 12 shows a bar chart of the number of times 3D
surface roughness correlates with R2 ≥ 0.7. The 3D roughness parameter S10z had 15 out
of 36 correlations. Figure 13 shows a bar chart of the number of times correlation with
R2 ≥ 0.7 occurs for each f -number setting. The camera setting with f -number 5.6 had
15 correlations with R2 ≥ 0.7. The highest R2 was for maximum probability (GLCM) vs.
Sdq, with R2 = 0.9297.
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Table 3. Tabulation of the number of times a correlation between characteristic features and 3D
surface roughness occurs with R2 ≥ 0.7 for an illumination angle of 45◦ for experimental setup 1.

Characteristic Features
3D Surface Roughness Parameters

Sa Sq Sp Sv Sz S10z Ssk Sku Sdq Sdr

Correlation (GLCM)

Energy (GLCM) 1 1 1

Contrast (GLCM) 1

Entropy (GLCM) 1 2

Homogeneity (GLCM)

Maximum probability
(GLCM) 1 1 1 1

Mean 2 1 4

STD 1 2

Uniformity 1 2

Entropy 1 2

R normalised 1 2 2 1

Contrast

W/B 1 1 1

Figure 11. Bar chart showing the number of times a characteristic feature involved in correlation with
R2 ≥ 0.7 for an illumination angle of 45◦ for experimental setup 1.
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Figure 12. Bar chart showing the number of times a 3D surface roughness parameter was involved in
correlation with R2 ≥ 0.7 for an illumination angle of 45◦ for experimental setup 1.

Figure 13. Bar chart showing the number of times correlation with R2 ≥ 0.7 occurred for each
f -number setting for an illumination angle of 45◦ for experimental setup 1.

Table 4 is the tabulation of the number of times a combination of correlation between
characteristic features and 3D surface roughness with R2 ≥ 0.7 occurred for an illumination
angle of 60◦ for experiment setup 1. It was found that there were a total of 82 correlations
with R2 ≥ 0.7. Of these, 39 out of 82 correlations were with GLCM characteristic features,
while 43 out of 82 correlations were with non-GLCM characteristic features. Figure 14
shows the bar chart of the number of times a characteristic feature correlates with R2 ≥ 0.7.
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The mean characteristic feature had 11 out of 82 correlations with R2 ≥ 0.7. Figure 15 shows
the bar chart of the number of times 3D surface roughness had a correlation with R2 ≥ 0.7.
The 3D roughness parameter S10z had 24 out of 82 correlations with R2 ≥ 0.7. Figure 16
shows the bar chart of the number of times correlations with R2 ≥ 0.7 occurs for each
f -number setting. The camera setting with f -number 5.6 had 30 correlations with R2 ≥ 0.7.
The highest R2 value was for maximum probability (GLCM) vs. Sdr, with R2 = 0.9384.

Table 4. Tabulation of number of times a correlation between characteristic features and 3D surface
roughness occurs with R2 ≥ 0.7 for an illumination angle of 60◦ for experimental setup 1.

Characteristic Features
3D Surface Roughness Parameters

Sa Sq Sp Sv Sz S10z Ssk Sku Sdq Sdr

Correlation (GLCM) 1 1 1

Energy (GLCM) 1 2 2 1 1

Contrast (GLCM) 1 1 1 1 1

Entropy (GLCM) 1 3 3 1 1

Homogeneity (GLCM) 2 1 2 1 1

Maximum probability
(GLCM) 1 3 1 1 1 1

Mean 2 4 3 1 1

STD 1 1 2

Uniformity 1 2 3 1 1 1

Entropy 1 3 3 1

R normalised 1 1

Contrast 1 1 1

W/B 2 2 2

Figure 14. Bar chart showing the number of times a characteristic feature was involved in correlation
with R2 ≥ 0.7 for an illumination angle of 60◦ for experimental setup 1.



Sensors 2022, 22, 6003 15 of 18

Figure 15. Bar chart showing the number of times a 3D surface roughness parameter was involved in
correlation with R2 ≥ 0.7 for an illumination angle of 60◦ for experimental setup 1.

Figure 16. Bar chart showing the number of times correlation with R2 ≥ 0.7 occurred for each
f -number setting for an illumination angle of 60◦ for experimental setup 1.

Table 5 is the tabulation of R2 ≥ 0.7 for an illumination angle of 30◦ for experiment
setup 2. It was found that there were two correlations with R2 ≥ 0.7 at the camera setting
with an f -number of 8 and shutter speed of 1/200 s. There was no correlation for non-GLCM
characteristic features. The only characteristic features with correlation were correlation
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(GLCM) and roughness parameters Sa and Sq, each having a correlation of 1 out of 2. The
highest R2 was for correlation (GLCM) vs. Sq, with R2 = 0.7438.

Table 5. Tabulation of R2 ≥ 0.7 for an illumination angle of 30◦ for experimental setup 2.

S. No. Correlation R2 Camera Setting

1 Correlation (GLCM) vs. Sa 0.7354 f -number 8, shutter
speed 1/200 s2 Correlation (GLCM) vs. Sq 0.7438

Table 6 is the tabulation of R2 ≥ 0.7 for an illumination angle of 45◦ for experimental
setup 2. It was found that there were 19 correlations with R2 ≥ 0.7. An f -number of 8 with a
shutter speed of 1/50 s had two correlations with R2 ≥ 0.7. An f -number of 16 with a shutter
speed 1/100 s had eight correlations with R2 ≥ 0.7. An f -number of 22 with a shutter speed
of 1/100 s had two correlations with R2 ≥ 0.7. An f -number of 22 with a shutter speed
1/200 s had seven correlations with R2 ≥ 0.7. In total, 13 out of 19 correlations were GLCM
characteristic features, and 6 out of 19 correlations were non-GLCM characteristic features.
The correlation (GLCM) characteristic feature had 4 out 19 correlations, and roughness
parameters Sp and Sz each had 4 out of 19 correlations. The highest R2 is for energy (GLCM)
vs. S10z, with R2 = 0.8955.

Table 6. Tabulation of R2 ≥ 0.7 for an illumination angle of 45◦ for experimental setup 2.

S. No. Correlation R2 Camera Setting

1 Entropy (GLCM) vs. Sa 0.8208
f -number 8, shutter speed 1/50 s

2 Entropy (GLCM) vs. Sq 0.7352

3 Energy vs. Sp 0.7347

f -number 16, shutter speed 1/100 s

4 Energy (GLCM) vs. Sp 0.7202

5 Energy vs. Sz 0.7015

6 Entropy vs. Sz 0.7354

7 Entropy (GLCM) vs. Sz 0.7565

8 Homogeneity (GLCM) vs. Sz 0.7704

9 Energy vs. S10z 0.8916

10 Energy (GLCM) vs. S10z 0.8955

11 W/B vs. Sdq 0.8151
f -number 22, shutter speed 1/100 s

12 W/B vs. Sdr 0.8294

13 Contrast (GLCM) vs. Sa 0.749

f -number 22, shutter speed 1/200 s

14 Correlation (GLCM) vs. Sa 0.806

15 Contrast (GLCM) vs. Sq 0.7358

16 Correlation (GLCM) vs. Sq 0.8148

17 Contrast (GLCM) vs. Sp 0.7368

18 Correlation (GLCM) vs. Sp 0.8403

19 Correlation (GLCM) vs. S10z 0.7316

Experimental setup 1 had correlations with R2 ≥ 0.7 at illumination angles of 30◦,
45◦and 60◦, whereas experimental setup 2 had correlations with R2 ≥ 0.7 only at illumina-
tion angles of 30◦ and 45◦. In the case of experimental setup 1, there were more non-GLCM
characteristic features compared with GLCM characteristic features. The mean character-
istic feature had more correlations with R2 ≥ 0.7 for illumination angles of 45◦ (7 out of
36 correlations) and 60◦ (11 out of 82 correlations), and R-normalized had more correlations
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with R2 ≥ 0.7 in the case of illumination angles of 30◦ (9 out of 38 correlations). Roughness
parameter S10z had more correlation with R2 ≥ 0.7 for all of the illumination angles (15 out
of 38 correlations for angle 30◦, 15 out of 36 correlations for angle 45◦, and 24 out of 82
correlations for angle 60◦) in the experimental setup 1. For experimental setup 2, correlation
(GLCM) characteristic features had more correlations with R2 ≥ 0.7 (2 out of 2 correlations
for an illumination angle of 30◦, and 4 out of 19 correlations for an illumination angle of 45◦).
Roughness parameters Sa and Sq had more correlations with R2 ≥ 0.7 for an illumination
angle of 30 (1 out of 2 correlations each), and Sp and Sz had more correlations with R2 ≥ 0.7
for an illumination angle of 45 (4 out of 19 correlations each) for experimental setup 2. The
reason for better correlation using experimental setup 1 compared to experimental setup 2
could be due to the expansion of the laser beam, which reduced the intensity of the laser
beam that fell onto the surface. In this way, pixel saturation can be avoided. Another reason
could be due to cleaning the laser beam of noise using a spatial filter.

4. Conclusions

From the results, it can be seen that there are good correlations between characteristic
features and 3D surface roughness in both the experimental setups. Experimental setup 1
gives a better correlation compared to experimental setup 2. In the case of experimental
setup 1, all the illumination angles had correlations with R2 ≥ 0.7, and in the case of
experimental setup 2, there were no correlations in the case of an illumination angle of
60◦. The illumination angle of 60◦ gave the highest number of correlations with R2 ≥ 0.7
in the case of experimental setup 1 (82 correlations), and the illumination angle of 45◦

gave the highest number of correlations with R2 ≥ 0.7 in the case of experimental setup 2
(19 correlations). Mean characteristic features had more correlation with R2 ≥ 0.7 in the
case of an angle of illumination of 45◦ and 60◦, and R normalized characteristic features
had more correlation with R2 ≥ 0.7 in the case of an angle of illumination of 30◦ for
experimental setup 1. Correlation (GLCM) had more correlation with R2 ≥ 0.7 in the
case of experimental setup 2. Roughness parameters Sa and Sq had more correlation with
R2 ≥ 0.7 for an illumination angle of 30◦, and Sp and Sz had more correlation with R2 ≥ 0.7
for an illumination angle of 45◦ in the case of experimental setup 2. A spatial filter that
cleans the laser beam and then expands the cleaned beam could be the reason for the better
result in the case of experimental setup 1. Previous works focus more on correlation studies
involving 2D roughness parameters, while current work is focused on the correlation
involving 3D surface roughness and characteristic features extracted from the laser speckle
pattern. The current work shows that although experimental setup 1 gives better results
compared to experimental setup 2, experimental setup 2 uses inexpensive components
and is simple compared to experimental setup 1, and there is room for improvement in
future work whereby the experimental setup 2 should be carried out by replacing the DSLR
camera with a webcam. The novelty of this work is that it is (1) a correlation study between
3D surface roughness and speckle pattern using a He-Ne laser and spatial filter; and (2) a
comparison study between two experimental setups on the correlation between 3D surface
roughness and speckle pattern.
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