
����������
�������

Citation: Zhu, Y.; Li, B.; Yang, Y.;

Ding, Z.; Zheng, H.; He, G.; Hou, S.

Distributed Random Beacon for

Blockchain Based on Share Recovery

Threshold Signature. Sensors 2022, 22,

6004. https://doi.org/10.3390/

s22166004

Academic Editor: Juan M. Corchado

Received: 29 June 2022

Accepted: 4 August 2022

Published: 11 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Distributed Random Beacon for Blockchain Based on Share
Recovery Threshold Signature
Yan Zhu 1 , Bingyu Li 1 , Yang Yang 1, Zhenyang Ding 1, Haibing Zheng 2, Guangyu He 3,4 and Shengjie Hou 5,*

1 School of Cyber Science and Technology, Beihang University, Beijing 100191, China
2 Hangzhou Innovation Institute, Beihang University, Hangzhou 310051, China
3 Neusoft Corporation, Shenyang 110179, China
4 Liaoning Blockchain Engineering Technology Research Center, Shenyang 110179, China
5 National Innovation Institute of Defense Technology, Academy of Military Sciences, Beijing 100071, China
* Correspondence: houshengjiework@sina.com

Abstract: Random beacons play a crucial role in blockchains. Most random beacons in a blockchain
are performed in a distributed approach to secure the generation of random numbers. However,
blockchain nodes are in an open environment and are vulnerable to adversary reboot attacks. After
such an attack, the number of members involved in a random number generation decreases. The ran-
dom numbers generated by the system become insecure. To solve this problem while guaranteeing
fast recovery of capabilities, we designed a threshold signature scheme based on share recovery.
A bivariate polynomial was generated among the participants in the distributed key generation phase.
While preserving the threshold signature key share, it can also help participants who lost their shares
to recover. The same threshold setting for signing and recovery guarantees the security of the system.
The results of our scheme show that we take an acceptable time overhead in distributed key genera-
tion and simultaneously enrich the share recovery functionality for the threshold signature-based
random number generation scheme.

Keywords: random beacon; blockchain; bivariate polynomial; threshold signature; share recovery

1. Introduction

Distributed randomness has played a crucial role since the birth of blockchain technol-
ogy. In the classic Nakamoto consensus, the winner of the consensus would be inseparable
from the generation of publicly verifiable randomness, which is calculated by a hash
function. The verifiability of public randomness allows the verifier to quickly determine
the validity of the solution to the proof-of-work puzzle.

As blockchain technology evolves, many excellent protocols are being devised. Dis-
tributed randomness generation remains a significant protocol component of these pro-
tocols. Blockchain protocols that incorporate distributed random beacons as protocol
components mainly include proof-of-stake (PoS) consensus [1], leader [2], and committee
selection [3] of a Byzantine fault tolerant (BFT) consensus [4], blockchain sharding [5],
anonymous selection [6], etc.

The development of blockchain technology has also contributed to the development
of the direction of generating distributed randomness by relying on cryptography primi-
tives. Threshold signature (TSS) [3], verifiable delay function(s) (VDF) [7], publicly veri-
fiable secret sharing (PVSS) [8], verifiable random function (VRF) [9], and homomorphic
encryption (HE) [10] are essential instruments for constructing distributed random bea-
cons. The design of distributed random beacons has also become the focus of designing
an optimized blockchain protocol [11].

Secure distributed random beacons are expected to consistently generate publicly
verifiable, unpredictable, bias-resistant randomness. However, distributed randomness
generation participants are in open networks. Participants may be subject to attacks

Sensors 2022, 22, 6004. https://doi.org/10.3390/s22166004 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22166004
https://doi.org/10.3390/s22166004
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-8410-1033
https://orcid.org/0000-0001-5925-1638
https://doi.org/10.3390/s22166004
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22166004?type=check_update&version=1

Sensors 2022, 22, 6004 2 of 18

by active adversaries [12]. The active adversary may restart the honest random beacon
protocol participants. Then the honest participants under such an attack will lose the ability
to participate in the protocol, which in turn compromises the security of the randomness
generation. Further, it poses a significant threat to the blockchain system. Malicious
adversaries can arbitrarily control the output of random numbers. This attack behavior
eventually leads to blockchain systems becoming untrustworthy [13].

The group of participants involved in randomness generation in the blockchain is
in the public network. The adaptive adversary can corrupt participants in the group.
The adversary can adaptively destroy a limited number of nodes over a while. Active
adversaries restart the nodes, causing them to lose stored information and thus the ability
to participate in random number generation. Therefore, a method that can help participants
regain the ability to generate random numbers while ensuring the security of random
number generation needs to be considered in the design of distributed random beacon.

Typically, in a random beacon protocol employing threshold signatures, an active
adversary may launch an attack on the participants, causing it to lose its own key share.
After suffering such an attack, the participants can no longer participate in the threshold sig-
nature generation process [14]. This dramatically reduces the security requirements against
the bias-resistance initiated by the adversary on the randomness [3], and the adversary
can readily gain profit in the protocol [15]. Active adversaries have the ability to interfere
with the generation of random numbers. Ultimately, this attack leads to the generation
of random numbers becoming insecure.

In this work, a share recovery threshold signature scheme is proposed for the above
adversary attack scenario. After a participant is subjected to an active adversary attack,
it can restart to obtain the correct share with the assistance of other honest nodes and,
thus, continue to receive the randomness generation capability. Our proposed scheme
utilizes the dual homogeneous asymmetric polynomial. One dimension of the polynomial
is employed for the threshold signature. Another dimension of the polynomial is used
to help participants who suffer from active adversary attacks to recover the lost key share.
After a theoretic analysis and experiment evaluation, the presented random beacon scheme
can guarantee the properties of bias resistance, unpredictability, and public verifiability
of randomness.

The main contributions of this paper are as follows.

1. Secure. After the execution of the key generation, the participants have a signature key
share and a binary polynomial to assist other participants in recovering the private key
share. A dual homogeneous asymmetric polynomial scheme can prevent the adver-
sary from recovering the secret information below the threshold range. The remaining
participants can help the lost share participant to recover the private key share by
simply issuing lightweight information.

2. Robust. Robust threshold signature schemes are devised. The share recovery mecha-
nism for the threshold signature can be employed to help participants who have lost
their key shares recover them. The perfection of the threshold signature key recovery
function effectively prevents active adversary attacks and enhances the availability
and bias-resistance of the random beacon.

3. Trustworthiness. The process of key generation is performed in a way. The random
number generation process does not have any trusted participants. Our proposed
scheme addresses the challenge of the dual homogeneous asymmetric polynomial
generation.

The rest of this paper is organized as follows. In Section 2, we describe the related work
on the distributed randomness beacon. In Section 3, we present the preliminaries of our pro-
tocol. Section 4 describes the system model and an overview of our robust distributed bea-
con. In Section 5, we describe the robust distributed beacon in detail and analyze its correct-
ness and security. Section 6 presents our prototype implementation and evaluation results.
In Section 7, we present our conclusions.

Sensors 2022, 22, 6004 3 of 18

2. Related Work

Blum’s two-node coin tossing protocol [16] can be considered the beginning of the dis-
tributed random beacon research. Since then, a series of technical approaches to distribute
random beacons using different models have been introduced [17–19]. This paper focuses
on the random number generation solutions adopted in the blockchain. Recovering lost
key shares is another important topic of discussion in this paper. Key share recovery has
been a hot topic in recent research. We also present the state-of-the-art research advances in
share recovery.

2.1. Simple Approach

The most straightforward approach to obtaining a random beacon is to rely on a public
organization or a single node, such as NIST [20], Oraclize.it (accessed on 20 June 2022), [21]
and Random.org (accessed on 20 June 2022) [22]. However, the above-described methods
may have the risk of backdoor embedding. Blockchain technology completes the trust
establishment between peer-to-peer nodes and should not be powered by random external
beacons to provide randomness.

2.2. Distributed Randomness Beacon

As mentioned above, distributed random beacons play a crucial role in the secure
operations of blockchain protocols. The academic community is filled with research on dis-
tributed random beacons. In this section, we summarize the design of distributed beacons
in blockchain by classifying them according to cryptography techniques.

• Threshold signature-based randomness beacon.
The core of the threshold signature [23] is to split the secret private key information
into multiple participant scenarios, thus achieving multi-party confirmation. In the
normal (t, n) threshold signature scheme, n denotes the total number of participants
and t is the threshold value for obtaining a valid signature. When any t (or more than t)
participants sign the same message, the signature of the community for this message is
obtained. However, any less than t participants (e.g., t− 1) are unable to obtain a valid
signature. Eventually, any participant can verify the correctness of the signature using
the public key. The unpredictable and unique property of the result of the threshold
signature is an excellent random beacon. DFINITY is a typical project in blockchain
research that employs threshold signatures as a random source [3]. Participants are
randomly assigned to different committee members based on the random number
set in the genesis block. A distributed key generation algorithm is run within each
committee to generate the private key share of each participant and the verified pub-
lic key of the committee. The committee members adopt the last round of random
numbers as messages and generate a BLS signature [24]. Each participant who collects
a valid signature share that satisfies the threshold can recover a unique valid signature.
The uniqueness of the threshold signature guarantees that the correct signature recov-
ered by all nodes is the same for all participants. There is no divergence in the final
signatures due to the different selected sets of signature shares. The final signatures
are treated as inputs of the VRF to obtain randomness for this round.

• Verified random function-based randomness beacon.
Verified random functions have evolved from the pseudorandom oracle [25]. The
pseudorandom oracle enables the input of an initial seed s that can map a random
sequence of a bit-lengths to a pseudorandom sequence of b bit-lengths. The output
pseudorandom sequence is indistinguishable in polynomial time from the b bit-length
random sequence. The pseudorandom oracle cannot be employed as a distributed ran-
dom beacon because the randomness of the random output sequence is not verifiable.
Goldreich et al. [26] proposed a verifiable random function to address this issue. For
input x, the output of the verified random function cannot be computed in polynomial
time, and the correctness of the output can be verified. In the blockchain protocol
research, Ouroboros Praos [1], Algorand [4], RandChain [27], and DFINITY [3] use this

Oraclize.it
Random.org

Sensors 2022, 22, 6004 4 of 18

component as part of the protocol. In a recent study, two verified random functions
were proposed and analyzed by strict cryptography; the random numbers they output
had strong bias-resistance and pseudo randomness properties.

• Verified delay function-based randomness beacon.
Boneh et al. [7] proposed a technique called the verifiable delay function. During
the computation of the function, multiple processors cannot be in parallel to obtain
the result faster. A predetermined amount of time must elapse before the calculator
obtains the result. Moreover, the result of the computation can be verified relatively
rapidly [28]. This feature makes it impossible for the calculator to predict the outcome,
so the final output is unpredictable randomness. Later, Lenstra and Wesolowski
proposed a slow-time hash function sloth to construct a verified delay function that
allowed multi-participant input (outputting a random result). This makes the verified
delay function a better distributed random beacon. RANDAO [29] is an Ethereum
smart contract based on a verified delay function. Participants submit their local
randomness to the smart contract. After calculation, the smart contract outputs global
randomness.

• Public verified secret sharing-based randomness beacon.
Classical secret-sharing schemes share a secret message among a group of partic-
ipants, with a specified number of authorized users participating to recover it by
a specific method. With large-scale applications, the verification of the correctness
of the secret share becomes an important issue. Both the shares given by the dealer
to the participants and the shares used by the participants for reconstruction can
be incorrect, resulting in the secrets not being reconstructed. The proposal of ver-
ifiable secret sharing ensures that the correctness of shares can be verified before
the dealer and the participant. Feldman’s verifiable secret-sharing [30] scheme pro-
vides verifiability, correctness, and privacy. Stadler [31] proposed publicly verifi-
able secret sharing. Any arbitrary user in the system can verify the correctness
of the share by available information. The publicly verifiable feature makes pub-
licly verifiable secret sharing an essential component of distributed random beacon.
Distributed random beacon schemes based on verifiable secret-sharing constructs are
popularly employed in the blockchain. The following is an example of Ouroboros,
which describes the general working process of publicly verifiable secret sharing.
However, this orientation is not the primary focus of the article’s research. Random-
ness generation in Ouroboros consists of two phases: commit and open. In the commit
phase, participants encrypt the shared information by running PVSS. The participants
submit the communicated information on the blockchain. In the open phase, each
participant decrypts all of the encrypted shares using the public key. Then, each
participant uses the decrypted shares to compute a local random value, publishing
it to the blockchain. Finally, the beacon output is calculated by performing an XOR
operation on all published local random values. Recently, Bhat [32] proposed OptRand
based on PVSS. OptRand employed PVSS and non-interactive zero-knowledge proofs
to build a linear size publicly verifiable random sharing.

• Decentralized randomness from the blockchain.
The blockchain itself has a lot of randomnesses. The collection of arbitrary transactions
in the block and the unpredictability of signatures of transactions are potential sources
of randomness [33]. Although there are some applications in lottery gaming, the proof
of bias resistance for these protocols is a difficult challenge to cross.

2.3. Share Recovery

The study of share recovery has been a key topic of research in the field of secret
sharing. The research focuses on two aspects. One is the scenario under active adversary
attack, where the adversary reboots the participant, resulting in the loss of key share.
The second is in asynchronous verifiable secret sharing. There is an issue pertaining to

Sensors 2022, 22, 6004 5 of 18

how to overcome the problem that some participants do not receive the secret share due
to the transmission delay.

• Verified secret sharing with share recovery.
In active adversary attack research, the key consideration of the share recovery scheme
is not to give the recoverer the ability to reconstruct the secret. The earliest research
traces back to Herzberg [12]. They proposed a scheme in which proactive secret
sharing was used. However, the complexity of the scheme was high; the remaining
nodes needed to generate a polynomial for the recovery node and the communication
complexity was similar to the distributed key generation. A similar scheme was used
in MPSS [34] in combination with the PBFT consensus process. The key recovery
process was applied to prevent new group members from gaining access to the key
while they gained access to key shares. Adversary capability in our research followed
Herzberg’s study. In this work, a more efficient scheme was proposed. The remaining
participants did not generate independent polynomials for shares. In another class
of studies, a single secret sharing could contain multiple secrets by batching the secret
sharing [35]. The overhead of average communication complexity was reduced in this
way. Recently Basu [36] proposed the use of a distributed pseudorandom function
(DPRF) for efficient secret sharing. The DPRF was used as a mask for the original
polynomial share, and the key recoverer i could remove the value taken by the DPRF
at i. The share was recovered efficiently by the above approach.

• Asynchronous verified secret sharing.
The first practical verifiable secret sharing scheme was proposed by Cachin [37]. This
scheme uses a binary polynomial S(x, y) where each participant i obtains S(i, x) and
S(y, i). If a participant loses a share, it can be recovered by f + 1 evaluations S(i, x)
and f + 1 evaluations S(y, i). The recovery process requires O(n2) communication
overhead. The asynchronous network assumption model in blockchain becomes
a priority consideration. The asymmetric bivariate polynomial (k− 1, f) was used
in the HAVSS [38] scheme proposed by Kogias. Asymmetric bivariate polynomial k− 1
dimension is employed as the key recovery. Alhaddad proposed the use of a “two-
layer secret sharing” scheme, HAVEN [39]. The trusted dealer constructs a degree
f polynomial R(x) of secret R(0). Then for each share R(i), a polynomial degree f
polynomial Q(x) is constructed (Q(0) = R(i)). Although the above asynchronous
verifiable secret sharing has a different purpose than our secret recovery scheme,
it provided us with a lot of inspiration.

Based on the above study on share recovery, our comparison of the share recovery
scheme is shown in Table 1.

Table 1. Comparison of the existing share recovery protocol.

Scheme Polynomial Comm. Cost Trust Setup

Cachine Bivariate symmetric polynomial O(n2) %
HAVEN Two-layer polynomial O(n) %
HAVSS Asymmetric bivariate polynomial O(n) %

Basu Polynomial+DPRF O(n) !

Our scheme Homogeneous bivariate
polynomial O(n) %

3. Preliminaries

In this section, we introduce the cryptographic preliminaries used in our scheme.

Sensors 2022, 22, 6004 6 of 18

3.1. BLS Signature

The most well-known threshold signature scheme is the pair-based threshold signature
scheme [24]. The BLS signature consists of Setup, KeyGen, SigGen, and Verification—four
polynomial algorithms.

• Setup. The BLS signature uses bilinear pairing with a non-degenerative property. Gap
Diffie–Hellman groups G1,G2 of suitable elliptic curve points with values in a group
of units GT . For each group, set the generator g1 ∈ G1, g2 ∈ G2, gT ∈ GT . The BLS
signature also needs a hash function H1 : {0, 1}∗ → G1 with values in G1.

e : G1 ×G2 → GT (1)

• KeyGen. Generate a secret key and public key based on the parameters chosen in the
setup phase.
Step 1: select a random integer x as the secret key in group G1.
Step 2: compute the public key Y = gx

1 .
• SigGen. Sign a message m by the key generated in the KeyGen phase.

Step 1: compute the hash value H1(m) of the message.
Step 2: compute the signature of the message using the secret key x.

s = H1(m)x (2)

• Verification. Verify the correctness of the signatures s generated in the SigGen phase.
Verify: the signature is only valid if the following equation holds.

e(g1, s) = e(y, H1(m)) (3)

Proof of Correctness: the above equation can verify the correctness of the signature
for the following reason.

e(g1, s) = e(g1, H1(m)x) = e(gx
1 , H1(m)) = e(y, H1(m)) (4)

3.2. Threshold BLS Signature

Boldyreva [23] proposed a well-known threshold BLS signature. Our scheme utilizes
the same threshold signature scheme as DFINITY.

• Setup. In the threshold BLS signature, the set of n participants {P1, . . . , Pn} along with
the secret key set (x1, . . . , xn) are used as the (t, n)-threshold Shamir secret sharing
of the value s. In this set, any k ≤ t values from this key set cannot reveal any
information about x. There exists the Lagrangian interpolation algorithm, which
takes as input any t, or more values from this key set can output x. This algorithm is
expressed as:

(t, n) secret sharing{P1, . . . , Pn} : (x1, . . . , xn)
(t,n)−→ x.

The secret set (x1, . . . , xn) corresponds to the public key set (y1, . . . , yn). The public
key set (y1, . . . , yn) and x corresponding y are available to all participants.

• SigshareGen. Participants {P1, . . . , Pn} sign a message m by the key generated in
the KeyGen phase.
Step 1: participants compute the hash value H1(m) of the message.
Step 2: participants {P1, . . . , Pn} compute the signature of the message using their
own secret key xi where i ∈ [1, n] :

si = H1(m)xi (5)

The participant calculates the share of signatures and broadcasts it to the other
participants.

Sensors 2022, 22, 6004 7 of 18

• Sigreconstruction.
Step 1: After obtaining the signature shares of others, participants {P1, . . . , Pn} verify
the correctness of si). The verification process uses the same equation as the BLS
signature above. The correctness of the equation is the same as the verification
of the correctness of the BLS signature. The above signature correctness verification is
passed and the signature reconstruction operation is performed.
Step 2: any t + 1 or more correct shares of subset R compute the signature:

s = Πi∈R

(
sLi

i

)
(6)

where Li is the appropriate Lagrange coefficient for the correct signature share set.
• SigVerification.Verify the correctness of the signatures s generated in the Sigrecon-

struction phase. This phase is the same as the BLS signature.
Verify: the signature is only valid if the following equation holds.

e(g1, s) = e(y, H1(m)) (7)

Proof of Correctness: the above equation can verify the correctness of the signature
for the following reason.

e(g1, s) = e(g1, H1(m)x) = e(gx
1 , H1(m)) = e(y, H1(m)) (8)

3.3. Decentralized Key Generation

To implement a threshold signature key generation system between participants, the
distributed key generation phase needs to be applied. In order to implement the recovery
of the lost key shares, our scheme improves on the existing basic protocol. Improvements
of the distributed key generation are described in detail in Section 5.

• Setup. In the setup phase, some public parameters were created.
Gq is the subgroup of Fp of the order q, where p, q are both large primes, q divides
p− 1, and g is the generator of Fp. Our scheme denotes a group of n participants
as {P1, . . . , Pn}.

• KeyGen. The threshold public key y is constructed by the share public keys of all
members.
Step 1: Pi computes its share public key yi = gxi .
Step 2: Pi broadcasts a commitment Ci = C(xi) to all participants.
Step 3: every participant computes the public key y = ∏n

i=1 yi. y can verify the cor-
rectness of the reconstructed signature; thus, the threshold secret key x = ∑n

i=1 xi.
• Broadcast. Pi shares its own generated polynomial fi(z) to all of the participants

without revealing the coefficients.
Step 1: construct a random polynomial fi(z) ∈ Zq of degree t, such that the secret key
xi = fi(0). Let

fi(z) = fi0 + fi1z + . . . + fi,tzt (9)

where fi0 = xi.
Step 2: compute commitment Cij = g fij , where j = 0, 1, . . . , t.
Step 3: broadcast (Cij)j=0,1,...,t and sij = fi(j) to other participants. At this time,
Ci0 = yi.

• Verification. Pj verifies the correctness of sij sent from Pi.
Step 1: Pi computes sij = fi(j) = fi0 + fi1 j + . . . + fi,n jt.
Step 2: Pi sends xij with the corresponding signature to Pj through a secure channel
Step 3: Pj verifies the signature and then checks the correctness by the following
equation.

gxij =
t+1

∏
m=0

(Cil)
jm (10)

Sensors 2022, 22, 6004 8 of 18

If the condition is not satisfied, the interaction will end. The subsequent interaction
in the above case is an interesting issue, but not the focus of this paper. Moreover, Pj
will broadcast the error to all members.

• Reconstruction. By defining f (z) = f1(z) + f2(z) + . . . + fn(z), Pi could compute
si = ∑n

j=1 sij = f (i). Thus si is a share of f (0) = x.
Pi computes its share si = ∑n

j=1 sji where sji is received from other j participants and its
own sii. Afterward, si can be used as the private key share of the threshold signature.

3.4. Verifiable Random Function

The verifiable random function is the final progress of our scheme to generate ran-
domness. A verifiable random function is defined as a tuple of the following algorithms.

• KeyGen. Input value r; the algorithm generates a secret key sk and an output verifica-
tion key vk.

• Eval. The evaluation algorithm produces a pseudorandom output R, the output
corresponding proof π on input sk, and a message m.

• Verify. Verify the algorithm outputs 1 if and only if the output produced by the
evaluation algorithm is R and is verified by the proof π given the verification key vk
and the message m.

4. Decentralized Random Beacon Committee for Blockchain

In this section, an overview of the random beacon committee for blockchain is pre-
sented, including the application scenario, system architecture, and security properties.

4.1. Application Scenario

Random beacon committees can be very instrumental for blockchain. DFINITY uses
this approach to assign different participants to different committees. However, members
of the committee may be attacked by active adversaries. Active adversaries launch reboot
attacks against some of these members. Members lose their secret share, which in turn
leads to the loss of the ability to participate in randomness generation. This eventually
results in the random number output of the committee becoming insecure. The adversary
can easily influence the entire committee. Ultimately, the above attack behavior leads
to the generation of biased randomness.

Addressing this issue allows for capacity enhancements to the existing blockchain. On
the one hand, the key recovery process requires a straightforward process. Share recovery
for any one participant does not cause all nodes to change. The scenario for share recovery
should be provisioned during protocol initialization. On the other hand, the components of
the system cannot have a trusted third party. Therefore, the design of our protocol focuses
on the design of polynomials that initialize the decentralized key generation.

4.2. System Architecture

The randomness generation beacon committee for blockchain consists of three sub-
modules: blockchain participant, decentralized random beacon committee, and blockchain
system. The system architecture is depicted in Figure 1.

• Blockchain participants are the base members of the blockchain. They are composed of
different committees for normal transaction validations according to the randomnesses
generated by the random number committee. The participants perform the basic
processes of transaction initiations, confirmation, and consensus of the blockchain.

• The decentralized random beacon committee is the core of the system. Committee
members run the distributed key generation. After the key generation, the committee
members run the distributed threshold signature scheme and output the threshold
signature shares. After the signature share reconstruction process, the final signa-
ture is an output. It is worth noting that the reconstructed signatures are verified
for correctness by the public key and then a consistent threshold signature is an output.
The final threshold signature is input to the verifiable delay function to output the final

Sensors 2022, 22, 6004 9 of 18

random number. The random number obtained by the committee is used to determine
the committee composition of the participants for the next round.

• The blockchain system records the transactions in which the nodes operate normally.
Meanwhile, the randomness generated in a round is recorded in each block in order
to implement the next round of randomness generation. This random number is used
in the next round of signed messages to generate randomnesses.

Figure 1. The architecture of our scheme.

4.3. Security Properties

The randomness generation beacon committee for blockchain that we proposed was
designed to achieve the following property requirements. For the unpredictability, bias-
resistance, public verifiability, and availability properties, we refer to the excellent work
by Raikwar [11]. The following mathematical formulas are referenced from the work by
Raikwar. The recovery property was due to the new security requirements brought about
by our solution design. In the following, definition λ is a security parameter and negl(λ) is
a negligible function of λ.

• Unpredictability. Let A{s1, . . . , se}, ste) be a probabilistic polynomial time algorithm
that receives secret shares s1, . . . , se where (e ≤ t) and the current state statee as the in-
put values. Let A output the a value se+ f for any value (future rounds) f ≥ 2, and
for all rounds e ≥ 1. The following relation is satisfied.

Pr
[
A(s1, . . . , se, statee) = se+ f

]
≤ negl(λ) (11)

• Bias resistance. Let Ai(s1, . . . , se−1 , statee−1) for i = 1, . . . , e where (e ≤ t) be proba-
bilistic polynomial time algorithms that receive the values v1, . . . , ve−1 and the current
statee−1 as input and output one bit: 0 or 1. Let bit i(se) denote the i-th bit in the binary
representation of se, let b = |se| be the number of bits of ve. Then, for every e ≥ 1,
every Ai(), and for all (i = 1, . . . , e).

Pr[biti(se) = Ai(s1, . . . , se−1, statee−1)] ≤
1
2
+ negl(λ) (12)

• Public verifiability. Verify() as a public probabilistic polynomial time algorithm run
by an external randomness verifier. The verifier at the end of round e receives ve, πe

Sensors 2022, 22, 6004 10 of 18

and the statee−1 as input values, and outputs a bit 0 or 1 based on the verification of ve
using πe. Then, for every round e ≥ 1.

Pr[Verify(ve, πe, statee−1) 6= 1] ≤ negl(λ) (13)

• Availability. Let A be an adversary controlling a fraction of participants and Ph ⊆ P
be a set of honest participants in the decentralized randomness beacon protocol.
The number of Ph is more than t + 1. Given ve, πe, params and statee−1, for every
round e ≥ 1 and for every participant Pi ∈ Ph.

Pr[UpdateState (statee−1, params, ve, πe) 6= statee] ≤ negl(λ) (14)

• Recovery. Let A be an adaptive adversary rebooting a fraction of participants and
Pd ⊆ P be a set of dishonest participants in the decentralized randomness beacon
protocol. The number of Pd is less than t. Given ve, πe, params, and statee−1, for every
round e ≥ 1 and for every participant Pi ∈ Ph.

Pr[UpdateState (ste−1, params, ve, πe) 6= statee] ≤ negl(λ) (15)

5. Decentralized Random Beacon with Share Recovery Threshold Signature

In this section, we present a process description of the decentralized random beacon
with the share recovery threshold signature, including the system definition and construc-
tion. Then we give the correct analysis and security analysis of the proposed scheme.

5.1. System Definition

A share recovery threshold signature mainly consists of the following six algorithms:
setup, distributed key generation, share recovery, threshold signature, signature verification,
and randomness generation.

• Setup. This step runs to initialize the scheme. It takes as input a security parameter 1k,
and outputs the system public parameter params.

• Decentralized key generation. Decentralized random beacon committee members
{P1, . . . , Pn} take public parameters params as input and run this step to generate
their own key share {Mski(i = 1, · · · , n)}, recovery polynomial Ri(i, y), and public
signature verification key Cpk.

• Share recovery. Once a participant pi of the committee loses his share of the key,
the rest of the participants assist him in recovering the key share. Other participants
send Ri(x, i) to pi. After receiving more than t + 1 recovery shares, he can recover
the signature shares Mski himself.

• Threshold signature. {P1, . . . , Pn} participants take as the input the system public
parameters params and the message recorded in the last round block m; they share
their own key share (Mski, i = 1, · · · , n) and output threshold signature σ.

• Signature verification. Committee members {P1, . . . , Pn} verify the validity of the sig-
nature σ. It takes as the input the system public parameters params, message m,
signature σ, the shared signature verify public key Cpk, and the output 1 if and only
if the unique signature is valid (otherwise outputs 0).

• Randomness generation. The unique verified signature σ is entered into the verifiable
random function for the calculation. The output of the randomness calculation and
the evidence πe of the calculation are stored in the block of the current round.

5.2. Random Beacon with Share Recovery Threshold Signature Construction

• Setup. This involves the gap Diffie–Hellman groups G1,G2 of suitable elliptic curve
points with values in a group of units GT . For each group, we set the generator,
g1 ∈ G1, g2 ∈ G2, gT ∈ GT . Their relationship e satisfies Equation (3). A one-way
hash function H1 : {0, 1}∗ → G1 with values in G1. E is an elliptic curve over Fq. g is
a generator on the curve E and its order is prime q. We also need the same as DFINITY

Sensors 2022, 22, 6004 11 of 18

[5] to calculate the obtained threshold signature eventually to the VRF. So, we need
the committee’s VRF private key vr fsk and verification public keyvr fpk. The system
parameter is params = (Fq, E, g, q, g1, g2, H1, e, vr fsk, vr fpk).

• Decentralized key generation. All committee participants {P1, . . . , Pn} generate the
threshold signature key via the distributed key generation, Algorithm 1. It is important
to emphasize that the polynomials we use are not symmetric bivariate polynomials
(Fi(a, b) 6= Fi(b, a)). Moreover, the bivariate polynomial dimension has the same de-
gree t. Unlike the previous work, we refer to this as the homogeneous bivariate polyno-
mial. The participants interact with each other by the described algorithm. Eventually,
they complete the interaction, participant pi will obtain a commitment Commit about
the polynomial F(x, y) = ∑n

i=0 Fi(x, y), recovery polynomial Ri = ∑n
i=0 Fi(x, i). pi also

have Mski = ∑n
i=0 Fi(i, 0), and the verification public key Cpk = g∑n

i=0 Fi(0,0) for the
threshold signature. Ultimately, the secret private key for the threshold signature
isMsk = ∑n

i=0 Fi(0, 0). It can be the Lagrange reconstruction by the {Msk1, . . . , Mski}
algorithm. They both satisfies the F(x, 0) polynomial distribution. The following
mathematical expressions were designed by the authors.

Algorithm 1 Decentralized key generation for the participant pi

1: upon setup finished do
2: choose a random homogeneous bivariate polynomial Fi(x, y) of degree (t, t) with

Fi(0, 0) = ski, i.e.,

Fi(x, y) =
t,t

∑
m,n=0

umnxmyn

3: Commiti = Cmn = gumn for m ∈ [0, t] and n ∈ [0, t] . Commiti is a matrix
4: set Commit = Commiti
5: Mski = Fi(i, 0)
6: Ri(x) = Fi(x, i) . Ri(x) is a polynomial of Fi(x, y) where y = j
7: Cpk = gFi(0,0)

8:
9: for j ∈ [1, n] do

10: aj(x)← Fi(x, j)
11: bj(x) = Fi(j, 0) . bj(x) is a value
12: send “send, Commiti, aj(x), bj(x)“ to pj
13: upon receiving “send, Commitj, ai(x), bi(x)“ from pj do . pi do
14: check the correctness of aj(x), bj(x) by Commitj
15: upon correct
16: pi set
17: Commit = Commitj ◦ Commit . ◦ is Hadamard product
18: Ri = Ri + aj(x),
19: Mski = Mski × bj(x)
20: Cpk = Cpk× gFj(0,0) . gFj(0,0) is extracted from Commitj
21: return Commit, Mski, Ri, Cpk

• Share recovery. Our scheme assumes that the active adversary launches a reboot
attack on no more than n− (t + 1) participants (at least t + 1 honest participant alive).
The process of key recovery is illustrated in Figure 2. The attacked participant pi can
recover the key share via Algorithm 2. The following mathematical equations were
performed by the authors.

Sensors 2022, 22, 6004 12 of 18

Algorithm 2 Share recovery for participant pi

1: upon reboot attack effect do
2: send “help, pi“ to pj
3: upon receiving “help, pi“ from pi
4: pj do Rj(i) = F(i, j)
5: send “echo, Commit, Rj(i), pi“ to pi
6: upon receiving “echo, Commit, Rj(i), pi“ from pj
7: check the correctness of Rj(i) by Commit
8: upon correct
9: Recoveryi ← Recoveryi ∪ Rj(i)

10: if echo≥ t + 1 then Lagrange from Recoveryi . satisfy F(i, y) polynomial distribution
11: return Mski, Cpk . Cpk is extracted from Commit

Figure 2. The progress of our share recovery.

• Threshold signature. Participants {P1, . . . , Pn} sign a message from the last round
block m by the decentralized key generation. Participants compute the message hash
H1(m). Then, the participants {P1, . . . , Pn} compute the signature of the message
using their own secret key Mski where i ∈ [1, n] :

σi = Mski H1(m) (16)

The participant calculates the share of signatures and broadcasts it to other participants.
After obtaining the signature shares of others, the participants {P1, . . . , Pn} verify
the correctness of σi. The above signature correctness verification is passed and
signature reconstruction is performed. Any t + 1 or more correct shares subset R
compute the signature:

σ = Πi∈R

(
σ

Li
i

)
(17)

where Li is the appropriate Lagrange coefficient for the correct signature share set.
• Signature verification. Verify the correctness of the signatures σ generated in the re-

construction phase. This phase is the same as the BLS signature. The signature is only
valid if the following equation holds.

e(g1, σ) = e(Cpk, H1(m)) (18)

Sensors 2022, 22, 6004 13 of 18

• Randomness generation. After the threshold signature and signature verification
phase, the committee obtains a uniquely determined threshold signature.
The threshold signature can be input to a verifiable random function for the cal-
culation. The decentralized random beacon committee inputs signature σ with vr fsk
into a verifiable random function. The VRF evaluation algorithm produces a pseu-
dorandom output randomness R and the output corresponding proof π on input
vr fsk and a message σ. Decentralized random beacon committee participants can
verify the algorithm to verify output correctness. It is verified by the proof π, given
the verification key vr fpk and the message σ.

5.3. Correctness Analysis

The correctness of this decentralized random beacon with the share recovery threshold
signature includes four aspects: valid decentralized key generation, share recovery, valid
signature, and availability randomness. They respectively depend on:

(1) The generation of key shares {Msk1, . . . , Mskn} can obtain a valid signature
(2) Participants’ Pi key share Mski can be recovered by {P1, . . . , Pn} where n ≥ t + 1.
(3) The generation of the valid BLS signature σ that could be verified.
(4) The randomness R generated by the BLS signature σ and VRF committee secret key

vr fsk can be verified.

Specifically, the correctness of our scheme is indicated by the following branches.

- Decentralized key generation correctness.
According to the decentralized key generation phase, key shares Mski = ∑n

j=0 Fj(i, 0).
The participants interact with each other ∑n

j=0 Fj(i, 0) = F(x, 0). Thus, {Msk1, . . . , Mskn}
satisfy the F(x, 0) polynomial distribution. In all, the decentralized key generation
is correct.

- Share recovery correctness.
In the decentralized key generation phase, every participant Pi holds a recovery poly-
nomial Ri = ∑n

j=0 Fj(x, i). The participants interact with each other ∑n
j=0 Fj(x, i) =

F(x, j). During the key recovery process, Pi sends F(i, j) to Pj. The degrees of F(x, y),
two dimensions, are both t. {F(i, 1) . . . , F(i, n)} satisfy the F(i, y) polynomial dis-
tribution. Therefore, once recovery shares are received that satisfy the threshold
t + 1, the participant Pi can recover the share F(i, 0). Thus, the share recovery phase
is correct.

- Signature correctness.
Based on decentralized key generation and share recovery correctness, the committee
participants’ secret key {Msk1, . . . , Mskn} satisfy the F(x, 0) polynomial distribution.
The threshold signature secret is sk = ∑n

j=0 Fj(0, 0) = sk j = F(0, 0). Moreover, Cpk =

∏n
i=0 gFi(0,0) = gF(0,0) = gsk. Thus, the share signature can be verified.

- Availability randomness correctness.
Based on the threshold signature correctness, the threshold signature phase can output
a unique signature σ. The reason for the uniqueness of BLS signatures includes two as-
pects. The first reason is the non-adaptive “random k value“ involved in the calculation.
Moreover, as in Equation (7), the unique public key is involved in the signature verifi-
cation. The randomness of the output comes from the one-way function of the signed
message m.

5.4. Security Analysis

As mentioned above, our solution needs to satisfy properties, such as unpredictability,
bias-resistance, public verifiability, availability, and recovery. In our scheme, signature
unforgeability and share privacy are key to gaining the above properties. These overlapping
security properties can be formally reduced to two core security definitions: signature
unforgeability and share privacy.

Sensors 2022, 22, 6004 14 of 18

Theorem 1. The proposed share recovery threshold signature construction is unforgeable under
the assumption that the GDH is hard.

Proof of Theorem 1. The signature in the proposed share recovery threshold signature
is based on the threshold BLS signature. Note that the security of the threshold BLS
signature scheme has been formally proven under the assumption of GDH in the random
oracle model [23,24]. Thus, the proposed threshold BLS signature construction also enjoys
unforgeability in the random oracle model under the GDH assumption.

Theorem 2. The share in the proposed share recovery threshold signature construction is privacy.

Proof of Theorem 2. We focus first on the information available to adversary A during
the decentralized generation stage. Other participants send A the share generation mes-
sage (Commitj, Fi(x,A), Fi(A, 0)) on each share polynomial Fi(x, y). Because of the DLP
hardness assumption, the secret-sharing hiding property guarantees that this is insufficient
to distinguish any other point on Fi(x, y) from random with non-negligible probability.

Next, we consider the information available to adversary A during the share recovery
stage. If adversary A lost his share and requested recovery, he can only gain more than
f + 1 points of Fi(A, y). He learns nothing about the secret unless he can distinguish secret
F(i, 0) from random.

Next, we provide insight into the reconstruction stage. In this stage, other dishonest
participants may send him t share reconstruction messages. He learns nothing about
the secret unless he can distinguish the secret; there is one more share reconstruction
message from random.

Finally, we need to consider share privacy during share recovery. Adversary A
cannot recover shares of other participants through the key recovery mechanism. Our
bivariate polynomials use the same threshold t + 1. More importantly, our polynomial is
not symmetric ((Fi(a, b) 6= Fi(b, a))). t adversary A cannot recover the secret or recover the
secret share of other participants.

6. Evaluation

We compared the schemes based on the above study of the distributed random beacon.
Table 2 compares the above scheme and our scheme in terms of setup assumptions, com-
munication overhead, active adversaries, and recovery. The scheme proposed in this paper
strengthens the DFINITY scheme against active adversary attacks. Participates in Ran-
dRunner and the POW random beacon scheme can compete against active adversaries.
However, both schemes require a common reference string as the setup assumption. In our
proposed scheme, the initialization of the system is accomplished through the distributed
key generation. Our scheme has better performance in terms of trustworthiness.

Table 2. Comparison of the existing random beacon protocols.

Technique Setup
Assumption Comm. Cost Adaptive

Adversary Recovery

TSS DFINITY [5] DKG O(λn2) % %
TSS Cachine [17] DKG O(λn2) % %
VRF Algorand [4] CRS O(λn) % %
VDF RandRunner [28] CRS O(λn2) ! !
VSS Ouroboros [1] CRS O(λn4) % %

Hash POW CRS O(λn) ! !

TSS Our scheme DKG O(λn2) ! !

HAVEN is different from our proposed scenario in terms of the scenarios. It is more
concerned with the impact of network assumptions on the scheme. We analyzed our scheme

Sensors 2022, 22, 6004 15 of 18

in a theory comparison with HAVEN [39], as shown in Table 3. E represents the exponenti-
ation calculation and LO represents the Lagrange interpolation. We have the same compu-
tational overhead for the signature generation and share recovery compared to HAVEN.
However, our proposed scheme has less computational overhead in the generation phase.

Table 3. Comparison of recent asynchronous verifiable secret sharing protocols.

HAVEN [39] Our Scheme

Key Generation (n2 + n)E (3n + 2)E
Threshold Signature (p + 1)E + LO (p + 1)E + LO

Share Recovery (p + 1)E + LO (p + 1)E + LO

In terms of the experimental simulation, we implemented the scheme simulation
based on the PROJECT [40]. The environment of our simulation was Intel(R) Core(TM)
i5-1135G7 @ 2.40 GHz, RAM 16.0 GB, and Ubuntu 9.4.0, JAVA openjdk version 11.0.15. We
deployed five to eight nodes to implement the distributed key generation and key recovery.
In system deployments with varying node sizes, we executed our program (50 rounds,
consecutively) and recorded the execution times. The performances of our DKG scheme
and share recovery scheme with different nodes are present in Figures 3 and 4.

Figure 3. The performance of our DKG scheme with different nodes.

Figure 4. The performance of our share recovery scheme with different nodes.

Sensors 2022, 22, 6004 16 of 18

After the DKG execution, we performed the threshold signature and input the results
into VRF. Using five nodes as an example, we compared our threshold signature scheme
with the Libert threshold signature scheme [41]. Finally, the program output randomness,
see Figure 5. It should be noted that the message transmission delay between nodes was
considered in our time calculation.

Figure 5. The performance of our threshold signature and randomness generation.

Performance Analysis

From Figure 3, we can see that our DKG runtime function increased as the number
of nodes increased. This is because our scheme is designed to use the homogeneous bivari-
ate polynomial. As the number of nodes increases, the number of interactions between
nodes also needs to increase. At the same time, the computation and verification times
of the nodes for messages need to increase. This again confirms the design of our solution.
As presented in Figure 4, the node share recovery time in our scheme increases as the num-
ber of nodes increases. The reason is that the threshold setting for the share recovery is set
at the same level as the key recovery setting. From Figure 5, one can see that our scheme
has no impact on the efficiency of the threshold signature and VRF computation. The share
recovery function was performed before signing. We must enrich the random number
generation function based on the threshold signature.

7. Conclusions

We presented a key recovery threshold signature randomness beacon scheme for
blockchain. This scheme allows participants to recover the key share after an active adver-
sary reboot attack. Moreover, it is proven that our random beacon scheme can avoid gener-
ating unpredictability, bias-resistance, and public verifiability randomness. Moreover, our
scheme supports the availability and recoverability of randomness generation. As shown
in the performance analysis, our practical solution gains new functionality at a fraction
of the cost. The number of nodes increases by one node, and the time of DKG and the
share recovery add approximately 0.4 s. In the future, additional research needs to focus
on the study of the effect of the network assumption on random number generation. At
the same time, robust and secure generation of random numbers in asynchronous networks
should be investigated. To summarize, due to the recovery and efficiency, our key re-
covery threshold signature randomness beacon scheme applies to randomness generating
for blockchain.

Author Contributions: Conceptualization, Y.Z., B.L., Y.Y., S.H.; software, Y.Z., Z.D.; formal analysis,
Y.Z., B.L.; writing—original draft preparation, Y.Z., G.H.; writing—review and editing, Y.Z., Y.Y., H.Z.
G.H. All authors have read and agreed to the published version of the manuscript.

Sensors 2022, 22, 6004 17 of 18

Funding: This work is supported by the Open Program of Neusoft Corporation, Item number
NCBETOP2101, the National Key R&D Program of China through project 2020YFB1005600, the Beijing
Natural Science Foundation through project M21031, the Natural Science Foundation of China
through projects U21A20467, 61932011, 61972019 and 62002011, the China Postdoctoral Science
Foundation 2021M700347.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. David, B.; Gaži, P.; Kiayias, A.; Russell, A. Ouroboros praos: An adaptively-secure, semi-synchronous proof-of-stake blockchain.

In Proceedings of the Annual International Conference on the Theory and Applications of Cryptographic Techniques, 2018;
Springer: Berlin/Heidelberg, Germany, 2018; pp. 66–98.

2. Gilad, Y.; Hemo, R.; Micali, S.; Vlachos, G.; Zeldovich, N. Algorand: Scaling byzantine agreements for cryptocurrencies.
In Proceedings of the ACM Symposium on Operating Systems Principles, Shanghai, China, 28 October 2017; pp. 51–68.

3. Hanke, T.; Movahedi, M.; Williams, D. Dfinity Technology Overview Series, Consensus System. arXiv 2018, arXiv:1805.04548.
4. Castro, M.; Liskov, B. Practical Byzantine Fault Tolerance. OsDI 1999, 1999, 173–186.
5. Kokoris-Kogias, E.; Jovanovic, P.; Gasser, L.; Gailly, N.; Syta, E.; Ford, B. Omniledger: A secure, scale-out, decentralized ledger via

sharding. In Proceedings of the IEEE Symposium on Security and Privacy, San Francisco, CA, USA, 21–23 May 2018; pp. 583–598.
6. Goyal, V.; Kothapalli, A.; Masserova, E.; Parno, B.; Song, Y. Storing and retrieving secrets on a blockchain. In Proceedings of

the IACR International Conference on Public-Key Cryptography, Virtual Event, 8–11 March 2022; Springer: Berlin/Heidelberg,
Germany, 2022; pp. 252–282.

7. Boneh, D.; Bonneau, J.; B‘̀unz, B.; Fisch, B. Verifiable delay functions. In Proceedings of the Annual International Cryptology
Conference, Barbara, CA, USA, 19–23 August 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 757–788.

8. Schoenmakers, B. A simple publicly verifiable secret sharing scheme and its application to electronic voting. In Proceedings
of the Annual International Cryptology Conference, Santa Barbara, CA, USA, 15–19 August 1999; Springer: Berlin/Heidelberg,
Germany, 1999; pp. 148–164.

9. Galindo, D.; Liu, J.; Ordean, M.; Wong, J.M. Fully distributed verifiable random functions and their application to decentralised
random beacons. In Proceedings of the IEEE European Symposium on Security and Privacy, Virtual, 6–10 September 2021;
pp. 88–102.

10. Nguyen-Van, T.; Nguyen-Anh, T.; Le, T.D.; Nguyen-Ho, M.P.; Nguyen-Van, T.; Le, N.Q.; Nguyen-An, K. Scalable distributed ran-
dom number generation based on homomorphic encryption. In Proceedings of the IEEE International Conference on Blockchain,
Atlanta, GA, USA, 14–17 July 2019; pp. 572–579.

11. Raikwar, M.; Gligoroski, D. SoK: Decentralized Randomness Beacon Protocols. arXiv 2022, arXiv:2205.13333.
12. Herzberg, A.; Jarecki, S.; Krawczyk, H.; Yung, M. Proactive secret sharing or: How to cope with perpetual leakage.

In Proceedings of the Annual International Cryptology Conference, Santa Barbara, CA, USA, 27–31 August 1995; Springer:
Berlin/Heidelberg, Germany, 1995; pp. 339–352.

13. Tekiner, E.; Acar, A.; Uluagac, A.S.; Kirda, E.; Selcuk, A.A. SoK: Cryptojacking malware. In Proceedings of the IEEE European
Symposium on Security and Privacy, Virtual, 6–10 September 2021; pp. 120–139.

14. Zhou, L.; Schneider, F.B.; Van Renesse, R. APSS: Proactive Secret Sharing in Asynchronous Systems; ACM: New York, NY, USA, 2005;
Volume 8, pp. 259–286.

15. Maram, S.K.D.; Zhang, F.; Wang, L.; Low, A.; Zhang, Y.; Juels, A.; Song, D. CHURP: Dynamic-committee proactive secret sharing.
In Proceedings of the ACM SIGSAC Conference on Computer and Communications Security, London, UK, 11–15 November
2019; pp. 2369–2386.

16. Blum, M. Coin Flipping by Telephone a Protocol for Solving Impossible Problems; ACM: New York, NY, USA, 1983; Volume 15,
pp. 23–27.

17. Cachin, C.; Kursawe, K.; Shoup, V. Random Oracles in Constantinople: Practical Asynchronous Byzantine Agreement Using Cryptography;
Springer: Berlin/Heidelberg, Germany, 2005; Volume 18, pp. 219–246.

18. Azouvi, S.; McCorry, P.; Meiklejohn, S. Winning the Caucus Race: Continuous Leader Election via Public Randomness. arXiv
2018, arXiv:1801.07965.

19. Canetti, R.; Rabin, T. Fast asynchronous Byzantine agreement with optimal resilience. In Proceedings of the Annual ACM
Symposium on Theory of Computing, San Diego, CA, USA, 9–11 June 1993; pp. 42–51.

20. Kelsey, J.; Brandao, L.T.; Peralta, R.; Booth, H. A Reference for Randomness Beacons: Format and Rrotocol Version 2; Technical Report;
National Institute of Standards and Technology: Gaithersburg, MD, USA, 2019.

21. Oraclize.it. Provable Random Number Generator. Available online: https://provable.xyz (accessed on 20 June 2022).

https://provable.xyz

Sensors 2022, 22, 6004 18 of 18

22. Haahr, M. Random.org: True Random Number Service. Available online: https://http://random.org/ (accessed on 20
June 2022).

23. Boldyreva, A. Threshold signatures, multisignatures and blind signatures based on the gap-diffie-hellman-group signature
scheme. In Proceedings of the International Workshop on Public Key Cryptography, Miami, FL, USA, 6–8 January 2003; Springer:
Berlin/Heidelberg, Germany, 2003; pp. 31–46.

24. Boneh, D.; Lynn, B.; Shacham, H. Short signatures from the weil pairing. In Proceedings of the International Conference
on the Theory and Application of Cryptology and Information Security, Gold Coast, QLD, Australia, 9–13 December 2001;
Springer: Berlin/Heidelberg, Germany, 2001; pp. 514–532.

25. Goldreich, O.; Goldwasser, S.; Micali, S. How to Construct Random Functions; ACM: New York, NY, USA, 1986; Volume 33,
pp. 792–807.

26. Micali, S.; Rabin, M.; Vadhan, S. Verifiable random functions. In Proceedings of the Annual Symposium on Foundations
of Computer Science, Redondo Beach, CA, USA, 20–22 November 1999; pp. 120–130.

27. Han, R.; Lin, H.; Yu, J. RandChain: A Scalable and Fair Decentralised Randomness Beacon. Cryptology ePrint Archive, Paper
2020/1033, 2020. Available online: https://eprint.iacr.org/2020/1033 (accessed on 20 June 2022).

28. Schindler, P.; Judmayer, A.; Hittmeir, M.; Stifter, N.; Weippl, E. RandRunner: Distributed randomness from trapdoor VDFs with
strong uniqueness. In Proceedings of the ISOC Network and Distributed System Security Symposium, Diego, CA, USA, 27
February–3 March 2022.

29. Randao: Verifiable Random Number Generation. Available online: https://randao.org/whitepaper/Randao_v0.85_en.pdf
(accessed on 20 June 2022).

30. Feldman, P. A practical scheme for non-interactive verifiable secret sharing. In Proceedings of the Annual Symposium on
Foundations of Computer Science, Los Angeles, CA, USA, 20–22 November 1987; pp. 427–438.

31. Stadler, M. Publicly verifiable secret sharing. In Proceedings of the International Conference on the Theory and Applications
of Cryptographic Techniques, Trondheim, Norway, 30 May–3 June 1996; Springer: Berlin/Heidelberg, Germany, 1996;
pp. 190–199.

32. Bhat, A.; Kate, A.; Nayak, K.; Shrestha, N. OptRand: Optimistically Responsive Distributed Random Beacons. Cryptology ePrint
Archive, Paper 2022/193, 2022. Available online: https://eprint.iacr.org/2022/193 (accessed on 20 June 2022).

33. Bentov, I.; Gabizon, A.; Zuckerman, D. Bitcoin Beacon. arXiv 2016, arXiv:1605.04559.
34. Schultz, D.; Liskov, B.; Liskov, M. MPSS: Mobile Proactive Secret Sharing; ACM: New York, NY, USA, 2010; Volume 13, pp. 1–32.
35. Kiribuchi, N.; Kato, R.; Nishide, T.; Yoshiura, H. Batching multiple protocols to improve efficiency of multi-party computation.

In Proceedings of the International Conference on Information Security and Cryptology, Seoul, Korea, 30 November–2 December
2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 289–308.

36. Basu, S.; Tomescu, A.; Abraham, I.; Malkhi, D.; Reiter, M.K.; Sirer, E.G. Efficient verifiable secret sharing with share recovery in
BFT protocols. In Proceedings of the ACM SIGSAC Conference on Computer and Communications Security, London, UK, 11–15
November 2019; pp. 2387–2402.

37. Cachin, C.; Kursawe, K.; Lysyanskaya, A.; Strobl, R. Asynchronous verifiable secret sharing and proactive cryptosystems.
In Proceedings of the ACM Conference on Computer and Communications Security, Vienna, Austria, 24–28 October 2002;
pp. 88–97.

38. Kogias, E.K.; Malkhi, D.; Spiegelman, A. Asynchronous distributed key generation for computationally-secure randomness,
consensus, and threshold signatures. In Proceedings of the ACM SIGSAC Conference on Computer and Communications
Security, Denver, CO, USA, 12–16 October 2020; pp. 1751–1767.

39. Alhaddad, N.; Varia, M.; Zhang, H. High-threshold AVSS with optimal communication complexity. In Proceedings of the
International Conference on Financial Cryptography and Data Security, Virtual, 1–5 March 2021; Springer: Berlin/Heidelberg,
Germany, 2021; pp. 479–498.

40. Resch, J. PROTECT. Available online: https://github.com/jasonkresch/protect (accessed on 20 June 2022).
41. Libert, B.; Joye, M.; Yung, M. Born and Raised Distributively: Fully Distributed Non-Interactive Adaptively-Secure Threshold Signatures

with Short Shares; Elsevier: Amsterdam, The Netherlands, 2016; Volume 645, pp. 1–24.

https://http://random.org/
https://eprint.iacr.org/2020/1033
https://randao.org/whitepaper/ Randao_v0.85_en.pdf
https://eprint.iacr.org/2022/193
https://github.com/jasonkresch/protect

	Introduction
	Related Work
	Simple Approach
	Distributed Randomness Beacon
	Share Recovery

	Preliminaries
	BLS Signature
	Threshold BLS Signature
	Decentralized Key Generation
	Verifiable Random Function

	Decentralized Random Beacon Committee for Blockchain
	Application Scenario
	System Architecture
	Security Properties

	Decentralized Random Beacon with Share Recovery Threshold Signature
	System Definition
	Random Beacon with Share Recovery Threshold Signature Construction
	Correctness Analysis
	Security Analysis

	Evaluation
	Conclusions
	References

