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Abstract: A novel whitening technique for motor imagery (MI) classification is proposed to reduce
the accuracy variance of brain–computer interfaces (BCIs). This method is intended to improve
the electroencephalogram eigenface analysis performance for the MI classification of BCIs. In BCI
classification, the variance of the accuracy among subjects is sensitive to the accuracy itself for
superior classification results. Hence, with the help of Gram–Schmidt orthogonalization, we propose
a BCI channel whitening (BCICW) scheme to minimize the variance among subjects. The newly
proposed BCICW method improved the variance of the MI classification in real data. To validate
and verify the proposed scheme, we performed an experiment on the BCI competition 3 dataset IIIa
(D3D3a) and the BCI competition 4 dataset IIa (D4D2a) using the MATLAB simulation tool. The
variance data when using the proposed BCICW method based on Gram–Schmidt orthogonalization
was much lower (11.21) than that when using the EFA method (58.33) for D3D3a and decreased from
(17.48) to (9.38) for D4D2a. Therefore, the proposed method could be effective for MI classification of
BCI applications.

Keywords: whitening technique; Gram–Schmidt orthogonalization; motor imagery classification;
eigenface analysis

1. Introduction

The human brain is composed of several encephalic regions that can control and
record various human activities, such as movement, memory, and emotions [1,2]. In
a broad sense, in a brain–computer interface (BCI), there are two types of categories
available in the field of technology. One is unidirectional BCIs and the other is bidirectional
BCIs. In the unidirectional BCI, the BCI is used to generate the pathway or channel for
communication and control of other human parts or external devices using the brain
without motor neuron intervention, such as the tongue and hand [3–5]. A BCI system
can be broadly classified into three parts, namely the signal acquisition, signal processing,
and application interface [6]. The signal processing is divided into three further parts:
preprocessing, feature extraction, and classification [6]. The signal acquisition method for
a BCI system is generally electroencephalogram (EEG) [7], which is used to measure the
electrical signals that are generated from the human brain to estimate human activities.
Unprocessed EEG is known as raw EEG, which undergoes a signal processing process for
classification such as signal selection, filtering, and feature extraction [8]. An application
interface such as the BCI system is controlled by classified features. The classification is
a type of final stage to categorize to which class the features belong. In a BCI system, a
human has a thought with intention and simulates physical actions, which corresponds to
the scope of motor imagery (MI) classification problems. Therefore, MI classification has
been studied for EEG analysis and classification because it can exhibit unknown EEG data
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that are generated by thoughts via moving human body parts, such as the hands, feet, and
tongue [9].

The brain–computer interfaces (BCI) are one of the human machine interfaces (HMI)
or human communication systems, which enable users to send commands to computers by
using brain activity only. The potential of these activities is generally measured by EEG
under 10-20 systems [3]. The BCI is generally designed according to a pattern recognition
approach, i.e., by extracting features from raw EEG signals and using a discrete classifier to
identify the user mental state from such derived features from raw data [10]. The previously
proposed eigenface analysis (EFA) algorithm is a feature extraction method from raw EEG
data which builds up neuro images emphasizing the discriminability of classes, and the
feature is a determinate tool including accuracy.

Among the classification schemes, the linear classification method known as linear
discriminant analysis (LDA) is used extensively in MI classification [1,10–13]. LDA is used
to maximize two class variances using the Gaussian method. Furthermore, the support
vector machine is a statistical method used in MI classification [14].

In a statistical signal processing, whitening transform is aimed to provide a unit
variance and a minimum covariance for the given random data; hence, the covariance
matrix is an identity matrix [15–17]. In the 10-20 systems of BCI applications, minimizing
the dependency between experimental participants or subjects is an essential and key factor
to solve classification problems. Furthermore, it would be essential to reduce the original
correlation of signals between electrode channels [18].

Differences between features and classes in BCI-features refer to an important quality
or ability of BCI signals whereas classes of BCI refer to unique physical activities that make
MI signals distinguishable. Features are abstractive, and classes are concrete in classification
problems [19].

In principal component analysis (PCA), there are n numbers of principal components
for an n-dimensional data. Each principal component represents a direction vector with
the direction of the largest data variance or eigenvalues. In Figure 1, the vectors e1 and
e2 indicate the largest and next largest data variance of variance among ‘n’ eigenvalues,
respectively. Because the covariance matrix of PCA is symmetric, the principal components
are orthogonal and uncorrelated with one another. That is, the determination of the
principal component can be used for analysis in a direction that shows the distribution
shape effectively and can reduce the dimensions with only the main components. Therefore,
PCA can be used for feature selection and dimension reduction because it can easily identify
the representative data pattern.
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Figure 1. (a) Original distributed data and (b) distributed data with PCA technique applied.

PCA is a method for reducing the dimensions to identify the principal components
from distributed data [20]. The PCA technique is generated from the geometric optimization
problem to determine the hyper-plane that is the most appropriate for classifying the
data distribution in n-dimensional space [5,21]. It was developed to identify the principal
components that maximize the original variable variances [22]. Figure 1 presents distributed
data using the PCA technique [23].
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As illustrated in Figure 1, there are n principal components for an n-dimensional data
distribution. Each principal component represents a direction vector with the direction of
the largest data variance. In Figure 1, the vectors e1 and e2 indicate the largest and next
largest data variance, respectively. Moreover, the principal components are orthogonal and
uncorrelated with one another. That is, the determination of the principal component can
be used for analysis in a direction that shows the distribution shape effectively and can
reduce the dimensions with only the main components. Therefore, PCA is used for feature
selection and dimension reduction because it can easily identify the representative data
pattern. The covariance of the PCA calculation is presented below:

Cov [X, Y] = E
[(

X− X
)(

Y−Y
)]

= ∑
(
X− X

)(
Y−Y

)
n

(1)

where X and Y are unknown variables, Cov [X, Y] is the covariance matrix of X and Y, and
n is the number of data.

The covariance matrix can be calculated as an n × n matrix for n data.
Whitening or whitening transform is a preprocessing scheme that applies PCA. In

this study, we propose the BCI channel whitening (BCICW) scheme to improve the classifi-
cation by minimizing the variance of the MI classification accuracy for BCI performance
using newly developed whitening techniques based on Gram–Schmidt orthogonalization.
Whitening transform aids in providing stronger data correlation and unit variance [16]. In
the BCICW scheme, the whitening process is as follows:

Step 1: Let X be a BCI potential vector of zero-mean data. Then, its covariance matrix
is expressed as below:

A = Cov [X, X] = E[(XX)] = ∑
(XX)

n
where X is an unknown BCI variable, Cov [X, X] or the matrix A is the covariance matrix
of X, and n is the number of BCI data. If the data points in X are correlated, then their
covariance A, will not be a diagonal or identity matrix.

Step 2: To de-correlate the data, we need to transform it so that the transformed
data will have a diagonal covariance matrix. This transform can be found by solving the
eigenvalue problem. We find the eigenvectors and associated eigenvalues of the matrix A
by solving

AP = PΛ

Λ is a diagonal matrix having the eigenvalues as its diagonal elements and the matrix
P is obtained by taking Gram–Schmidt orthogonalization to the derived eigenvectors. Thus,
the matrix P diagonalizes the covariance matrix of X. The columns of the matrix P are the
eigenvectors of the covariance matrix. We can also write the diagonalized covariance as
(diagonalization or similarity transformation):

PT AP = Λ (2)

If we wish to apply this diagonalizing transform to a single BCI vector of data, we
just form: y = PTX. Thus, the data y has been decorrelated: its covariance, E(yyT) is now a
diagonal matrix Λ.

E
(

yyT
)
= E

(
PTXXP

)
= E

(
PT AP

)
= Λ

Step 3: The diagonal elements (eigenvalues) in Λ may be the same or different. If we
make them all the same, then this is called whitening the data. Because each eigenvalue
determines the length of its associated eigenvector, the covariance will correspond to an el-
lipse when the data is not whitened, and to a sphere (having all dimensions the same length,
or uniform) when the data is whitened. Whitening is verified as below: Λ−1/2ΛΛ−1/2 = I.
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Equivalently, substituting in Equation (2), we can write: Λ−1/2PT APΛ−1/2 = I. To apply
this whitening transform to y, we simply multiply it by this scale factor, obtaining the
whitened data w:

Xwhiten = w = Λ−1/2y = Λ−1/2PTX.

where Λ is the eigenvalue, and P is the eigenvector of the covariance matrix, and X is the
BCI data.

Now the covariance of w is not only diagonal but also uniform (whitened) because of
the covariance of w. Thus, we verify the following equation of E(wwT) = I as below.

E
(

wwT
)
= E

(
Λ−1/2PTXXT PΛ−1/2

)
= E

(
Λ−1/2PT APΛ−1/2

)
= I.

This is the whitening process in BCICW.

2. Materials and Methods

Eigenface analysis (EFA) is a type of PCA that is mainly used to reduce the dimensions
in image recognition, particularly for face recognition [16–19]. In one hand, PCA is the
process of calculating the main components and using them to obtain maximum variance
axes on the BCI dataset. On the other hand, EFA extracts the featuring images or faces
which prioritizes the maximum likelihood on the BCI dataset. Figure 2 depicts the EFA
algorithm procedure. To be specific, the mathematical calculation for the EFA method is
described as follows into steps 1, 2, and 3:
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Step 1: In the first step, the EEG data are converted into image data. The three-
dimensional (3D) EEG data can be represented as M time, N channels, and L trials, as
described in Equation (3). Therefore, the EEG data can be analyzed with three directions
because they form a type of 3D image, and the generated image may differ according to the
data viewpoint direction, as illustrated in Figure 2.

Step 2: For the derived image data, the covariance matrix can be obtained. For the
given covariance, we determined the eigenfaces. Hence, building up the eigenfaces for the
image data has finished.

Step 3: For the given eigenfaces, we can project the training data and thus obtain the
results in the features or coefficients for training data. In sequence, projecting the testing
data provides the features (coefficients) for testing data. These two types of coefficients are
the requested features.

The mathematical calculation for the EFA method is described as follows: In the first
step, the EEG data are converted into image data. The three-dimensional (3D) EEG data can
be represented as M time, N channels, and L trials, as described in Equation (3). Therefore,
the EEG data can be analyzed with three directions because they form a type of 3D image,
and the generated image may differ according to the data viewpoint direction, as illustrated
in Figure 3 where the viewpoints in interpretation are top, left side, and right side. As did
in MI classification problems for the BCIs [24,25], the tentative datasets M, N, and L are
composed of random sample functions, conceptual electro potentials, and the number of
trials, and thus, they have no physical units in statistical sense; in fact, those datasets will be
coefficients of eigenfaces and part of weighting variables. Subsequently, we built the M, N,
and L datasets using those derived coefficients as shown in Figure 2. The different images
that are interpreted in different directions for the EEG data also exhibit different analysis
results, and it is necessary to select an analysis direction that is suitable for the purpose.

I = MNL (3)
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The original EFA method interprets the EEG image based on the channel. The EEG
data in the MNL direction are converted into the image dataset I, which is an N image
group for each channel in the same manner as that indicated in Equation (4). The image
dataset I that is converted from the EEG data consists of N images with ML pixels or N
vectors with the ML direction.

I = M′N (M′ = ML) (4)

In the second step, the eigenface is built from the converted image, and the image Φ
with the average value Ψ removed is calculated for the N channel image dataset I.

Φi = Ii – Ψi, i = 1, 2, . . . , N (5)
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Subsequently, the covariance matrix using the image with the mean removed is
computed, as indicated in Equation (6).

C =
1
L

L

∑
l=1

ΦiΦ
T
i (6)

We define the eigenvectors of X and associated eigenvalues of l of the covariance
matrix C by solving

CX = λX

Among the basis vectors that are obtained from this covariance matrix, the k basis
vectors that are selected according to the eigenvalue size are known as the eigenfaces Γ
(Γ1, Γ2, . . . , Γk). In this case, the number of vectors k may be selected considering the
calculation amount and required data range. The eigenface is used to extract the training
and testing features or coefficients [8]. The eigenface created with only training data is
defined as the training eigenface Γtraining. In the final step, the training features can be
extracted using the training eigenface and training data. Under the supervisor learning
model, on this phase, the training features will be associated with the given train labels.
The test features can be extracted using the same eigenface and test data. The extraction
of the eigenface coefficients is carried out through the data being projected into eigenface
space, as indicated in Equation (7).

Ωtraining = Φtraining Γtraining (7)

The weight coefficient Ωtraining that is extracted through Equation (7) is used as a
training feature for the data classification. The feature coefficients Ωtesting can be extracted
by projecting the test data onto the eigenspace that is trained by the training data, as
shown in Equation (8). After training the classifier using the extracted training features, the
left/right MI EEG of the test data can be classified.

Ωtesting = Φtesting Γtraining (8)

However, considering a statistical signal processing in an actual and practical BCI
system, the application interface is manipulated according to each trial in which the
intentional thought of the user is expressed. As the EEG data are 3D data composed of
the time, channel, and trial, different images and features are extracted depending on the
viewpoints (axes in the coordinate system) or the direction in which the data are interpreted
as depicted in Figure 3. If the analysis is performed according to an axis or dimension
other than the interpretation of the trials, completely different results may appear in the
accuracy classification. If the direction of the image interpretation is changed for the trial
interpretation, the source data I in the form of M × N × L are reconstructed in the first step
of the EFA in Equation (9). However, when the image is interpreted with respect to the trial
direction, the EFA accuracy decreased.

I = M′L (M′ = MN) (9)

According to Reference [26], when the EFA is interpreted in the direction of the trial,
the EFA method yields 52.22%, 46.67%, and 63.33% for the three subjects with the same data.
Table 1 presents the accuracy when analyzing the trial direction using the EFA method.

Table 1. Accuracy results of trial EFA.

Subject 1 Subject 2 Subject 3

Accuracy 52.22 46.67 63.33
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Whitening does not perform dimension reduction because it is dependent on PCA. It
basically provides a channel independence statistically in the BCI data. Figure 4 presents
an example to demonstrate the whitening effect for a certain general data shape. The
Gram–Schmidt scheme is for orthogonalizing the vectors and determining the orthonormal
basis. For vectors v1, v2, . . . vk, orthonormal (orthogonal and normal) vectors u1, u2, . . . uk
are calculated using Gram–Schmidt orthogonalization in Equation (10). In Gram–Schmidt,
each vector is divided into two components such as tangential and normal components.
The normal component is obtained by projecting the vector vk to a lower vector space vi
or vk-1, i.e., projui (vk) which is a tangential component and then computing its residual

vk −∑k−1
l=1 projui (vk).

u1 = v1

u2 = v2 − proju1(v2)

uk = vk −
k−1

∑
l=1

projuk−1(vk) = uk = vk −
k−1

∑
l=1

projui (vk)

(10)
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Orthonormal (orthogonalized and normalized) vectors u1, u2, . . . , uk are orthogonal
to one another, become the orthogonal basis for the vector space, and are then normalized.

In the BCI system, every researcher uses the feature instead of raw data because the
raw data is extremely large [7]. Therefore, we cannot use the random data in BCI systems.
In terms of computational amount and performance improvement, especially in pattern
recognition, the result obtained by eigenvector is not fundamentally orthogonal, so Gram–
Schmidt orthogonalization is needed because the covariance matrix obtained from the
feature is not symmetric. In the BCI system, the EFA algorithm is a fundamental feature
extraction method, and the feature is a determine tools including accuracy [27]. Likewise,
in the other reference paper [27,28], they utilize the accuracy in BCI problems using CSP.

3. Results and Discussion

The background on EEG datasets from BCI competition for evaluation needs to be
explained. To validate and verify the proposed BCICW, we used EEG raw data from three
subjects, from the worldwide available and approved off-line datasets of BCI competi-
tions [29]. The datasets contain MI EEG real signals which are recorded as subjects imagine
arm or limb movements (e.g., 2 classes for left hand or right hand movements) [10].
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The dataset IIIa, BCI competition III (D3D3a) comprises EEG signals from three subjects
who performed left hand, right hand, foot, and tongue MI. The EEG electro-potential signals
were recorded using 60 electrodes of 10-20 systems. For the purpose of this study, only EEG
signals corresponding to left and right hand MI were used [3]. A training and testing set
were available for each subject. Both datasets contain 45 trials per class for subject 1, and
30 trials per class for subjects 2 and 3.

For feature extraction, we adapted the EFA method [26], and for classification, we
considered the LDA discrete classification of the trials, i.e., we assigned a class to each trial.
For each dataset and trial, from raw brain data of BCI competition dataset, we extracted
features of EFA from the time segment located from 0.5 s to 2.5 s after the screen cue
instructing the subject to perform and imagine MI. Each trial was band-pass filtered in
8–30 Hz considering Brodmann areas as in [18], where a 5th order Butterworth filter is
applied [18].

This section presents the performance evaluation of the experiments when using the
developed BCICW based on the Gram–Schmidt orthogonalization method. The MATLAB
program was used for the simulation. The main experiment used the BCI competition
III dataset IIIa (C3D3a). The simulated results when using the EFA and the whitening
following the EFA methods are compared to verify the accuracy improvement of the
proposed method using the data mentioned above. In the experiment for performance
evaluation, the MI classification dataset from C3D3a was used to compare and analyze
the performances using the same dataset. The C3D3a dataset consists of EEG data for
multi-class MI classification. The EEG data were recorded by MI with four classes, namely,
the left and right hands, foot, and tongue of three subjects, and were measured using
60 channels from three subjects. Among the four-class data, we considered only two classes:
the left- and right-hand classes. Moreover, the left mastoid was used as a reference, and the
right mastoid was used as the ground. The EEG data were sampled at 250 Hz and filtered
in the range of 1 to 5 Hz through a notch filter. Figure 5 depicts the positions of the EEG
electrodes used.
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uation, the MI classification dataset from C3D3a was used to compare and analyze the 
performances using the same dataset. The C3D3a dataset consists of EEG data for multi-
class MI classification. The EEG data were recorded by MI with four classes, namely, the 
left and right hands, foot, and tongue of three subjects, and were measured using 60 chan-
nels from three subjects. Among the four-class data, we considered only two classes: the 
left- and right-hand classes. Moreover, the left mastoid was used as a reference, and the 
right mastoid was used as the ground. The EEG data were sampled at 250 Hz and filtered 
in the range of 1 to 5 Hz through a notch filter. Figure 5 depicts the positions of the EEG 
electrodes used. 

 
Figure 5. Electrode positions in BCI Competition III dataset IIIa (D3D3a). Figure 5. Electrode positions in BCI Competition III dataset IIIa (D3D3a).

In this experiment, two classes were classified in the feature extraction for the MI
classification; thus, it was assumed that there were two characteristics when extracting
the data features. When constructing an eigenface, only two basic vectors with the largest
corresponding eigenvalues among the basic vectors are used for dimension reduction and
noise removal. The most widely applied classification accuracy was used to measure the
performance of the MI classification.
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An LDA classifier was used for the classification because LDA is one of the most
widely used classification methods, and the accuracy was calculated by comparing the
class that was predicted by the classifier with the actual class of the corresponding data.
Table 2 displays the criteria for the correct answers and errors classified by comparing the
predicted and actual labels for the left and right hands. “A, correct” is the classification
predicted by the left hand for the actual left-hand data. “B, incorrect” is the classification
predicted by the left hand for the actual right hand. “C, incorrect” is the classification
predicted by the right hand for the actual left hand. Finally, “D, correct” is the classification
predicted by the right hand for the actual right-hand data; therefore, it is determined as the
correct classification.

Table 2. Comparison of predicted and true classifications for left and right hands.

True Label

Class 1, Left Class 2, Right

Class 1, left A, correct B, incorrect
Class 2, right C, incorrect D, correct

In Table 2, the probability of making a type I error or false alarming is denoted by the
letter C and the probability of making a type II error or missing the target is denoted by
B. The accuracy is the ratio of the total number of classifications to the number of correct
classifications among all classified data, as indicated in Equation (11).

Acc =
A, correct + D, correct

A, correct + B, incorrect + C, incorrect + D, correct
(11)

On each trial, we obtained accuracy for each subject, thus the accuracy could be a
random variable in statistical senses. On these accuracy values, the variance of accuracy is
a measure of dispersion or degree of spreading; indicating the measure of how far or close
a set of each accuracy is spread out from the mean accuracy value.

In the variance comparison and contrasting with the results of EFA among available
BCI competition dataset, we used the BCI competition III data set IIIa (C3D3a_2C). Between
the BCI competition III data set IIIa (C3D3a_2C) and competition VI data set IIa (C4D2a_2C)
for 2 class dataset, we focused on the C3D3a_2C. C3D3a_2C dataset composed of three
subjects and the predefined number of experimental trials. Table 3 shows the number of
trials per subjects for C3D3a_2C used in this article.

Table 3. The C3D3a_2C dataset composed of three subjects and the predefined number of experimen-
tal trials.

Subject
Class (# of Trials)

Left (L) Right®

1 45 45
2 30 30
3 30 30

Table 4 presents the results of classifying the MI of BCI C3D3a_2C using only EFA and
using BCICW. Compared to the EFA method, the BCICW method improved the variance of
the accuracy from 55.00 to 58.15 and dramatically minimized the variance of the accuracy
performance among subjects from 58.33 to 11.21; that is, all three subjects exhibited uniform
or consistent accuracy when BCICW was applied. Without whitening, a sample output of
testing results for C3D3a_2C is given. As a comparison, with whitening a sample output of
testing results for C3D3a_2C is given. As shown Boxs 1–3, from the two outputs, BCICW
reduces the variance among subjects dramatically and thus minimizes the discrepancy
between existing BCI experiment participants.
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Table 4. Variance comparison according to classification methods for C3D3a_2C.

Subjects

A1 A2 A3 Mean Variance

Accuracy
EFA 53.33 48.33 63.33 55.00 58.33

Whitening 57.78 55.00 61.67 58.15 11.21

Box 1. A sample output of EFA testing results for C3D3a_2C.

% EFA primitive classic mode (Whon=0 & EFA_c=1)
dataset: C3D3a_2C
subject 1 : acc 53.333333
subject 2 : acc 48.333333
subject 3 : acc 63.333333
mean 55.00, median 53.33, variance 58.33

Box 2. A sample output of BCICW testing results for C3D3a_2C.

% Whitening classic mode (Whon=1 & EFA_c=1)
datsset: C3D3a_2C
subject 1 : acc 57.777778
subject 2 : acc 55.000000
subject 3 : acc 61.666667
mean 58.15, median 57.78, variance 11.21

Box 3. The detailed information of the property for C3D3a_2C.

coment1: ‘ dataset: C3D3a_2C’
date: ‘ 2021.12.28 ’
madeby: ‘ 2C ’
affiliation: ‘ KNIT ’
window: ‘ offset : 3.500000e+00, length : 2 ’
subject: ‘ subject #: 1,2,3’
prefiltering: ‘ off ’
s: 250 (# of samples/sec)
c: [1]
x: [500 × 60 × 180 double]
y: [1 × 180 double]

Figure 6a,b present the covariance matrix of C3D3a_2C for the first subject when the
EFA method was applied. Figure 6c,d depict the covariance matrix of C3D3a_2C for the
first subject when BCICW was applied.

To validate and verify BCICW in a real dataset with a comparison to C3D3a_2C, the
next section is for the result of C4D2a_2C. Table 5 shows the number of trials per subjects
for C4D2a_2C used in this article. The C4D2a_2C dataset is composed of nine subjects and
the predefined number of experimental trials.

Table 6 presents the results of classifying the MI of C4D2a_2C using EFA and using
BCICW. Compared to the EFA method, the BCICW method improved the variance of the
accuracy from 52.55 to 55.02 and reduced the variance of the accuracy performance among
subjects from 17.48 to 9.38; that is, all three subjects exhibited uniform or consistent accuracy
when BCICW was applied. Without whitening a sample output of testing results for BCI
C4D2a_2C is given. From the given data, the whitening of a sample output of testing results
for C4D2a_2C is given. As shown Boxs 4 and 5, from the two outputs, BCICW reduces the
variance among subjects significantly, thus minimizing the discrepancy existing between
BCI experiment participants.
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Figure 6. (a,b) Covariance matrix variances of C3D3a_2C for the first subject without BCICW method;
(c) enlarged figure of (a,b); (d,e) covariance matrix variances of C3D3a_2C without whitening method;
(f) enlarged figure of (d,e).
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Table 5. The C4D2a_2C dataset composed of nine subjects and the predefined number of experimental
trials.

Subject 1 2 3 4 5 6 7 8 9

Class
(# of trials)

Left 72 72 72 72 72 72 72 72 72
Right 72 72 72 72 72 72 72 72 72

Table 6. Variance comparison according to classification methods for C4D2a_2C.

Subjects

1 2 3 4 5 6 7 8 9 Mean Variance

Accuracy EFA 53.47 52.08 55.55 55.55 54.16 45.13 58.33 47.72 51.38 52.55 17.48
Whitening 52.08 50.69 52.08 58.33 55.55 59.02 58.33 54.16 54.86 55.02 9.38

Box 4. A sample output of EFA testing results for C4D2a_2C.

% EFA primitive classic mode (Whon=0 & EFA_c=1)
dataset: C4D2a_2C
subject 1 : acc 53.472222
subject 2 : acc 52.083333
subject 3 : acc 55.555556
subject 4 : acc 55.555556
subject 5 : acc 54.166667
subject 6 : acc 45.138889
subject 7 : acc 58.333333
subject 8 : acc 47.222222
subject 9 : acc 51.388889
mean 52.55, median 53.47, variance 17.48

Box 5. A sample output of BCICW testing results for C4D2a_2C.

% Whitening classic mode (Whon=1 & EFA_c=1)
dataset: C4D2a_2C
subject 1 : acc 52.083333
subject 2 : acc 50.694444
subject 3 : acc 52.083333
subject 4 : acc 58.333333
subject 5 : acc 55.555556
subject 6 : acc 59.027778
subject 7 : acc 58.333333
subject 8 : acc 54.166667
subject 9 : acc 54.861111
mean 55.02, median 54.86, variance 9.38

Figure 7a,b present the covariance matrix of C4D2a_2C for the first subject when the
EFA method was applied. Figure 7c,d depict the covariance matrix of C4D2a_2C for the
first subject when BCICW was applied.

Figures 6b and 7b shows the diagonal component of the covariance matrix before
BCICW, and the color of the diagonal component is varied because of non-unity. In contrast
to this, Figures 6e and 7e show the diagonal component of the covariance matrix after
BCICW, and the color of the diagonal component is monotone because of unity. The
monotonic color in the diagonal component of the covariance matrix is a key improvement
for obtaining the feature extraction for the BCI dataset.
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Figure 7. (a,b) Covariance matrix variances of C4D2a_2C for the first subject without BCICW method;
(c) enlarged figure of (a,b); (d,e) covariance matrix variances of C4D2a_2C for the first subject without
whitening method; (f) enlarged figure of (d,e).
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In handling or manipulating covariance matrices, there are two kinds of components
such as a diagonal component and an off-diagonal component. The diagonal terms refer
to the variance or auto-correlation, and the off-diagonal terms represent cross variance
or cross-correlation. From Figure 6, we observed the covariance of BCI data in channel
direction is not diagonal, and thus, the measured data on each channel affected each
different channel. That is the phenomenon of channel dependence in 10–20 systems. Based
on this motivation, we tried to minimize channel dependence among the measured data
in electrodes by maximizing the diagonal terms to unity and minimizing the off-diagonal
terms, i.e., whitening the data. In fact, the covariance matrix indicates the correlation
between data; however, the variance of each trial data is not the same, as is the case with
the diagonal components of the covariance matrix. Therefore, a problem occurs that the
weight of data with a large variance is simply increased when whitening is performed.
Because the whitening method for the channel causes the variance of each trial data to be
unity, the variance of all trial data is unity all the same.

Because of whitening in channel direction, the independent eigenface for each class is
unique and distinguishable. In addition, the Euclidean distance between the coefficients of
left and right classes has been increased. Those contributions result in improved accuracy
and a reduced variance.

4. Conclusions

The main purpose of this study was to demonstrate an improvement in the accuracy
variance when using the BCICW technique for MI classification. This technique can improve
the accuracy for MI classification of BCI systems. Specifically, this study aimed to improve
the classification accuracy variance when systematically analyzing and revising the EFA
with whitening methods, which process EEG signals as neuro images according to each
trial. In the MI classification problem, which is a representative problem for EEG data
classification, unlike the common spatial pattern method (CSP), which was mainly used in
existing studies, the BCICW method considers signals as whitening-sense neuro images so
that it is possible to extend it to classify more than two classes.

However, in the statistical signal processing framework for EEG, signal data exhibit
different and time-varying characteristics depending on the viewpoint of the direction
in which the data are interpreted because EEG signal data are 3D data composed of
time, channel, and trial. To solve this problem, a whitening method was proposed to
guarantee the channel independence for the channel data of the source signal in the feature
extraction process from the cooperating EFA method. In BCI classification problems, the
accuracy variance among participant subjects is an indispensable and crucial consideration
to minimize unfairness issues between subjects.

When analyzing and evaluating each attempt for the BCI implementations, the out-
come was that for C3D3a_2C, accuracy variances of 58.33 and 11.21 without and with
BCICW, respectively, were recorded; for C4D2a_2C, accuracy variances of 17.48 and
9.38 without and with BCICW, respectively, were recorded, which demonstrates a dramatic
decrease in the accuracy variance. In fact, the EEG data for the study of the MI classification
problem are the data from three subjects of the C3D3a and the nine subjects of C4D2a_2C,
which was used in previous related studies. Therefore, our proposed BCICW technique
based on Gram–Schmidt orthogonalization could be effective in reducing the variance for
MI classification of BCI applications and provides a constructive testing framework for BCI
classification problems.
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EEG Electroencephalogram
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EFA Eigenface analysis
C3D3a_2C BCI competition III data set IIIa for two classes
C4D2a_2C BCI competition IV data set IIa for two classes
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