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Abstract: In smart cities and smart industry, a Battery Management System (BMS) focuses on the
intelligent supervision of the status (e.g., state of charge, temperature) of batteries (e.g., lithium battery,
lead battery). Internet of Things (IoT) integration enhances the system’s intelligence and convenience,
making it a Smart BMS (SBMS). However, this also raises concerns regarding evaluating the SBMS
in the wireless context in which these systems are installed. Considering the battery application,
in particular, the SBMS will depend on several wireless communication characteristics, such as
mobility, latency, fading, etc., necessitating a tailored evaluation strategy. This study proposes an
IEEE P2668-Compatible SBMS Evaluation Strategy (SBMS-ES) to overcome this issue. The SBMS-ES
is based on the IEEE P2668 worldwide standard, which aims to assess IoT solutions’ maturity. It
evaluates the characteristics of the wireless environment for SBMS while considering battery factors.
The SBMS-ES scores the candidates under numerous scenarios with various characteristics. A final
score between 0 and 5 is given to indicate the performance of the SBMS regarding the application
demands. The disadvantages of the SBMS solution and the most desired candidate can be found with
the evaluated score. SBMS-ES provides guidance to avoid potential risks and mitigates the issues
posed by an inadequate or unsatisfactory SBMS solution. A case study is depicted for illustration.

Keywords: IEEE P2668; Internet-of-Things; smart battery management

1. Introduction

Battery sales are growing in the global market. As predicted by Grand View Research,
the global battery market size achieved USD 108.4 billion in 2019, and it is expected that
growth with a Compound Annual Growth Rate (CAGR) of 14.1% from 2020 to 2027 will
occur [1]. The growth of the battery market, including lithium and lead-acid batteries, is
mainly attributed to the demand for automotive and renewable energy applications [2,3].
Besides, batteries are employed in other areas, such as solar power plant energy storage,
data centers, offshore drilling platforms, north and south poles, and airplane and vehicle
cranking [4].

The usage of batteries requires extra attention, particularly in the critical applications.
Otherwise, an inappropriate installation or use may cause additional costs or even accidents
such as fires or explosions. The main risk of the battery usage is from the operating tem-
perature, influenced by the internal chemical processes of the battery [5]. The reasons are
twofold: on the one hand, the life of batteries decreases substantially when the temperature
rises. As a result, the battery’s maintenance expenses will increase. On the other hand,
the effects can be devastating when batteries are exposed to severe temperatures. The
expansion of frozen electrolytes at low temperatures and State-of-Charge (SOC) can cause
battery ruptures. In addition, uncontrolled reactions, thermal runaway, may occur due to
a high operating temperature. A thermal runaway is a self-heating process that leads the
battery to shut down or explode [6,7]. Due to the positive net heat energy in processes, the
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exothermic reaction in batteries is self-sustaining. Hence, the safe employment of batteries
raises many concerns considering these mentioned risk features. Furthermore, extreme
caution should be particularly paid when batteries are deployed in critical applications, to
prevent severe consequences.

Hence, monitoring battery status during the operation is essential to prevent risks [8].
Smart Battery Management Systems (SBMSs) are proposed to complete such tasks by
implementing the supervision of various critical features, such as operating temperature,
State of Health (SOH), SOC, etc. Traditional BMSs employ Controller Area Network (CAN)-
bus and I2C/SPI communication protocols. However, traditional BMSs are believed to
have unreliability, high cost, and complexity as negatives, which have resulted in the
emergence of new types of BMS [9]. Compared to conventional BMS, the SBMS applies
wireless communication methods to report the monitoring results, providing improved
reliability, lower cost, and sensor deployment feasibility [9]. With wireless communication
technologies employed, the SBMSs is recognized as one of the many Internet-of-Things
(IoT)-based smart applications. The IoT refers to the connection of physical items (“things”)
equipped with various elements and technologies, including sensors, software, etc., to
exchange data with other devices and systems through the internet [10]. These physical
objects can share and gather data with minimum human interaction, using state-of-art
technologies, such as big data analytics, cloud computing, and mobile communications.

Various categories of SBMS, including experimental or model-based methods, have
been presented to contribute to battery status such as temperature, etc. However, the SBMS
also brings new challenges. A failure may occur if the wireless communication techniques
are inappropriately applied. For example, wireless communication techniques with high
latency are unsuitable for time-critical SBMSs. However, a general SBMS evaluation
strategy is lacking to address this challenge. As a result, developers are not able to evaluate
the performance of their SBMS, and it is hard to determine the best configuration for
their applications.

To solve this problem, the SBMS evaluation strategy (SBMS-ES) is proposed in this
paper. The SBMS-ES is a comprehensive evaluation strategy which considers the impact
of the IoT on the SBMS. Integrating the IEEE P2668 global standard makes the SBMS-ES a
general strategy that could be widely applied. The SBMS-ES identifies the essential features
of the SBMS and designs a scoring guideline for each of them. A weighted average value
is calculated as the final score, based on the evaluated sub-scores of attributes, to indicate
the overall performance of the SBMS. The weighting is obtained through implementing
an Analytic Hierarchy Process (AHP), a broadly utilized decision-making procedure. The
final score is applied to rank the candidate SBMS solutions, to find the most desired one
regarding the scenario demands.

The contributions are as follows:

1. The SBMS-ES is presented, the first of its kind, to evaluate the performance of the
SBMS. With SBMS-ES, SBMS designers can determine the optimum configuration
referring to the evaluated score.

2. Critical features for SBMS evaluation are identified in SBMS-ES. A general scoring
scheme is designed, based on the identified features.

3. A case study is illustrated, to describe the usage of the SBMS-ES.

The structure of the paper is as follows: The relevant works associated with SBMS
are addressed in Section 2. Then, Section 3 offers specifics about SBMS-ES. Section 4
depicts a case study, to describe the implementation of SBMS-ES. Section 5 summarizes
and concludes.

2. Related Works

Cloud computing and IoT have been widely utilized by researchers, based on tra-
ditional BMS, to design SBMS solutions. Kim et al. [11] introduced IoT-enabled battery
conditional monitoring and fault diagnosis for Li-ion large-scale applications. Moreover,
a digital battery twin was developed, by combining battery monitoring and data-driven
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modeling approaches. In [12], an SOC estimate method for lithium-ion and lead-acid
batteries was based on an adaptive extended H-infinity filter. In addition, a state-of-health
estimate system with particle swarm optimization was designed to monitor the battery’s
capacity and power degradation as it ages. With cloud computing and IoT, a digital twin
was built to implement monitoring simultaneously. Xinrong et al. [13] proposed a Wireless
Smart Battery Management System (WSBMS) to manage battery cells in electric vehicles
(EVs). The developed system aimed to improve performance in fault tolerance and scala-
bility. A balancing algorithm was presented to balance battery cells with various features,
such as numbers. Friansa et al. [14] suggested an IoT-based battery monitoring system for
microgrid batteries. A human–machine interface was designed using an ExtJS/HTML5
framework to store information, which can be accessed on a desktop. Tetsu et al. [15]
developed a cloud-connected battery management system that monitors shared batteries’
status. The designed system continually connects to the batteries, managing their SOC
and monitoring changes in their attributes via a location data cloud. It supports e-mobility
and can be applied to Electric Vehicles (EV). The authors of [16] presented a smart battery
management system to prolong battery life. Authors of [17] proposed a control strategy
to minimize the side reaction-induced capacity loss, by changing the cell series-parallel
configuration dynamically inside the battery pack.

In addition to the aforementioned SBMS, researchers also have proposed works aiming
to study the performance of the wireless communication protocol in the BMS. Alonso
et al. [18] researched wireless channel parameters and data rates in a BMS. The main
work was to estimate the transmission capacities of different antenna types in various
frequency bands. The study also concentrated on Planar Inverted-F- Antenna and CAN-
bus communication. Kumtachi et al. [19] improved the reliability of a multi-hop wireless
communication protocol for BMS electric vehicles. Specifically, the approach achieves
successful communication within 20 ms for over 99% of packets by overhearing those
incoming packets without optimal routes.

The mentioned works have made remarkable contributions to the study of SBMS.
However, these works solely focused on battery or communication performance monitoring
in BMS. The field of SBMS lacks a systematic strategy for evaluating the overall performance
of solutions. As a result, designers cannot decide the best configuration for their SBMS. A
comprehensive evaluation of SBMS is necessary.

3. P2668 Interoperable Standardized Management Framework
3.1. IEEE P2668 Global Standard

The IEEE P2668 standard defines methods and criteria for evaluating the performance
of IoT objects, the evaluation outcome of which is expressed as a quantitative indicator,
namely the IDex [20]. The IDex categorizes the maturity of (IoT) objects into five levels,
ranging from one (the lowest maturity) to five (the most excellent maturity) [21]. The
final IDex value is expected to satisfy the requirement of IoT stakeholders for a clear
indication. IDex can also be used to forecast performance changes under various operating
circumstances and to present recommendations for increasing the performance of IoT
objects. The main objective of IDex is to evaluate the performance of IoT solutions and
provide advice on corresponding improvements.

3.2. Overview of SBMS-ES

The SBMS can be evaluated by IDex since it utilizes IoT technology. The specialized
scheme for the employment of IDex in the SBMS is called SBMS-ES (evaluation scheme).
This section introduces the general construction of SBMS-ES, step by step. The quantitative
score of each SBMS solution can be obtained to its comprehensive performance, applying
SBMS-ES. By comparing the final scores of SBMS with various configurations (e.g., different
communication protocols), the best solution among the candidates can be decided.

A flowchart of SBMS-ES is illustrated in Figure 1. It is divided into three subsections,
i.e., the attributes evaluation, the weighting allocation, and the final score calculation.
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The attribute evaluation introduces the identified essential attributes in SBMS-ES and
the justifications. Furthermore, the evaluation principles of the attributes are illustrated.
The weighting allocation describes how the weighting for each attribute is determined.
The final score calculation depicts the way to calculate the final score and select the most
desired SBMS solution. The details of these subsections are specified in the following
Sections 3.3–3.5.
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3.3. Evaluation Attributes in SBMS

Five key attributes are typically identified in SBMS-ES for evaluation, i.e., sensor instal-
lation, monitoring performance, mobility, latency, and fading. The attribute descriptions
and sub-scores evaluation principles for each attribute are given in this section.

3.3.1. Senor Installation

As mentioned, the SBMS implements battery status monitoring based on the relative
sensors’ feature measurements. To be specific, a straightforward method directly measures
the battery status of concern. On the opposite, the indirect method measures the other
features to implement data modeling, i.e., estimating the status of concern based on the
measured features. Both methods will need sensors for the measurement. Hence, the
installation of sensors is part of the SBMS evaluation.

Sensor installation is evaluated in two aspects, i.e., the location of sensors, and the
number of sensors. As discussed previously, installing a sensor inside a battery will change
the original structure, which entails risks and extra costs. On the contrary, the influence
is limited if the sensors are installed outside the battery, e.g., fixed on the battery surface.
Hence, it is encouraged to install sensors outside.

Moreover, the number of sensors utilized to obtain the concentrated battery status will
be considered when evaluating SBMS. The monitoring scheme that needs more measure-
ments will require more sensors to be deployed, which will bring an increase of installation
costs. Moreover, a larger packet size is requested by such schemes for data transmission.
The monitoring scheme with fewer sensors is more recommended for the SBMS when the
monitoring performance is consistent.
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3.3.2. Monitoring Performance

The monitoring performance represents the estimation accuracy of the battery status,
which can be measured by the Mean Absolute Error (MAE) [22]. The value of the MAE of
the SBMS needs to be as low as possible to improve its evaluation score of this aspect.

3.3.3. Mobility

The mobility of a communication network is the technology that enables nodes to make
communications with a moving status. A moving node that employs a communication
technique without the function of mobility will suffer from poor communication quality.

The SBMS application scenario can be stationary or mobile [12]. Considering this,
the mobility of the applied IoT technology in SBMS needs to be considered. If the battery
(such as a lead-acid battery) is utilized in a moving vehicle, the capacity for mobility of the
network is essential. Otherwise, mobility is not important in the SBMS if the batteries are
fixed in the application scenario.

3.3.4. Latency

Latency is the period between the point where the transmission signal is generated
and the point where the same signal is received. In time-critical applications, the latency is
decisive. Otherwise, the SBMS may fail.

3.3.5. Fading

Fading indicates the loss of signal strength between the transmitter and the receiver. It
is an essential parameter for calculating the received signal strength. In brief, the received
signal strength can be calculated using the Equivalent Isotropically Radiated Power (EIRP)
minus loss caused by fading. The transmission may fail if the received signal strength is
lower than the sensitivity of the receiver. Fading is generated when the signal encounters,
and becomes reflected, diffracted, and distributed by, obstacles along its transmission path.
It is necessary to simulate fading using a propagation model before network installation.
Low-quality communication will be caused if the demands of fading are not satisfactory.

There are two distinct forms of fading [23]. Small-scale fading is the short-term
variation in the signal envelope induced by a local multipath. This is noticed at distances
of around half a wavelength. Large-scale fading is the second form of fading.

Rician fading is a regular small fading, which is illustrated as an example. The
probability density function (PDF, i.e., the density of a continuous random variable) of
Rician fading is given in Equation (1), as follows [24]:

fRician(x) = 2x
K + 1
ΩR

exp
(
−K− x

(K + 1)x2

ΩR

)
I0

2x

√
K(K + 1)

ΩR

 (1)

where K denotes the ratio of the power of the Light-of-Sight (LoS) signal component to
the power of the other NLoS signal components, ΩR represents the average power of the
received signal, and I0 is the 0th order modified Bessel function of the first kind.

There are multiple kinds of propagation models developed for various scenarios
(e.g., indoor, outdoor) and terrains (e.g., urban, rural), etc. The proper models should
be implemented according to the application demands. Not all propagation models are
detailed in this article, considering the page limit.

3.3.6. Scoring

The scoring principles for attributes of SBMS-ES are shown in Table 1. The user of
the SBMS-ES needs to check the performance of the candidate solution from the identified
five aspects. As illustrated, there are five qualified levels for the attributes (highest 5).
Regarding the sensor installation, the installation positions and the number of sensors are
evaluated. If the sensors are installed outside the battery, and the no. of sensors is small,
a score of 5 is evaluated. The monitoring performance is indicated by the MAE, which
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illustrates the difference between the estimated and real values. Similarly, a score of 5 will
be given if the MAE of the predicted value (of temperature, SOC, etc.) is lower than 0.5%.
Mobility checks whether the scenario requires mobility and whether the employed protocol
supports it. The highest assessment score is obtained if both the mobile and stationary
application scenarios can be satisfied. Moreover, the latency demanded by the application
and achieved by the SBMS solution is examined. A score of 5 is provided if the application
requires low latency and this is satisfied. Finally, the fading is modeled to check whether
the signal can be transmitted successfully. The highest score can be given when the most
strict fading requirement is achieved.

Table 1. Attribute scoring principle for SBMS-ES.

Score Level Sensor Installation Monitoring
Performance Mobility Latency Fading

1 Inside, large sensor no. MAE > 10% Mobile, not satisfied High latency, not
satisfied

Short distance,
not satisfied

2 Inside, small
sensor no. 10% ≥MAE > 5% Mobile or stationary,

not satisfied
Low latency, not

satisfied
Long distance,
not satisfied

3 Outside, large
sensor no. 5% ≥MAE > 1% Stationary, satisfied High latency,

satisfied
Short distance,

satisfied

4 Outside, medium
sensor no. 1% ≥MAE > 0.5% Mobile, satisfied Medium latency,

satisfied
Medium distance,

satisfied

5 Outside, small
sensor no. 0.5% ≥MAE Mobile and

stationary, satisfied
Low latency,

satisfied
Long distance,

satisfied

3.4. Weighting Allocation in SBMS-ES

Five essential attributes are identified and discussed in the above sections. After
evaluating these attributes, a final grade is necessary, as a comprehensive estimation of all
aspects. A reasonable weighting allocation is required to calculate the final grade and to
obtain the final score.

The weighting allocation utilizes a decision-making method, namely the analytic
hierarchy process (AHP), which was developed by Saaty et al. [25] to make decisions in
multi-criteria decision-making (MCDM) problems. In MCDM problems, multiple criteria
and alternatives exist, and the decision-maker needs to determine the best alternative based
on the importance of the criteria. A rough description of the AHP steps is as follows.

At first, the AHP users need to compare the relative degree of importance between
every two attributes. A score with a nine-point scale is given as the comparison result.
The correspondence between the score and the degree of relative importance is shown in
Table 2 [25]. If reversed, the reciprocal of the score will be considered as the result of the
comparison. For instance, if attribute A is extremely more important than attribute B, a
score of nine is given as the comparison result for A to B. Conversely, a score of 1/9 is given
for B to A.

Table 2. The intensity of importance and relative numerical value.

Intensity of Importance Numerical Value

Equal importance 1
Moderate importance 3

Essential or strong importance 5
Very strong importance 7

Extreme importance 9
When a compromise is needed 2, 4, 6, 8

All identified attributes need to be compared pairwise. Assume that there are N at-
tributes, then the paired comparison needs to be performed (N + 1)N/2 times. A pairwise
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comparison matrix is obtained, to illustrate the comparison results, which is indicated by
Equation (2).

C =


1 c12 c13 · · · c1N

c21 1 c23 · · · c2N
c31 c32 1 · · · c3N
...

...
...

. . .
...

cN1 cN2 cN3 · · · 1

 (2)

where cij denotes the relative importance for attribute i to attribute j.
Then, the weighting vector w that denotes the weighting allocation is the normalized

eigenvector corresponding to the maximal eigenvalue λmax:

A× I = λmax× I (3)

w =
I
‖I‖ (4)

where I is the eigenvector corresponding to λmax.
Before applying the obtained weighting vector, it is necessary to validate whether the

pairwise matrix is consistent. For instance, assume that attribute A is extremely important
compared to attribute B, but of very strong importance compared to attribute C. It will be
not reasonable if attribute B is more important than attribute C. Such a condition can be
prevented if the comparison consistency checking is passed.

To examine the comparison consistency, the Consistency Ratio (CR) is calculated using
the Consistency Index (CI) and Random Index (RI).

CR =
CI
RI

=
(λmax − N)/(N − 1)

RI
(5)

where RI values are defined in Table 3 [25].

Table 3. The RI values for various N.

N 1 2 3 4 5 6 7 . . .

RI 0 0 0.58 0.90 1.12 1.24 1.32 . . .

The weighting vector w that passes the consistency checking will be utilized to assign
weighting for each attribute and calculate the final score in next section.

3.5. Final Score Calculation in SBMS-ES

With the evaluated sub-scores and weightings for all attributes, the final score can be
calculated using the formula below.

S f inal =
5

∑
I

Ssub,i × wi (6)

where Ssub,i and wi represent the sub-score and weighting for the attribute i.
Final scores of the SBMS with different configurations are obtained. The candidate

solution with the highest final score is determined as the best solution.

4. Case Study
4.1. Scenario Specification

A scenario environment from [26] was utilized in this case study. It was assumed
that the SBMS will be installed in a rural district with about a 10-km distance between
the transmitter and receiver. Appropriate large-scale fading will be applied. Besides,
it was assumed that the battery was applied in the data center. Then, mobility is not
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necessary. Furthermore, the SBMS aimed to monitor the internal temperature, which
required an adaptive report for the rapid monitoring. Hence, the low latency is demanded
in this scenario.

4.2. Candidate Solutions

Three candidate solutions were proposed to illustrate the usage of SBMS-ES.

4.2.1. Solution I

This section proposes an AI-based battery internal temperature monitoring approach
for SBMS as a case study. Specifically, two features were measured using the sensors, i.e.,
ambient temperature and input current. Utilizing an AI algorithm, the internal temperature
could be predicted with the MAE of about 5%. In addition, LoRaWAN was applied to
implement a communication system with the spreading factor of 12 using Class A (i.e.,
an operation mode for LoRaWAN device). The EIRP was assumed to be 14 dBm (i.e.,
decibel-milliwatts), while the sensitivity of the receiver was −148 dBm [27].

First, the sensors were all installed outside the battery. Meanwhile, only two features
were measured. Hence the sub-score was 5 for this aspect. The MAE was 5%. Hence, a sub-
score of 3 was given for this attribute. LoRaWAN could meet the requirement of stationary
applications. Hence, a sub-score of 3 was given for this attribute. The communication
technology needed to satisfy the low latency requirement. Unfortunately, LoRaWAN cannot
achieve low latency for the rapid monitoring. Hence, a sub-score of 2 was given for this
attribute. As advised by [26], the fading was modeled using the Oulu model. After the
fading calculation, the received power was estimated as−138 dBm, which is larger than the
sensitivity of −148 dBm for LoRaWAN. Hence, a sub-score of 5 was given for this attribute.

4.2.2. Solution II

This part proposed another SBMS solution. In this case, the temperature was directly
measured using an internal sensor. The advantage of this method was the high accuracy,
with the MAE of about 0.1%. Moreover, narrowband IoT (NB-IoT) was applied. It was
assumed that the EIRP was 14 dBm, while the sensitivity was −135 dBm [27].

Similarly to the evaluation of Solution I, the scores for Solution II are given. The
sub-scores for these five attributes are 2, 5, 3, 5, and 2.

4.2.3. Solution III

The third solution was a combination of I and II. It utilized the AI-based prediction
algorithm using two sensors installed outside the battery, with the MAE of 5%, as mentioned
in Solution I. NB-IoT was utilized for communication, same as Solution II. The sub-scores
for these five attributes are 5, 3, 3, 5, and 2 in Solution III.

4.3. Weighting Calculation

Before calculating the final score, weighting allocation was implemented to decide the
importance of the criteria in a specific scenario using AHP. The structure of the AHP appli-
cation is shown in Figure 2. Regarding the goal of performance examination, the intensities
of importance for the five attributes needed to be investigated. The degree of importance
between every pair of attributes was obtained based on the scenarios’ requirements. The
following shows a detailed example of weighting allocation using AHP.

Regarding this case, the temperature monitoring method for the batteries will be
installed at the data center. Hence, the feature of mobility was not critically necessary.
Thus, less weighting could be allocated to this attribute. The monitoring performance and
sensor installation are important to ensure the battery system’s reliability. Hence, these
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two attributes required more weighting. Moreover, a priority level of latency and fading
follows from this. As a result, a typical comparison matrix is provided as follows.

C =


1 c12 c13 c14 c15

c21 1 c23 c24 c25
c31 c32 1 c34 c35
c41 c42 c43 1 c45
c51 c52 c53 c54 1

 (7)
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As N equals 5, CR could be written as:

CR =
(λmax − 5)/(5− 1)

1.12
(8)

CR needs to be lower than 0.1 to pass the consistency check. Otherwise, the comparison
matrix needs to be modified.

Utilizing Equations (3), (4), and (6), w = [0.42, 0.32, 0.04, 0.13, 0.09]T . After consistency
checking using Equation (7), CR = 0.04939 < 0.1. Hence, the weightings for the five
attributes are 0.42, 0.32, 0.04, 0.13, and 0.09 respectively. The final score is calculated as
3.89. The final score indicates that the performance is good as a whole. However, it can be
further improved.

4.4. Final Score Calculation

Based on the sub-scores and the weightings, the comprehensive performance of each
SBMS solution could be evaluated, as shown in Table 4. Regarding Solution I, it did not
perform well for the latency, but performed well on sensor installation and fading. As
for Solution II, the inside-installed sensor decreased its sub-scores for sensor installation.
However, this scheme also achieved high sub-scores for monitoring performance. As a
result, the developer could alter the IoT technique from LoRaWAN to NB-IoT for Solution I,
which resulted in Solution III. The final score of Solution III was calculated as 4.01, which is
the highest among the three candidates. Hence, Solution III is considered the most desirable
configuration in such a scenario.

Table 4. Case feature description and evaluation.

Item

SBMS-ES Score

Sensor
Installation

Monitoring
Performance Mobility Latency Fading Final Score

Solution I 5 3 3 2 5 3.89
Solution II 2 5 3 5 2 3.39
Solution III 5 3 3 5 2 4.01
Weighting 0.42 0.32 0.04 0.13 0.09 1
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5. Conclusions

The popularity of SBMS increases the development of relevant applications. However,
SBMS designers have difficulties determining the most desired solution, as there is no evalu-
ation method for SBMS. To address this issue, this paper presents an IEEE P2668 compatible
evaluation strategy for SBMSs, namely SBMS-ES. The SBMS-ES identifies five essential
attributes for SBMSs and defines grading principles for each attribute. Furthermore, a
final score between 0 and 5 for the SBMS is obtained using a weighted calculation of the
sub-scores, where the weighting is given using the AHP. With the quantitative evaluation
scores, designers can compare the different solutions of SBMSs, regarding the scenario, and
determine the best candidate. Moreover, the disadvantages of their SBMSs that may induce
failure can be found when evaluating the attributes and making the related adjustments.
For example, appropriate IoT technologies can be recommended regarding the demands of
the application scenario of the SBMS. In particular, the SBMS-ES is compatible with IEEE
P2668, a developing global IEEE standard for IoT maturity. The development of SBMS-ES
represents a pioneering study of IEEE P2668 in SBMS. More evaluation strategies could be
designed for other IoT-related scenarios by referring to this work.
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