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Abstract: In view of the risk of collision with humans or equipment arising from a lack of protection
in the operation process of combined support and anchor equipment on the heading face, this paper
designs a safety interlock system for combined support and anchor equipment. Firstly, a mathematical
model of hydraulic power system control and a valve control system based on feedforward–feedback
optimization were established according to the power demand of the combined support and anchor
equipment. Secondly, according to the reliability indexes of the safety interlock system, corresponding
sensor, logic control and execution modules were designed. Ultrasonic sensor groups were arranged at
the key positions of the combined support and anchor equipment to capture the position information
in real time when the equipment was moving. Thus, the pump-valve hydraulic system was controlled
through closed-loop feedback. The experimental results show that the safety interlock system of
the combined support and anchor equipment can adjust the revolving speed of the permanent
magnet synchronous motor (PMSM) in real time according to the distance from the obstacle, so as to
control the pump outlet flow, and then perform interlocking safety control of the hydraulic cylinder’s
movement speed. The system can effectively prevent damage to the surrounding equipment or
personnel arising from equipment malfunction.

Keywords: combined support and anchor equipment; safety interlock system; feedback control;
safety interlock control

1. Introduction

With the development of coal mining technology, mining speed on the working face
is becoming faster and faster, and most mines in China face a tension between mining
and drivage [1,2]. The drivage speed plays a decisive role in coal mining but is largely
limited by the operational safety of supporting, bolting and transportation links [3]. The
anchor support device is mainly composed of support equipment and anchor drilling
equipment, which can achieve the coordinated and efficient operation of tunneling, anchor
drilling and support at the same time, mainly including crawler-type, wheel-type and
step-type walking modes. However, due to a lack of safety monitoring and early warn-
ing monitoring during operation, equipment collision damage and casualties can occur.
In order to improve drivage speed and operation safety, domestic and international re-
searchers have designed drivage, bolt and support equipment of various structures to solve
“mining–drivage imbalance” and “drivage–support imbalance” [4,5]. Based on the ACP
theory—an excavation support anchor intelligent control theory—Yang et al. proposed
the anticollision and cooperative operation of tunneling, support, and anchor equipment
in the complex environment of the roadway [6]. Zhang et al. used a virtual environment
development platform and the method of combining virtual ray and bounding box to
achieve collision detection and early warning monitoring between tunneling and anchor
support equipment [7]. Javaid et al. studied effective channel modeling, visible light com-
munication characteristics and underground communication structure in the harmful and
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unpredictable environment of underground coal mines [8–10]. In view of the complex
working environment and multiple safety hazards on the heading face, this paper designs
the sensor module, logic control module and execution module of a safety interlock system
and performs a safety interlock control experiment for the purpose of improving the safety
properties of support and anchor equipment.

2. Design of a Sensor Module for Safety Interlock System

At present, complex equipment for industrial safety production is usually self-protected
by building safety interlock systems. A safety interlock system is mainly composed of a sen-
sor module, a logical solution module, and an executor module [11], with functions such as
environment perception, signal processing, logical judgment, and decision execution [12].

Because the combined support and anchor equipment studied herein has the functions
of walking, supporting, bolting, etc., the sensor module should comprise monitoring
sensors at the advanced support equipment position, the bolter position, and the walking
equipment position. The monitoring sensors at the advanced support equipment position
are installed at the four corners on the top beam of the support equipment to monitor the
distance between the advanced support system and the other sub-equipment or obstacles
during movement support. The monitoring sensors at the bolter position are installed on
the support base of the jumbolter to monitor the distance between the jumbolter and the
surrounding obstacles when the jumbolter is not being operated. The monitoring sensors
at the walking equipment position are installed at the four corners of the gantry frame
to monitor the distance between the whole machine and the obstacles in the moving and
turning process. The logic diagram of the sensor module is shown in Figure 1.
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Figure 1. Logical block diagram of the sensing module of the safety interlock system.

S1: Initialize the safety interlock system of support and anchor equipment.
S2: Judge whether the general safety interlock system of the stepping-type combined

support and anchor equipment is locked. If yes, the next step is performed; if no, the
system stops running and displays an error report.

S3: Judge whether the safety interlock system of the advanced support equipment is
locked. If yes, the next step is performed; if no, the system stops running and displays an
error report.

S4: Judge whether the safety interlock system of the bolter is locked. If yes, the next
step is performed; if no, the system stops running and displays an error report.
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S5: Judge whether the safety interlock system of the walking equipment is locked. If
yes, the next step is performed; if no, the system stops running and displays an error report.

3. Design of a Logic Control Module for Safety Interlock System

Due to the complex working conditions of the combined support and anchor equip-
ment, the flow demand of the hydraulic system varies greatly, so a single mode of flow
control can barely meet the needs of actual operation. This is the reason why this paper
adopts pump-valve collaborative control. At present, there are two types of pump-valve
collaborative control: the parallel type and tandem type. The parallel type is composed of
a relatively independent pump control system and valve control system; the tandem type
is composed of control valves in series in the pump control circuit. The parallel type has
high system reliability and working efficiency, but two independent hydraulic circuits are
needed, so the system structure is complex. The tandem type only requires one oil source,
so it has the advantages of simple structure, low cost and high reliability [13]. Considering
the mechanical structure and application position of the studied equipment, this paper
chooses the tandem-type pump-valve collaborative control system as the control mode of
the power system.

3.1. Modelling of the Pump Control Part for Pump-Valve Collaborative Control System

This paper chooses to power the system by using a permanent magnet synchronous
motor (PMSM) to drive the plunger pump.

3.1.1. Mathematical Model of PMSM in a Natural System of Coordinates

The basic equation of PMSM in a natural system of coordinates is established as
follows [14,15]:

U =

uA
uB
uC

 =

 R
R

R

iA
iB
iC

+
d
dt

ψA
ψB
ψC

 (1)

ψA
ψB
ψC

 =

Lm

 1 cos 2π/3 cos 4π/3
cos 2π/3 1 cos 2π/3
cos 4π/3 cos 2π/3 1

+ Lz

 1 0 0
0 1 0
0 0 1


iA

iB
iC

+ ψ f

 sin θe
sin(θe − 2π/3)
sin(θe + 2π/3)

 (2)

Te =
pn

2
∂

∂θm

[iA iB iC
]
·

ψA
ψB
ψC

 (3)

where
ωe = pnωm (4)

θe =
∫

ωedt =
∫

pnωmdt (5)

where Lm is the stator mutual inductance (H); Lz is the stator leakage inductance (H); ψA,
ψB, and ψC are the flux linkage of the three-phase winding (Wb); ψf is the flux linkage of
the fundamental wave of the permanent magnet (Wb); iA, iB, and iC are the current of the
three-phase winding, A; uA, uB, and uC are the phase voltage of the three-phase winding
(V); pn is the pair of poles; R is the resistance of the three-phase winding (Ω); θe is the rotor
electrical angle (rad); θm is the mechanical angle (rad); ωe is the electrical angular velocity
(rad/s); ωm is the mechanical angular velocity (rad/s); Te is the electromagnetic torque
(N·m).

3.1.2. Mathematical Model of PMSM in a Synchronous Rotating Reference Frame

Under the constraint of constant amplitude, the Clarke transformation and the Park
transformation were performed successively to convert the PMSM equation from the natu-
ral system of coordinates to the synchronous rotating reference frame d-q. The coordinate
transformation matrix was TCP:
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[
fd fq

]T
= TCP

[
fA fB fC

]T
=

2
3

 cos θe cos
(
θe − 2π

3
)

cos
(
θe +

2π
3
)

− sin θe − sin
(
θe − 2π

3
)
− sin

(
θe +

2π
3
)

1
2

1
2

1
2

[ fA fB fC
]T (6)


ud = Rid +

dψd
dt −ωeψq

uq = Rid +
dψq
dt + ωeψd

ψq = Lqiq
ψd = Ldid + ψ f

(7)

where ud and uq are the d-q shaft voltage (V); id and iq are the d-q shaft current (A); ψd and
ψq are the d-q shaft flux linkage (Wb); Ld and Lq are the d-q shaft inductance (H).

Equation (7) is rewritten into the symmetric matrix equation below:[
ud
uq

]
=

[
R + d

dt Ld −ωeLq
−ωeLq R + d

dt Ld

][
id
iq

]
+

[
0

(Ld − Ld)(ωeid − pid) + ωeψ f

]
(8)

The electromagnetic torque (Te) is:

Te =
3pniq

2

[
id
(

Ld − Lq
)
+ ψ f

]
(9)

The output flow Qp of the hydraulic pump can be expressed as:

Qp = nD− KcPs (10)

where n is the revolving speed of the hydraulic pump (r/min); D is the rated displacement
of hydraulic pump (L/r); Kc is the leakage coefficient of the hydraulic pump; Ps is the inlet
pressure of the overflow valve (MPa).

The output oil of the pump control system passes the overflow valve to stabilize the
system pressure. From the internal flow balance equation of the overflow valve and the
balance equation of valve element stress, the transfer function between the inlet pressure of
the overflow valve Ps and the overflow quantity Qr can be obtained [3,11]:

G(s) = Ps(s)
Qr(s)

= mRs2+BRs+KR
ξpmRs2+(ξpmR+AAR)s+ξpKR+ξx AR

Qr = Qp −QL
AR = A− 2cdωrx0 cos θ
KR = Ks + 2cdωrPs0 cos θ
BR = A2R
ξp = cdωrx0/

√
2ρPs0 = Qs0/2Ps0

ξx = cdω
√

2Ps0/ρ = Qr0/x0

(11)

where mR is the overflow valve element mass (kg); AR is the equivalent area of overflow
valve element (m2); A is the sectional area of overflow valve element (m2); ω is the valve
port area gradient; x0 is the spring offset at the balance point (m); θ is the intersection angle
between the flux axis line and valve element axis line; KR is the overflow valve spring
equivalent stiffness; Qr0 is the steady-state value of overflow quantity; Ps0 is the system
pressure at the balance point (MPa); Ks is the spring stiffness; Qp is the hydraulic pump
output flow; QL is the load flow.

Therefore, the overflow valve inlet pressure can be expressed as:

Ps(s) =
[KmDum −QL(τms + 1)](mRs2 + BRs + KR)

KL(τms + 1)[ s2

ω2
R
+ 2ξRs

ωR
+ 1]

(12)

where Km is the motor speed gain coefficient; τm is the time constant; um is the control
voltage signal; KR is the equivalent stiffness of the overflow valve spring.
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3.2. Modelling of Valve Control Part of Pump-Valve Collaborative Control System

In order to facilitate analysis of the valve control process of the pump-valve collabora-
tive control system, this paper takes the activity of a hydraulic cylinder as the research object
and establishes the relationship equation between input current and output flow [13,16]:

Φs f (s) =
Xv

I
=

Ks f
s2

ω2
sv
+ 2ξsvs

ωsv
+ 1

(13)


QL = kqxv + kc(Ps − PL)

kq = ∂QL
∂xv

= cdω
√

Ps−PL
ρ

kc =
∂QL

∂(Ps−PL)
=

cdωxv

√
1
ρ

2
√

Ps−PL

(14)

where ωsv is the inherent frequency of the valve (rad/s); ξsv is the damping ratio of the
valve; Ksf is the valve’s main spool displacement gain (m/A); xv is the spool displacement.

Suppose the initial volume of the two cavities of the piston is V10 = V20 = V0, and
A1y � V0, A2y � V0; then, the flow continuity equation and the force balance equation of
the hydraulic cylinder are:{

QL = A dy
dt +

Vt
4βe

dPL
dt + PLCtc

A(P1 − P2) = APL = M d2y
dt2 + Bc

dy
dt + Ky + F

(15)

where Ctc is the total leakage coefficient.
Figure 2 shows the control block diagram of the established pump-valve cooperative

compound control system.
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Figure 2. Control block diagram of pump-valve cooperative compound control system.

3.3. Valve Control System Based on Feedforward–Feedback Optimization

General hydraulic control systems have a time lag; that is, when a large deviation
between the controlled object and the set value occurs, PID is driven to produce a reasonable
adjustment. In a different way, following the compensation principle, a feedforward control
system adjusts according to the change in perturbation or the given value. It has control
according to the magnitude of the disturbance after the disturbance takes place and before
the controlled variable changes to compensate for the impact of the disturbance on the
controlled variable. Therefore, in order to improve the stability of the designed safety
interlock control system herein, a feedforward control system was introduced to optimize
the valve control system, as shown in Figure 3. In Figure 3, the feedforward is inputted to
compensate for the steady-state error brought about by the flow change of the object, and
the load current feedforward is inputted to compensate for the steady-state error brought
about by load disturbance.
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4. Design of the Executor Module

The logical solution module encompasses signal processing, analysis and judgment,
decision output and other functions. First, the information collected by the sensor module is
inputted into the logic control circuit through the A/D conversion module for comparative
analysis with the preset threshold value. The logic module determines whether to perform
walking or turning according to the input information into the logic control circuit, so as to
avoid collision between the equipment and other equipment or personnel. At the same time,
the safety interlock system of the equipment protects the pump-valve collaborative control
system of the power unit to prevent the malfunction or maloperation of the equipment, so
as to improve the stability and safety of the equipment. The working principle of the logic
solution and executor module is shown in Figure 4.

S1: The signal measured by the sensor module is converted into a digital signal
through the A/D conversion module.

S2: The logic control circuit in the logic module is connected to the A/D conversion
module to receive the measured data, and then performs amplification, filtering and logical
judgment according to the allowable safe value set by the equipment.

S3: The decision signal is transmitted into the electromagnetic valve group and the
PMSM driver in the executor module, so as to realize the real-time dynamic control of the
pump-valve electrohydraulic system.

S4: The sensor module updates the monitored movement state of the combined
stepping-type support and anchor equipment, and repeats the work in steps 1–3.
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5. Experiment on the Safety Interlock System of Combined Stepping-Type Support
and Anchor Equipment

In order to realize the synchronization of the drivage, bolting and supporting processes
and improve efficiency, the hardware equipment is constructed according to the control
method of the safety interlock system for the combined support and anchor equipment, as
shown in Figure 5. The experimental device of support and anchor equipment is shown in
Figure 6.

The safety interlock system of the combined stepping-type support and anchor equip-
ment, shown in Figure 5, first arranges ultrasonic sensor groups at key positions around
the equipment to build a virtual working space. When the equipment moves or operates,
the safety interlock control system constantly updates the current threshold value, and
transmits the control signal to the pump-valve compound control system. An experiment
was carried out that targeted the safety interlock control system while the equipment
was moving or turning. A three-level control mode was preset according to the distance
between the equipment and the obstacle. The experimental results are shown in Figure 7.

According to Figure 7, when the distance from the obstacle (s) is ≥1000 mm, the
PMSM operates at a constant speed (ns = 1100 r/min); the moment the distance from the
obstacle becomes less than 1000 mm, the revolving speed of the PMSM rapidly drops,
fluctuates slightly, and then stabilizes at 940 r/min after 0.2 s; the moment the distance
from the obstacle becomes more than 1000 mm, the revolving speed of the PMSM surges to
1100 r/min and remains stable.

In the pump control system, the mechanical characteristics of the PMSM are controlled
according to Equations (7) and (8). According to Figures 8 and 9, the q-axis current values
and the d-axis voltage values of the motor change with the distance between the equipment
and the obstacle, and the change law is the same as the motor speed change law—that
is, when the distance between the equipment and the obstacle is small, there is a risk
of collision, so the control current and voltage of the motor are reduced to protect the
equipment from damage.
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It can be further seen from the flow change curves of the total pump outlet flow and the
actuator in Figures 10 and 11 that the moment the equipment moves to less than 1000 mm
from the obstacle, the pump outlet flow decreases from 17.45 L/min to 14.26 L/min within
just 0.3 s. At the same time, the system pressure changes accordingly at different stages to
prevent equipment malfunction damage to the surrounding obstacles.
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Figure 10. The curve of pressure flow based on safety interlock control system.
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6. Conclusions

The safety interlock system is an important part of combined support and anchor
equipment, which plays a crucial role in ensuring the safety of the equipment in stepping-
type movements, supporting and bolting operations. Based on the mobile safe operation
requirements for the combined stepping-type support and anchor equipment, this paper
presents a safety interlock protection logic diagram, completes the design of a sensor
module and a pump-valve collaborative control system for the safety interlock system,
establishes an experimental platform for the safety interlock control system of the combined
stepping-type support and anchor equipment, and verifies the reliability of the safety inter-
lock system and the closed-loop safety interlock control. This study is of great significance
for improving the efficiency of collaborative operation on roadways and reducing the
incidence of coal mine accidents.
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