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Abstract: Sleep plays a critical role in stroke recovery. However, there are limited practices to measure
sleep for individuals with stroke, thus inhibiting our ability to identify and treat poor sleep quality.
Wireless, body-worn sensors offer a solution for continuous sleep monitoring. In this study, we
explored the feasibility of (1) collecting overnight biophysical data from patients with subacute stroke
using a simple sensor system and (2) constructing machine-learned algorithms to detect sleep stages.
Ten individuals with stroke in an inpatient rehabilitation hospital wore two wireless sensors during
a single night of sleep. Polysomnography served as ground truth to classify different sleep stages.
A population model, trained on data from multiple patients and tested on data from a separate
patient, performed poorly for this limited sample. Personal models trained on data from one patient
and tested on separate data from the same patient demonstrated markedly improved performance
over population models and research-grade wearable devices to detect sleep/wake. Ultimately, the
heterogeneity of biophysical signals after stroke may present a challenge in building generalizable
population models. Personal models offer a provisional method to capture high-resolution sleep
metrics from simple wearable sensors by leveraging a single night of polysomnography data.

Keywords: machine learning; stroke; sleep; rehabilitation; wearable sensors; health outcome

1. Introduction

It is increasingly clear that there is an important connection between stroke and sleep.
A recent observational study of over 80,000 people found that individuals with insomnia
had a 54% increased risk of stroke in the ensuing 4 years compared to age-matched non-
insomniacs [1]. After stroke, an estimated 27% of patients report hypersomnia and excessive
daytime sleepiness [2], while an estimated 57% of patients report insomnia [3]. Poor sleep
has a detrimental impact on recovery, with delayed neuroplasticity and motor learning [4].
Increases in the degree of insomnia are negatively correlated with Barthel index, which
measures positive changes in physical function during daily activities [5]. Alternatively,
early animal studies have also shown that an increase in slow wave sleep after a stroke
(i.e., using optogenetic stimulation) induces positive sleep-dependent plasticity resulting
in better functional recovery [6]. Together, these studies emphasize that poor sleep can
impede recovery after stroke, and that improving sleep could be one strategy to lead to
better patient outcomes.

Before we can provide meaningful interventions to improve sleep and neural recovery
for patients with stroke, it is essential to accurately measure sleep and identify deficits.
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Currently, there are limited practices in place to evaluate sleep quality in a hospital setting.
The most common approach is ordering a sleep log, in which the care team manually checks
on the patients periodically throughout the night and notes whether they are awake or
asleep. This practice has low sensitivity to measure sleep quantity and provides no indicator
of quality, especially in an acute stroke rehabilitation setting in which a certain sleep stage
(e.g., slow wave sleep) is important for recovery, and sleep time is fixed by care schedule. At
the other extreme, polysomnography (PSG), which consists of electroencephalogram (EEG),
photoplethysmography (PPG), electrocardiogram (ECG), capnography, and/or respiration
measurements, is the current gold standard technique to evaluate sleep architecture in
clinical or research settings [7]. However, PSG equipment for a widespread, long-term
implementation is impractical in an inpatient rehabilitation facility (IRF) due to the high
system cost and high workload to collect and analyze. Furthermore, patients often report
discomfort wearing numerous wired devices, which are bulky and can disrupt their sleep.

Wireless, wearable sensors could address these limitations. As engineering advances,
these devices are becoming more flexible, lightweight, and cost effective. These sensors
also have the capability to collect heart rates, body temperatures, or oxygen saturation
that can be biomarkers for quantifying the different sleep stages through the modulation
of the autonomic nervous system (ANS). ANS activities are often coupled with neuronal
activities at the central nervous system (CNS) [8–11]. This CNS-ANS coupling network
directly affect cardiovascular responses during sleep. Today, many commercial activity
trackers and smartwatches provide sleep quality measures and sleep staging, though
the accuracy of these devices for individuals with stroke is often unclear. Sensors that
provide access to raw biophysical signals, when paired with advanced machine learning
algorithms, offer the ability to construct sleep detection algorithms from scratch and
optimize their performance for specific use cases. We have previously demonstrated that
an algorithm trained from a set of low-profile sensors measuring motion, heart activity,
and skin temperature was promising to detect different sleep stages (i.e., light sleep, deep
sleep, or rapid eye movement (REM) sleep) in healthy individuals [12]. To our knowledge,
no algorithms have been constructed or validated for patients with stroke, whose ANS
signals can be very different from healthy individuals due to their neurological injury [13]
or medications used during treatment (e.g., beta blockers to manage heart rhythms).

In this study, we explored the feasibility of evaluating overnight sleep for patients
with subacute stroke using multimodal wearable sensors. Similar to our previous work
with healthy individuals [12], we obtained overnight sleep data from a preliminary sample
of patients using PSG and wearable sensors. We tested two types of supervised machine
learning approaches: population models (trained on data from a subset of patients and
tested on data from a left-out patient) and personal models (trained on a subset of data
from one patient and tested on left-out data from the same patient). Insights from this
preliminary work can inform future studies of sleep monitoring for patients with stroke.
High-resolution, objective sleep monitoring with wearable sensors would enable us to
unobtrusively identify individuals at risk for poor, non-restorative sleep across care settings.
In turn, this will empower clinicians and researchers to develop personalized interventions
for improving sleep—and thus enhancing neural recovery during acute rehabilitation—for
these individuals.

2. Materials and Methods
2.1. Participants

Ten individuals with stroke (5F/5M; age 58.1 ± 12.1 years) were recruited from the
inpatient unit of the Shirley Ryan AbilityLab, a rehabilitation facility in Chicago, IL (USA),
for a single night of sleep monitoring with PSG and wearable sensors. The Institutional
Review Board Office at the Northwestern University (STU00206700) approved the protocol,
and all patients provided informed, written consent prior to participation. Participants
were required to be at least 18 years of age, understand spoken English at a sixth-grade
level or higher, and have a primary diagnosis of stroke. Patients with diagnosed sleep
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disorders (e.g., obstructive or central sleep apnea) were excluded from the study at this
preliminary stage. Table 1 summarizes the demographics and clinical characteristics of
the 10 participants. Table A1 (Appendix A) provides additional attributes about stroke for
each participant.

Table 1. Demographics and clinical characteristics of study participants.

ID Age Sex BMI Race Stroke
Type

Affected
Side

(Left/Right)

Experiencing
Pain

(Yes/No,
Self-Report)

No. of Medications
with Sleep-Related

Side Effects
(Drowsiness, Insomnia)

1 53 M 23.6 C Isc+Hem L Y 2 D, 2 I
2 52 F 40.3 AA Isc R N 0 D, 3 I
3 56 M 38.6 C Isc R N 2 D, 2 I
4 48 F 30.4 C Isc L N 1 D, 1 I
5 64 F 27.5 AA Hem L Y 1 D, 4 I
6 70 F 21.0 AA Isc L N 1 D, 5 I
7 37 F 32.6 PI Isc R Y 2 D, 3 I
8 56 M 39.1 NA Isc L Y 2 D, 2 I
9 65 M 25.8 A Hem L N 0 D, 1 I

10 80 M 23.1 C Isc L N 0 D, 2 I

Mean (SD)or
Count 58.1 (12.1) 5 F,

5 M
30.2
(7.2)

4 C,
3 AA,
1 A,
1 PI,

1 NA

7 Isc, 2
Hem, 1

Isc+Hem
7 L, 3 R 4 Y, 6 N 1.1 D, 2.5 I

Isc = Ischemic; Hem = Hemorrhagic; C = Caucasian; AA = African American; PI = Pacific Islander; NA = Native
American; A = Asian; D = Drowsiness; I = Insomnia.

2.2. Equipment
2.2.1. Polysomnography (PSG)

Electroencephalographic (EEG), electrooculographic (EOG), and submental electromyo-
graphic (EMG) signals, three-lead ECG, and a respiratory belt were recorded on a portable
PSG system (Brain Vision; Morrisville, NC, USA). Ten EEG channels were applied following
the international 10–20 system (ROC, LOC, C3, C4, F3, F4, P3, P4, O1, and O2).

2.2.2. Wearable Sensors

ANNETM One (Sibel Health; Niles, IL, USA) is an FDA-cleared, clinical-grade sensor
system with two soft, flexible devices: one adhered to the chest using an adhesive sticker to
measure triaxial acceleration as well as ECG, heart rate, respiratory rate, and proximal skin
temperature, and one placed on the finger to measure PPG for SpO2, peripheral arterial
tonometry, and distal skin temperature [14]. The two devices are time-synchronized and
connect to a tablet via Bluetooth. Acceleration was recorded at 52 Hz for the x- and y-axes
and 416 Hz for the z-axis (anteroposterior plane). ECG was recorded at 512 Hz, heart rate
and respiratory rate at 1 Hz, PPG at 256 Hz, and skin temperature at 1 Hz. The system has
been previously validated for sleep-related breathing disorders [15].

In addition, ActiWatch Spectrum (Philips, Cambridge, MA, USA) was used as a
reference of a research-grade wearable sensor. ActiWatch was placed at the less affected
side of the stroke patient. ActiWatch data were analyzed with the Autoscore sleep/wake
algorithm from its software ActiWear (Philips, Cambridge, MA, USA).

2.3. Procedures

Initial screening was conducted via electronic medical records to identify patients
who fulfilled the eligibility criteria, and medical clearance for participation was obtained
from their main attending primary physician. Following consent, participants were asked
to wear the PSG system and ANNETM sensors for a single night of their inpatient stay
(Figure 1). Overnight recordings began at the participant’s normal bedtime in the hospital
and ended either the next morning, when the participant awoke, or after 8 h of recording.
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correlation on their respective ECG signals (xcorr function in MATLAB). ANNE sensor 
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Figure 1. System configuration for development of a sleep monitoring algorithm in patients
with stroke. (A) Placement of PSG electrodes, ActiWatchTM, and ANNETM One wearable sen-
sors. ANNETM system included two wireless devices that were placed on the chest (left of mid-
line) and the limb (index finger of the less-affected side). (B) The ANNETM devices record mul-
timodal physiological data and are encapsulated with soft, flexible materials. EEG = electroen-
cephalography; EOG = electrooculography; EMG = electromyography; ECG = electrocardiography;
PPG = photoplethysmography; ACC = tri-axial acceleration; TEMP = skin temperature.

2.4. Data Analysis

All preprocessing was performed in MATLAB R2017b. Data visualization, segmen-
tation, feature extraction, and machine learning were performed in Python 3.9.7 using
the numpy, scikit-learn, imblearn, and pandas libraries [16]. Statistical analyses were
performed in R 4.1.0 with the caret package [17].

Signals from the PSG system and ANNE sensors were time-synchronized via cross-
correlation on their respective ECG signals (xcorr function in MATLAB). ANNE sensor
data were cleaned by resampling to the expected sampling rate to ensure consistency,
filtering, and extracting features for algorithm training and testing. A highpass fifth-order
Butterworth filter was applied to accelerometer and ECG data with cutoff frequency at
1 Hz. PPG data were processed using the ANNE system’s proprietary software (Sibel
Health, Inc., Niles, IL, USA) to obtain respiratory rate and oxygen saturation index (SpO2)
at the frequency of 5 Hz. The Pan−Tomkins algorithm [18] was applied to the ECG time
series signal to detect R peaks, which were used to compute R-R intervals and subsequent
features related to heart rate and heart rate variability.

2.4.1. PSG for Ground Truth Sleep Staging

PSG data were preprocessed using Brain Vision software (Morrisville, NC, USA). A
Registered Polysomnographic Technologist visually scored each 30-s epoch of the PSG
data as Wake, N1, N2, N3, or REM, in accordance with the American Academy of Sleep
Medicine criteria [19]. These scores served as the ground truth for training and testing a
machine learning algorithm to classify sleep stage based on the wearable sensor signals. To
explore the various resolutions of sleep staging, we labeled the PSG scores for various sleep
staging resolutions, including: 2-stage (Wake vs. Sleep (N1, N2, N3 and REM]), 3-stage
(Wake vs. Non-REM Sleep (N1, N2, N3) vs. REM Sleep), and 4-stage (Wake vs. Light Sleep
(N1 and N2) vs. Deep Sleep (N3) vs. REM Sleep).

2.4.2. Feature Extraction

Sensor features were computed for each 30 s epoch, without overlap, and paired with
the corresponding ground truth sleep stage from PSG scores. Features were generated
for each sensor modality in the time and frequency domains, resulting in 73 total features
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(Table 2). Time domain features included the mean, standard deviation (STD), interquartile
range (IQR), kurtosis, root mean square (RMS), variance, maximum, minimum, range,
and inter-axis correlations. The following features related to heart rate were calculated:
(1) number of successive R-R intervals that differ by more than 20 ms and 50 ms (i.e., NN20,
NN50), and (2) percentage of successive R-R intervals that differ by more than 20 ms and
50 ms (i.e., PNN20, PNN50). A Fast Fourier transformation was used to estimate the power
spectral density of the processed R-R intervals. These frequency domain features include
zero crossing rate and power in the very low frequency (VLF), low frequency (LF), and
high frequency (HF) bands. VLF was defined as the band from 0.0033 to 0.04 Hz, LF as
0.04 to 0.15 Hz, and HF as 0.15 to 0.4 Hz. Time spent in apnea (TSA) was calculated as the
amount of time that SpO2 fell below certain thresholds, including 95%, 90%, 85%, 80%, and
70%. Oxygen desaturation index (ODI) was calculated as the number of times within each
30 s epoch that SpO2 decreased by a certain threshold from the previous epoch, including 2,
3, 4, and 5%. Features relating to the distal-to-proximal gradient (DPG) of skin temperature,
which is the difference between the limb and chest temperature [20], were also calculated.
Data were excluded if the minimum SpO2 was less than 50% or the minimum heart rate
was less than 40, since these values are physiologically unrealistic for this patient cohort,
and the features likely stemmed from noisy sensor signals.

Table 2. Features extracted from ANNETM sensor data during overnight monitoring.

Sensor Modality Sampling Freq (Hz) No. of Features Features

ACC
(Chest) 52 33

Mean (x, y, z)
Min (x, y, z)
Max (x, y, z)

Range (x, y, z)

IQR (x, y, z)
SD (x, y, z)

Kurtosis (x, y, z)
RMS (x, y, z)

Variance (x, y, z)
rho (x, y, z)
p (x, y, z)

ECG 512 19

HR mean
HR min
HR max
SDNN
RMSSD
NN50
NN20

PNN50
PNN20

VLF power
VLF peak
LF power
LF peak

HF power
HF peak

LFHF ratio
R-R mean
R-R min
R-R max

TEMP 5 6 DPG mean
DPG min

DPG max
DPG range

Chest (proximal) mean
Limb (distal) mean

PPG 256 15

SpO2 mean
SpO2 min

SpO2 variance
SpO2 rho
SpO2 ZC

SpO2 DI
TSA95
TSA90
TSA85
TSA80

TSA70
ODI2
ODI3
ODI4
ODI5

rho = correlation coefficient; p = correlation p-value; IQR = interquartile range; SD = standard deviation; RMS =
root mean square; HR = heart rate; NNx (or PNNx) = sum (or percentage) of R-R intervals larger than x ms (or %);
LF = low frequency; VLF = very low frequency; HF = high frequency; DPG = distal-to-proximal gradient; TSAx =
time spent in apnea, with SpO2 below x%; SpO2 DI = mean absolute difference between successive mean values
of SpO2 over 10-s intervals; ODIx = oxygen desaturation index for SpO2 dropping x% from the previous epoch;
ZC = zero crossing rate.

2.4.3. t-Distributed Stochastic Neighbor Embedding (tSNE) Analysis

We applied tSNE, a non-linear dimensionality reduction technique, to visualize our
high-dimensional feature set in two-dimensional space. tSNE graphs illustrate the similarity
of data points across multiple features using probability-based clustering [21]. Following
parameter exploration, we set perplexity to 40 and iteration to 300 for tSNE clustering. All
other parameters were set to the default values from Python scikit-learn (version 1.0.2).

2.4.4. Class Imbalance

Class imbalance is an issue for most of the machine learning-based sleep monitoring
system. Based on the four-sleep stage labels, we have collected 3484 epochs of light
sleep (N1 and N2), 1237 epochs of REM sleep, 636 epochs of deep sleep (N3), and 469
epochs of wake. Since feeding a large amount of imbalanced training data into the model
could result in overfitting toward the majority class, we remediate this situation with the
following methods: (1) for random forest and bagging, we used class weights and random
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undersampling, and (2) for Gradient Boosting and XGBoost, we used the Synthetic Minority
Oversampling Technique (SMOTE) [22].

2.4.5. Model Development and Training

We constructed two types of supervised machine learning models, including popula-
tion models (trained on data from a subset of subjects and tested on data from a held-out
subject) and personal models (trained on a subset of data from one subject and tested
on held-out data from that same subject). Four algorithms (Balanced Bagging, Balanced
Random Forest, Gradient Boosting, and XGBoost) were compared in both the population
and personal model frameworks for their ability to classify sleep stages at three different
resolutions (2-, 3-, and 4-stage). In our initial exploration, we considered additional mod-
els, including linear discriminant classifiers, support vector machines, k-nearest neighbor,
and a combination of recurrent and convolutional neural networks [23] for this problem.
However, none of those models outperformed the ensemble and boosting algorithms
presented here.

Prior to model training, correlated features (Pearson correlation coefficient greater
than 0.95) were removed. All remaining features were normalized within subjects using
z-score normalization to minimize the potential influence of baseline values and outliers
on the model.

Models were trained and tested using a nested cross-validation approach with an inner
and outer loop. For population models, the outer loop consisted of leave-one-subject-out
cross-validation (LOSOCV), wherein each subject was considered a separate fold. For
personal models, the outer loop consisted of 10-fold cross-validation, wherein the data
were divided evenly into 10 folds and stratified by class so that each labeled sleep stage
was equally represented across folds. For both types of models, cross-validation was
implemented by assigning one fold as the test set and the remaining folds as the training
set; this process was repeated until each fold was tested, and model performance metrics
were averaged across all tested folds. The inner loop consisted of feature selection and
hyperparameter tuning with an additional 10-fold cross validation. Using recursive feature
elimination (RFE) and grid search, respectively, features and hyperparameters were selected
based on maximization of the weighted F1 score.

2.4.6. Model Evaluation

Sleep stage predictions from each model were compared to ground truth PSG labels
for each test dataset. Cohen’s kappa was used for between-model comparisons and to
quantify degree of agreement between the model predictions and ground truth. Cohen’s
kappa was interpreted with values <0 as worse-than-chance agreement, 0–0.20 as slight,
0.21–0.40 as fair, 0.41–0.60 as moderate, 0.61–0.80 as substantial, and 0.81–1 as near-perfect
agreement [24].

A pooled Cohen’s kappa was computed using all test data of each model to summarize
the overall algorithm performance. We chose to pool rather than average the Cohen’s kappa
values because averaging would have an additive effect on the numerator variance but a
multiplicative effect on the denominator variance. This difference in variance calculation
may increase the error of estimate especially around the middle values (e.g., Cohen’s kappa
of 0.4–0.7) [25]. We also computed the following metrics for each class: (1) specificity,
(2) precision, (3) sensitivity, (4) F1 score, and (5) balanced accuracy. Balanced accuracy is the
arithmetic mean of recall for each class of the data. The F1 score is a harmonic average of
precision and sensitivity, ranging from 0 (lowest performance) to 1 (highest performance),
and is computed according to Equation (1):

Fβ =
(

1 + β2
)
· precision·sensitivity
(β2·precision) + sensitivity

, where β = 1 (1)
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3. Results
3.1. Sensor Data Visualization

After visual inspection, we excluded one subject from analysis due to consistently
noisy ECG and PPG signals throughout the night, suggesting the sensors had poor contact
with the skin during recording. Therefore, the final dataset for population models included
nine subjects, amounting to 48.55 total hours of data for training and testing. After removing
noisy data, Subject 6 had only 1.73 h available and was removed from the personal model
analysis due to the small size of the dataset for training and testing a personal model for
this participant. For personal models, a total of 46.82 h of data were available for use.

The ideal scenario for building a successful population model for sleep stage recog-
nition is to have highly similar signal patterns and features within each sleep stage that
generalize across individuals. For the subacute stroke population, we considered that each
patient could have substantially different physiological signals (i.e., heart rate variability,
oxygen saturation, and core-limb temperature fluctuations) due to the heterogeneous na-
ture of stroke and its impact on regulation of the autonomic nervous system. Figure 2
illustrates this between-subject heterogeneity via tSNE graphs. Sleep stages are generally
unable to explain different data clusters (Figure 2A), indicating a low probability that
data points from the same sleep stage are similar. Rather, many of the tSNE clusters are
comprised of data from individual subjects (Figure 2B). This suggests that, in the current
dataset, similarity within subjects supersedes similarity within sleep stages, which would
likely create challenges for a population-trained model to generalize to new patients.

3.2. Machine Learning

Cohen’s kappa scores for the different algorithms (Bagging, Random Forest, Gradient
Boosting, and XGBoost) and sleep-stage resolutions (2-, 3-, and 4-stage) are given in Table 3
for both the population and personal model frameworks. As expected, population models
generally performed poorly, with the highest Cohen’s kappa value of 0.27 provided by
Gradient Boosting and 2-stage classification. Personalized models performed better by
comparison, with the highest Cohen’s kappa value of 0.66 provided by XGBoost and
2-stage classification. The 2-stage classification from these models all outperformed the
ActiWatch Autoscoring algorithm for these patients, with a Cohen’s kappa value of 0.48
(Table 3). Gradient boosting and XGBoost performed similarly across all metrics. Since
both algorithms are methodologically similar, we selected XGBoost as the representative
algorithm to evaluate performance in further analyses. Table A2 (Appendix A) shows
detailed statistics of the population model using XGBoost algorithm.

Table 3. Models and ActiWatch Autoscore comparisons with pooled Cohen’s kappa.

Algorithm Sleep Stage Resolution
(No. Classes) Population Model Personalized Model

Bagging Classifier
2 0.249 0.483
3 0.132 0.473
4 0.003 0.527

Random Forest
2 0.248 0.577
3 0.171 0.532
4 0.061 0.517

Gradient Boosting
2 0.268 0.549
3 0.110 0.602
4 0.037 0.617

XGBoost *
2 0.249 0.660
3 0.128 0.600
4 0.014 0.531

ActiWatch Autoscore 2 0.477
Italic values indicate the best-performing algorithm within each sleep stage resolution (2-stage, 3-stage, 4-stage)
for both population and personalized models. Asterisk (*) indicates the algorithm selected for further analysis,
based on its best or near-best performance across model designs.
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among sensor features in two-dimensional space, color-coded by (A) sleep stage and (B) patient. The
clusters illustrate that features are more similar within patients than within sleep classes, suggesting
that the similarity within each subject is greater than similarities across different sleep stages. This
indicates a machine learning algorithm trained on population data may be challenged to learn
characteristic patterns of the different sleep stages that would generalize to new patients.

Model performance metrics—including sensitivity, precision, F1-score, and balanced
accuracy—for the best-performing model (XGBoost, personal) are given in Table 4 for each
of the three levels of sleep-stage resolution. Macro average F1 scores were 0.83, 0.76, and
0.66 for the 2-, 3-, and 4-stage models, respectively. Figure 3 shows the confusion matrix
of the 4-stage personal model. Average recall of wake, light sleep, deep sleep, and REM
sleep were 75.3%, 65.0%, 83.3%, and 70.1%, respectively. Wake, deep sleep, and REM sleep
were all most often misclassified as light sleep, while misclassifications of light sleep were
similarly distributed across the other stages. Figure 4 shows a representative hypnogram
from the best-performing personal model compared to ground-truth sleep stages from PSG.
For this patient, the model slightly overestimated the time spent awake (4.9% of the total
recording time, versus the actual 3.6% determined from PSG), underestimated light sleep
(40.0%, versus actual 42.6%), overestimated deep sleep (32.0%, versus actual 27.8%), and
underestimated REM sleep (23.2%, versus actual 26.0%). The model-estimated total sleep
time was 357 min, versus 362 min from PSG. The model-estimated number of awakenings
was six, versus one from PSG.
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Table 4. Comparison of ActiWatch Autoscore and XGBoost algorithm performance (mean and SEM)
for personal models, including 2-stage, 3-stage, and 4-stage sleep detection.

Sleep Stage Specificity Precision Sensitivity F1
Balanced
Accuracy

2-stage

Wake 0.97 (0.01) 0.81 (0.05) 0.68 (0.06) 0.68 (0.04) 0.83 (0.03)
Sleep 0.68 (0.06) 0.96 (0.01) 0.97 (0.01) 0.97 (0.01) 0.83 (0.03)

3-stage

Wake 0.94 (0.01) 0.78 (0.03) 0.81 (0.04) 0.74 (0.03) 0.88 (0.02)
NREM 0.80 (0.03) 0.90 (0.02) 0.81 (0.03) 0.83 (0.04) 0.81 (0.03)
REM 0.89 (0.03) 0.75 (0.05) 0.76 (0.04) 0.71 (0.05) 0.82 (0.03)

4-stage

Wake 0.96 (0.01) 0.78 (0.04) 0.77 (0.04) 0.72 (0.03) 0.87 (0.02)
Light 0.79 (0.03) 0.73 (0.09) 0.63 (0.07) 0.66 (0.08) 0.71 (0.05)
Deep 0.91 (0.02) 0.57 (0.10) 0.70 (0.11) 0.58 (0.10) 0.76 (0.10)
REM 0.86 (0.04) 0.69 (0.05) 0.74 (0.05) 0.67 (0.05) 0.80 (0.04)

ActiWatch Autoscore Algorithm (2-stage)

Wake 0.92 (0.02) 0.56 (0.05) 0.51 (0.08) 0.50 (0.07) 0.72 (0.04)
Sleep 0.52 (0.09) 0.90 (0.02) 0.93 (0.02) 0.91 (0.02) 0.72 (0.04)

Sensors 2022, 22, x FOR PEER REVIEW 10 of 16 
 

 

Deep 0.91 (0.02) 0.57 (0.10) 0.70 (0.11) 0.58 (0.10) 0.76 (0.10) 
REM 0.86 (0.04) 0.69 (0.05) 0.74 (0.05) 0.67 (0.05) 0.80 (0.04) 

ActiWatch Autoscore Algorithm (2-stage) 
Wake 0.92 (0.02) 0.56 (0.05) 0.51 (0.08) 0.50 (0.07) 0.72 (0.04) 
Sleep 0.52 (0.09) 0.90 (0.02) 0.93 (0.02) 0.91 (0.02) 0.72 (0.04) 

 
Figure 3. Confusion matrix for 4-stage personal model. Percentage of epochs correctly and incor-
rectly predicted from wearable sensor data, separated by actual sleep stage. Percentages are calcu-
lated from the total number of predicted and actual epochs, aggregated across all participants. 

 
Figure 4. Example hypnogram for 4-stage personal model. Comparison of the predicted sleep stage 
from wearable sensor data (green line) and the actual sleep stage from PSG (black line) throughout 
the night for a single participant (ID 4). 

4. Discussion 
In this preliminary study, we explored two types of models (population vs. personal), 

four algorithms (Balanced Bagging, Balanced Random Forest, Gradient Boosting, and 
XGBoost), and three resolutions of sleep staging (2-, 3-, and 4- stage). This is the first ma-
chine learning-based study to our knowledge which utilizes multimodal physiological 
data (motion, ECG, PPG, skin temperature) from commercialized wearable sensors to 
classify sleep stages in a subacute stroke population. This study using low-profile, multi-
modal wearable sensors provides a critical first step for improving the accuracy, resolu-
tion, and feasibility of longitudinal sleep monitoring after stroke. Measuring detailed 
changes in sleep architecture over time can better help us understand the complex rela-
tionship between sleep and stroke recovery. Detecting and intervening for patients with 
poor sleep quality may improve their rehabilitation outcomes or prevent future recur-
rence of stroke. 

The wearable sensors used in this study offer a less obtrusive option for long-term 
sleep stage monitoring than PSG for patients with stroke across the inpatient or outpatient 

Figure 3. Confusion matrix for 4-stage personal model. Percentage of epochs correctly and in-
correctly predicted from wearable sensor data, separated by actual sleep stage. Percentages are
calculated from the total number of predicted and actual epochs, aggregated across all participants.

Sensors 2022, 22, x FOR PEER REVIEW 10 of 16 
 

 

Deep 0.91 (0.02) 0.57 (0.10) 0.70 (0.11) 0.58 (0.10) 0.76 (0.10) 
REM 0.86 (0.04) 0.69 (0.05) 0.74 (0.05) 0.67 (0.05) 0.80 (0.04) 

ActiWatch Autoscore Algorithm (2-stage) 
Wake 0.92 (0.02) 0.56 (0.05) 0.51 (0.08) 0.50 (0.07) 0.72 (0.04) 
Sleep 0.52 (0.09) 0.90 (0.02) 0.93 (0.02) 0.91 (0.02) 0.72 (0.04) 

 
Figure 3. Confusion matrix for 4-stage personal model. Percentage of epochs correctly and incor-
rectly predicted from wearable sensor data, separated by actual sleep stage. Percentages are calcu-
lated from the total number of predicted and actual epochs, aggregated across all participants. 

 
Figure 4. Example hypnogram for 4-stage personal model. Comparison of the predicted sleep stage 
from wearable sensor data (green line) and the actual sleep stage from PSG (black line) throughout 
the night for a single participant (ID 4). 

4. Discussion 
In this preliminary study, we explored two types of models (population vs. personal), 

four algorithms (Balanced Bagging, Balanced Random Forest, Gradient Boosting, and 
XGBoost), and three resolutions of sleep staging (2-, 3-, and 4- stage). This is the first ma-
chine learning-based study to our knowledge which utilizes multimodal physiological 
data (motion, ECG, PPG, skin temperature) from commercialized wearable sensors to 
classify sleep stages in a subacute stroke population. This study using low-profile, multi-
modal wearable sensors provides a critical first step for improving the accuracy, resolu-
tion, and feasibility of longitudinal sleep monitoring after stroke. Measuring detailed 
changes in sleep architecture over time can better help us understand the complex rela-
tionship between sleep and stroke recovery. Detecting and intervening for patients with 
poor sleep quality may improve their rehabilitation outcomes or prevent future recur-
rence of stroke. 

The wearable sensors used in this study offer a less obtrusive option for long-term 
sleep stage monitoring than PSG for patients with stroke across the inpatient or outpatient 

Figure 4. Example hypnogram for 4-stage personal model. Comparison of the predicted sleep stage
from wearable sensor data (green line) and the actual sleep stage from PSG (black line) throughout
the night for a single participant (ID 4).



Sensors 2022, 22, 6190 10 of 15

4. Discussion

In this preliminary study, we explored two types of models (population vs. personal),
four algorithms (Balanced Bagging, Balanced Random Forest, Gradient Boosting, and
XGBoost), and three resolutions of sleep staging (2-, 3-, and 4- stage). This is the first ma-
chine learning-based study to our knowledge which utilizes multimodal physiological data
(motion, ECG, PPG, skin temperature) from commercialized wearable sensors to classify
sleep stages in a subacute stroke population. This study using low-profile, multimodal
wearable sensors provides a critical first step for improving the accuracy, resolution, and
feasibility of longitudinal sleep monitoring after stroke. Measuring detailed changes in
sleep architecture over time can better help us understand the complex relationship be-
tween sleep and stroke recovery. Detecting and intervening for patients with poor sleep
quality may improve their rehabilitation outcomes or prevent future recurrence of stroke.

The wearable sensors used in this study offer a less obtrusive option for long-term
sleep stage monitoring than PSG for patients with stroke across the inpatient or outpatient
care settings. While current research-grade sleep monitors such as ActiWatch are also
unobtrusive compared to standard PSG, their low monitoring resolution (2-stage detection
of sleep and wake) and accuracy (mean balanced accuracy = 0.72) may not be sufficient
to capture overall sleep quality for the subacute stroke population. Indeed, our personal
machine learning models with multidimensional sensor data demonstrated improved
accuracy in 2-stage monitoring over the ActiWatch for patients with stroke (mean balanced
accuracy = 0.83), and this approach enhanced the ability to perform 3- and 4-stage detection
with similar performance.

Personal models outperformed a population model, likely due to the small sample
size and the heterogeneity in physiological signals between patients. For personal models,
XGBoost was the best-performing algorithm with an F1 score of 0.76 when identifying wake,
Non-REM, and REM sleep stages and an F1 score of 0.83 when identifying wake and sleep.
A 4-stage personal model successfully recalled 65.0–83.3% of stages on average. Light sleep
was the stage most prone to error, both in being misclassified as other stages or in having
other stages misclassified as light sleep. This may be due to the greater prevalence of these
samples in the dataset (class imbalance), as well as more nuanced physiological changes
during the transitions between wake and deeper stages of sleep. Although the model-
estimated total sleep duration and relative composition of sleep stages were generally
similar to the ground truth obtained from PSG, misclassifications from the model can skew
other metrics of sleep quality based on the estimated sleep architecture (e.g., number of
awakenings). This advocates for additional study to improve the sleep-stage classifier.

For real-world implementation, personal models would require clinicians to record
at least one night of PSG and wearable sensor data for each new patient. Sleep stages
could be obtained from wearable sensors alone on the subsequent nights. Although
most IRFs rarely conduct PSG-based sleep studies for the patients, unless ordered by the
physician, the continued accumulation of evidence about the relationship between sleep
and stroke may encourage PSG recordings to become a more common practice in the
future. If so, PSG may be conducted early in the IRF program for patients with stroke,
and less intrusive wearable devices could be used for the subsequent nights to facilitate
continuous, long-term sleep monitoring. Personal models may be a reserve option for
accurate, individualized monitoring due to the heterogeneity of the stroke symptoms that
likely affect the physiological data of post-stroke individuals.

Ideally, one would want to create a wearable sensor-based sleep stage detection system
without conducting a PSG sleep study on each new patient, since PSG equipment is expen-
sive, uncomfortable for the wearer, and requires significant time and resources to collect
and score data. Therefore, a population model is more favorable than a personal model
for real-world clinical implementation. We found that the population model performed
poorly in this study, which most likely can be explained by the low sample size for model
training and the heterogeneity of sensor features between patients (Figure 2). The current
study implemented an approach similar to our prior research in sleep classification with
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healthy adults [12]. In this study, a population model was more effective in classifying 2-
and 3-stage sleep, detecting wake and sleep with a recall of 74.4% and 90.0%, respectively,
and detecting non-REM and REM with recall of 73.3%, 59.0%, and 56.0%, respectively. The
disparate performance of population models between our previous and current studies
further indicates that sleep models for the stroke population may have different needs than
those for healthy controls.

Other researchers with larger sample sizes have also demonstrate greater efficacy of
population models for healthy individuals. For example, Zhang and colleagues [26] found
an F1 score of 0.6 that constructed a population, multilayers deep learning model from
39 subjects using heart rate and motion data from wearable sensors. In a separate study,
Zhang and colleagues [27] found that a 0.69 Cohen’s Kappa score constructed a population,
bidirectional long-short term memory model which was trained from 417 subjects of
public PSG database and tested on 32 subjects based on heart rate and respiratory rate.
Beattie and colleagues [28] found a 0.5 Cohen’s Kappa score constructed a population,
linear discriminant model with 60 subjects based on heart rate and motion. Together, this
research suggests that transfer learning or a larger sample size in healthy individuals would
improve the performance of a 4-stage population model. Additional details about wearable
and non-wearable methods for non-invasive sleep monitoring can be found in a recent
review [29].

However, presence of stroke likely complicates this task even more due to the complex
effects of stroke on biophysical outcomes depending on the lesion site, severity, and treat-
ment. For example, subcortical lesions have a more drastic effect on the central ANS than
cortical lesions, which in turn would have a different impact on bodily processes such as
heart rate, respiration, and temperature regulation [13]. Prior studies have shown features
of heart rate variability are used as biomarkers in identifying stroke and predicting the
condition and outcome of stroke [30,31]. Additionally, multiple co-morbidities combined
with polypharmacy (Tables 1 and A1) would further diversify the physiological measures
of individuals undergoing recovery and treatment after stroke.

For data-driven modeling, the predictive power of a model can only extend as far
as the existing data boundaries. Classifications outside of the training data boundary
may reduce accuracy or generalizability of the machine-learned model. By increasing the
heterogeneity and sample size of the training data, we expect the model boundaries would
be expanded for more accurate classification. Previous large-scale database studies have
seen moderate success in population models for automatic sleep stage detection using
physiological signals such as ECG and/or PPG isolated from PSG data in targeted patient
groups [32]. For example, Sridhar and colleagues leveraged ECG data from the Sleep Heart
Health Study (SHHS; N = 6705) and Multi-Ethnic Study of Atherosclerosis (MESA; N =
1619) to build a deep neural network (DNN). They obtained 77% accuracy and a Cohen’s
kappa coefficient of ~ 0.66 in a 4-stage resolution model (i.e., Wake, Light, Deep, and
REM) [33]. Korkalainen and colleagues collected PSG data from 894 OSA patients and
built a DNN consisting of a convolutional network and recurrent network. This model
had an accuracy of 80.1% with Cohen’s kappa of 0.65 for predicting three sleep stages [23].
Thus, it is possible that with additional training data from patients with subacute stroke,
automated sleep staging classification with wearable sensors will be possible. Future
work will consider incorporating additional data from healthy individuals and applying
transfer learning methods to improve performance for patients with subacute stroke. In
absence of a larger database for multimodal wearable sensor data, we have demonstrated
that personal models may be a feasible alternative for stroke patients requiring detailed,
long-term sleep monitoring.

Limitations

There are several limitations to this study, which should be considered and addressed
for future work. First, a small sample size was used to train and test the machine learning
models, likely contributing to the poor generalization of the population model. Based on
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the variable nature of stroke and treatments (e.g., medication) on patient biometrics, the
optimal size and composition of training data for a generalized population model remains
unknown. Future work may consider developing separate models for subsets of the stroke
population, such as by stroke type or level of impairment, or incorporating data from
healthy individuals to supplement the model training.

Second, all data were collected during a single night of recording. Multiple nights of
collection will be a critical extension of this study to validate personal models (i.e., training
an algorithm from one night of sensor data and testing on another). Although the 10-fold
cross-validation method for personal models, necessitated by the single night of data, may
potentially limit the implication of our results, it is an efficient way to pilot the feasibility
of collecting wearable sensor data from a subacute stroke population and detecting sleep
stage from a machine learning model.

Third, we excluded patients with clinically diagnosed sleep disorders. This exclusion
was intended to minimize the potentially confounding impact of these disorders on the
model in this preliminary study, since sleep disorders can additionally affect physiological
signals beyond the already-variable effects of stroke (e.g., altered movement during REM
sleep behavior disorders [34], altered patterns in heart rate variability, respiratory rate,
and blood oxygenation for sleep apnea [35,36]). However, sleep disorders are common
in the stroke population, with an estimated 50–70% of patients experiencing sleep apnea
alone [37]. Thus, it will be essential to include patients with sleep disorders in future model
training and validation efforts.

5. Conclusions

In this study, we established feasibility to construct machine-learning models for sleep
monitoring in a subacute stroke population using data from two wireless, wearable sensors.
We examined both population and personal models for the supervised classification of
sleep stages. The heterogeneity of biophysical signals after stroke will pose a challenge in
building a population model that generalizes across individuals, likely requiring signifi-
cantly more training data. Personal models were a feasible alternative for a small sample
size, demonstrating fair accuracy in distinguishing wake, non-REM, and REM sleep. Future
work will sample additional data across and between patients with subacute stroke for
robust model training and refinement.
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Appendix A

Table A1. Detailed clinical characteristics of participants.

ID Stroke Location Symptom Directed Affect by
Stroke Comorbidities

1 Right middle cerebral
artery stroke

Reduced balance,
coordination, sensation.

Hemispatial neglect,
inattention, vision deficits.

2
Left basal ganglia, caudate,

and right
parietal-occipital lobes

Impaired ambulation,
activities of daily living,

eating/swallowing, transfers,
bowel and bladder function,
cognition, memory, speech.

COPD; deep vein thrombosis
and pulmonary embolism

3 Left subcortical
Reduced strength, endurance,

and balance.
Dysarthria, spasticity.

4 Right pons Reduced strength, endurance,
balance. Impaired cognition. Anxiety; depression

5 Right thalamic intracerebral
Fatigue. Reduced strength,
endurance, coordination,

range of motion.
Urinary incontinence; UTI

6 Para median pontine (chronic
caudate and thalamic infarcts)

Impaired ambulation,
activities of daily living,

transfers, bowel and bladder
function, cognition, memory,
speech. Hemiparesis of lower

and upper extremities.

Heart murmur;
Bordetella infection

7

Scattered bilateral anterior
cerebral artery infarct with left

middle cerebral
artery distribution

Reduced balance and
coordination. Impaired

ambulation, activities of daily
living, transfers, cognition,

and memory. Hemiparesis of
lower and upper extremities.

Anxiety; elevated white
blood cells

8 Right lacunar
Reduced balance,

coordination, sensation.
Spasticity.

Anxiety; spinal stenosis; disc
displacement; amnesia;

nicotine dependence; GERD;
chronic pain

9 Thalamus and basal ganglia

Impaired ambulation,
activities of daily living,
transfers, cognition, and

speech.

10
Perforator of the right basal

ganglia and right
corona radiata

Reduced balance. Impaired
ambulation, activities of daily

living, transfers, bladder
function, and speech.

Hemiparesis of lower and
upper extremity weakness.

Hypothyroidism; angina
pectoris; UTI; sleep disorder;

coronary artery disease

COPD = chronic obstructive pulmonary disease; GERD = gastroesophageal reflux disease; UTI = urinary
tract infection.
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Table A2. XGBoost algorithm performance (mean and SEM) for population models, including 2-stage,
3-stage, and 4-stage sleep detection.

Sleep Stage Specificity Precision Sensitivity F1
Balanced
Accuracy

2-stage

Wake 0.93 (0.03) 0.45 (0.12) 0.30 (0.07) 0.25 (0.06) 0.61 (0.03)
Sleep 0.30 (0.07) 0.93 (0.02) 0.93 (0.03) 0.92 (0.02) 0.61 (0.03)

3-stage

Wake 0.87 (0.03) 0.28 (0.10) 0.41 (0.07) 0.28 (0.08) 0.64 (0.04)
NREM 0.55 (0.07) 0.76 (0.03) 0.58 (0.05) 0.64 (0.04) 0.56 (0.02)
REM 0.72 (0.05) 0.26 (0.06) 0.31 (0.07) 0.26 (0.05) 0.52 (0.04)

4-stage

Wake 0.87 (0.03) 0.30 (0.10) 0.46 (0.09) 0.29 (0.07) 0.66 (0.04)
Light 0.55 (0.05) 0.59 (0.04) 0.45 (0.04) 0.49 (0.03) 0.50 (0.01)
Deep 0.84 (0.06) 0.05 (0.03) 0.09 (0.06) 0.02 (0.01) 0.46 (0.03)
REM 0.77 (0.03) 0.24 (0.06) 0.22 (0.04) 0.22 (0.04) 0.50 (0.03)

References
1. Wu, M.P.; Lin, H.J.; Weng, S.F.; Ho, C.H.; Wang, J.J.; Hsu, Y.W. Insomnia Subtypes and the Subsequent Risks of Stroke Report

From a Nationally Representative Cohort. Stroke 2014, 45, 1349–1354. [CrossRef] [PubMed]
2. Bassetti, C.L.; Hermann, D.M. Sleep and stroke. Handb. Clin. Neurol. 2011, 99, 1051–1072. [PubMed]
3. Leppavuori, A.; Pohjasvaara, T.; Vataja, R.; Kaste, M.; Erkinjuntti, T. Insomnia in ischemic stroke patients. Cerebrovasc. Dis. 2002,

14, 90–97. [CrossRef] [PubMed]
4. Dimyan, M.A.; Cohen, L.G. Neuroplasticity in the context of motor rehabilitation after stroke. Nat. Rev. Neurol. 2011, 7, 76–85.

[CrossRef]
5. Huang, R.J.; Lai, C.H.; Lee, S.D.; Pai, F.Y.; Chang, S.W.; Chung, A.H.; Chang, Y.F.; Ting, H. Objective Sleep Measures in Inpatients

With Subacute Stroke Associated With Levels and Improvements in Activities of Daily Living. Arch. Phys. Med. Rehab. 2018,
99, 699–706. [CrossRef]

6. Facchin, L.; Schone, C.; Mensen, A.; Bandarabadi, M.; Pilotto, F.; Saxena, S.; Libourel, P.A.; Bassetti, C.L.A.; Adamantidis, A.R.
Slow Waves Promote Sleep-Dependent Plasticity and Functional Recovery after Stroke. J. Neurosci. 2020, 40, 8637–8651. [CrossRef]

7. Krystal, A.D.; Edinger, J.D. Measuring sleep quality. Sleep Med. 2008, 9 (Suppl. S1), S10–S17. [CrossRef]
8. Good, D.C.; Henkle, J.Q.; Gelber, D.; Welsh, J.; Verhulst, S. Sleep-disordered breathing and poor functional outcome after stroke.

Stroke 1996, 27, 252–259. [CrossRef]
9. Goodwin, G.M.; McCloskey, D.I.; Mitchell, J.H. Cardiovascular and respiratory responses to changes in central command during

isometric exercise at constant muscle tension. J. Physiol. 1972, 226, 173–190. [CrossRef]
10. de Zambotti, M.; Trinder, J.; Silvani, A.; Colrain, I.M.; Baker, F.C. Dynamic coupling between the central and autonomic nervous

systems during sleep: A review. Neurosci. Biobehav. Rev. 2018, 90, 84–103. [CrossRef]
11. Swanson, L.W. Brain Architecture: Understanding the Basic Plan; Oxford University Press: Oxford, UK, 2012.
12. Boe, A.J.; McGee Koch, L.L.; O’Brien, M.K.; Shawen, N.; Rogers, J.A.; Lieber, R.L.; Reid, K.J.; Zee, P.C.; Jayaraman, A. Automating

sleep stage classification using wireless, wearable sensors. NPJ Digit. Med. 2019, 2, 1–9. [CrossRef] [PubMed]
13. Korpelainen, J.T.; Sotaniemi, K.A.; Myllyla, V.V. Autonomic nervous system disorders in stroke. Clin. Auton. Res. 1999, 9, 325–333.

[CrossRef] [PubMed]
14. Lee, K.; Ni, X.Y.; Lee, J.Y.; Arafa, H.; Pe, D.J.; Xu, S.; Avila, R.; Irie, M.; Lee, J.H.; Easterlin, R.L.; et al. Mechano-acoustic sensing of

physiological processes and body motions via a soft wireless device placed at the suprasternal notch. Nat. Biomed. Eng. 2020,
4, 148–158. [CrossRef] [PubMed]

15. Lee, J.Y.; Kim, D.; Blake, S.; Kalluri, L.; Walter, J.; Davies, C.; Zee, P.; Xu, S.; Power, T. 403 Comparative Study of Wireless Sensors
Versus Type III Home Sleep Apnea Test for Home-based Diagnosis of Obstructive Sleep Apnea. Sleep 2021, 44, A160. [CrossRef]

16. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.;
Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn Res. 2011, 12, 2825–2830.

17. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria,
2021; Available online: https://www.R-project.org/ (accessed on 12 July 2022).

18. Pan, J.; Tompkins, W.J. A Real-Time Qrs Detection Algorithm. Ieee T Bio-Med. Eng. 1985, 32, 230–236. [CrossRef]
19. Iber, C.; American Academy of Sleep Medicine. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology,

and Technical Specifications; American Academy of Sleep Medicine: Westchester, IL, USA, 2007.

http://doi.org/10.1161/STROKEAHA.113.003675
http://www.ncbi.nlm.nih.gov/pubmed/24699057
http://www.ncbi.nlm.nih.gov/pubmed/21056242
http://doi.org/10.1159/000064737
http://www.ncbi.nlm.nih.gov/pubmed/12187012
http://doi.org/10.1038/nrneurol.2010.200
http://doi.org/10.1016/j.apmr.2017.12.016
http://doi.org/10.1523/JNEUROSCI.0373-20.2020
http://doi.org/10.1016/S1389-9457(08)70011-X
http://doi.org/10.1161/01.STR.27.2.252
http://doi.org/10.1113/jphysiol.1972.sp009979
http://doi.org/10.1016/j.neubiorev.2018.03.027
http://doi.org/10.1038/s41746-019-0210-1
http://www.ncbi.nlm.nih.gov/pubmed/31886412
http://doi.org/10.1007/BF02318379
http://www.ncbi.nlm.nih.gov/pubmed/10638806
http://doi.org/10.1038/s41551-019-0480-6
http://www.ncbi.nlm.nih.gov/pubmed/31768002
http://doi.org/10.1093/sleep/zsab072.402
https://www.R-project.org/
http://doi.org/10.1109/TBME.1985.325532


Sensors 2022, 22, 6190 15 of 15

20. Kräuchi, K.; Cajochen, C.; Werth, E.; Wirz-Justice, A. Functional link between distal vasodilation and sleep-onset latency? Am. J.
Physiol. -Regul. Integr. Comp. Physiol. 2000, 278, R741–R748. [CrossRef]

21. Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach Learn Res. 2008, 9, 2579–2605.
22. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell.

Res. 2002, 16, 321–357. [CrossRef]
23. Korkalainen, H.; Aakko, J.; Duce, B.; Kainulainen, S.; Leino, A.; Nikkonen, S.; Afara, I.O.; Myllymaa, S.; Toyras, J.; Leppanen, T.

Deep learning enables sleep staging from photoplethysmogram for patients with suspected sleep apnea. Sleep 2020, 43, zsaa098.
[CrossRef]

24. Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [CrossRef]
[PubMed]

25. De Vries, H.; Elliott, M.N.; Kanouse, D.E.; Teleki, S.S. Using Pooled Kappa to Summarize Interrater Agreement across Many Items.
Field Methods 2008, 20, 272–282. [CrossRef]

26. Zhang, X.; Kou, W.; Chang, E.I.; Gao, H.; Fan, Y.; Xu, Y. Sleep stage classification based on multi-level feature learning and
recurrent neural networks via wearable device. Comput. Biol. Med. 2018, 103, 71–81. [CrossRef] [PubMed]

27. Zhang, Y.; Yang, Z.; Lan, K.; Liu, X.; Zhang, Z.; Li, P.; Cao, D.; Zheng, J.; Pan, J. Sleep stage classification using bidirectional lstm
in wearable multi-sensor systems. In Proceedings of the IEEE INFOCOM 2019-IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), Paris, France, 29 April–2 May 2019; pp. 443–448.

28. Beattie, Z.; Oyang, Y.; Statan, A.; Ghoreyshi, A.; Pantelopoulos, A.; Russell, A.; Heneghan, C. Estimation of sleep stages in a
healthy adult population from optical plethysmography and accelerometer signals. Physiol. Meas. 2017, 38, 1968–1979. [CrossRef]

29. Hussain, Z.; Sheng, Q.Z.; Zhang, W.E.; Ortiz, J.; Pouriyeh, S. Non-invasive techniques for monitoring different aspects of sleep: A
comprehensive review. ACM Trans. Comput. Healthc. (HEALTH) 2022, 3, 1–26. [CrossRef]

30. Lees, T.; Shad-Kaneez, F.; Simpson, A.M.; Nassif, N.T.; Lin, Y.G.; Lal, S. Heart Rate Variability as a Biomarker for Predicting Stroke,
Post-stroke Complications and Functionality. Biomark Insights 2018, 13, 1177271918786931. [CrossRef]

31. Oppenheimer, S.M.; Hachinski, V.C. The cardiac consequences of stroke. Neurol. Clin. 1992, 10, 167–176. [CrossRef]
32. Perslev, M.; Jensen, M.H.; Darkner, S.; Jennum, P.J.; Igel, C. U-Time: A Fully Convolutional Network for Time Series Segmentation

Applied to Sleep Staging. Adv. Neur. In. 2019, 32. [CrossRef]
33. Sridhar, N.; Shoeb, A.; Stephens, P.; Kharbouch, A.; Ben Shimol, D.; Burkart, J.; Ghoreyshi, A.; Myers, L. Deep learning for

automated sleep staging using instantaneous heart rate. Npj Digital. Med. 2020, 3, 106. [CrossRef]
34. Yang, X.D.; Shah, S.A.; Ren, A.F.; Zhao, N.; Zhao, J.X.; Hu, F.M.; Zhang, Z.Y.; Zhao, W.; Rehman, M.U.; Alomainy, A. Monitoring

of Patients Suffering From REM Sleep Behavior Disorder. Ieee J. Electromagn. Rf Microw. Med. Biol. 2018, 2, 138–143. [CrossRef]
35. Penzel, T.; Bunde, A.; Heitmann, J.; Kantelhardt, J.W.; Peter, J.H.; Voigt, K. Sleep stage-dependent heart rate variability in patients

with obstructive sleep apnea. In Proceedings of the Computers in Cardiology 1999. Vol.26 (Cat. No.99CH37004), Hannover,
Germany, 26–29 September 1999; pp. 249–252.

36. Tobaldini, E.; Nobili, L.; Strada, S.; Casali, K.R.; Braghiroli, A.; Montano, N. Heart rate variability in normal and pathological
sleep. Front. Physiol. 2013, 4, 294. [CrossRef] [PubMed]

37. Hermann, D.M.; Bassetti, C.L. Sleep-related breathing and sleep-wake disturbances in ischemic stroke. Neurology 2009,
73, 1313–1322. [CrossRef] [PubMed]

http://doi.org/10.1152/ajpregu.2000.278.3.R741
http://doi.org/10.1613/jair.953
http://doi.org/10.1093/sleep/zsaa098
http://doi.org/10.2307/2529310
http://www.ncbi.nlm.nih.gov/pubmed/843571
http://doi.org/10.1177/1525822X08317166
http://doi.org/10.1016/j.compbiomed.2018.10.010
http://www.ncbi.nlm.nih.gov/pubmed/30342269
http://doi.org/10.1088/1361-6579/aa9047
http://doi.org/10.1145/3491245
http://doi.org/10.1177/1177271918786931
http://doi.org/10.1016/S0733-8619(18)30239-1
http://doi.org/10.48550/arXiv.1910.11162
http://doi.org/10.1038/s41746-020-0291-x
http://doi.org/10.1109/JERM.2018.2827705
http://doi.org/10.3389/fphys.2013.00294
http://www.ncbi.nlm.nih.gov/pubmed/24137133
http://doi.org/10.1212/WNL.0b013e3181bd137c
http://www.ncbi.nlm.nih.gov/pubmed/19841384

	Introduction 
	Materials and Methods 
	Participants 
	Equipment 
	Polysomnography (PSG) 
	Wearable Sensors 

	Procedures 
	Data Analysis 
	PSG for Ground Truth Sleep Staging 
	Feature Extraction 
	t-Distributed Stochastic Neighbor Embedding (tSNE) Analysis 
	Class Imbalance 
	Model Development and Training 
	Model Evaluation 


	Results 
	Sensor Data Visualization 
	Machine Learning 

	Discussion 
	Conclusions 
	Appendix A
	References

