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Abstract: Humidity measurement is required in various fields. We previously developed a sensor that
leverages the sudden change in the transmitted light intensity when switching from leakage mode
to waveguide mode. By adjusting the low-refractive-index polymer of the cladding, we achieved
measurements at 60% RH. However, for practical use, measurements at low humidity are essential.
Therefore, in this study, we developed a sensor using a leakage mode that enables measurements at
low humidity. To measure the leakage mode, it is necessary to increase the absorbance of the cladding
and the incident angle at the core–cladding interface. Therefore, we developed a sensor in which the
core was stretched, and the cladding was doped with a high concentration of dye. The experimental
results confirmed that a sensor with a polymer concentration of 4% and a dye concentration of 3%
could measure from 0% RH to 95% RH. The sensitivity was 0.1 dB/% RH from 0% RH to 70% RH
and 0.32 dB/% RH from 70% RH to 95% RH. The estimated response time for a change from 10% to
90% light transmission for a sensor with 4% polymer concentration and 0.5% dye concentration was
22 s from 45% RH to 0% RH and 50 s from 0% RH to 45% RH.

Keywords: humidity sensor; POF sensor; swellable polymer cladding; dye-doped; optical fiber;
leakage mode; Fresnel reflection

1. Introduction

Currently, humidity measurement is required in various fields such as medicine, food,
and precision equipment manufacturing and storage, and several measurement methods
have been developed [1–5]. Commonly used electrical sensors that utilize capacitance or
resistance are widely used because of their wide detection range, good reproducibility, and
durability. Recently, carbon-based materials, such as carbon nanotubes and graphene oxide,
have been developed as sensing materials and electric sensors manufactured by printing
technology. For example, Chen et al. reported a humidity sensor using a composite thin
film of reduced graphene oxide and lignosulfonic acid as sensing materials [6]. The sensor
has a high response, low hysteresis, and stable reproducibility over a wide range of relative
humidities from 22% to 97%. Shaukat et al. proposed a highly sensitive and fast ZrSe2-
based humidity sensor via printing technology [7]. This sensor exhibited fast transient
responses of 1 and 2 s, good stability over 360 min, and a linear relative humidity range of
15–80% RH. However, these electrical sensors face several challenges in harsh environments,
such as susceptibility to electromagnetic noise and the need for a power supply near the
sensing unit. Therefore, a humidity sensor using optical fibers was proposed. Fiber-optic
sensors can be used in environments where electrical sensors cannot be used, because of
their resistance to electromagnetism, corrosion, explosion, telemetry, and other features not
found in electrical sensors [8–10].
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Fiber optic humidity sensors can be classified into optical absorption, fiber Bragg grat-
ing, and interference types, according to their operating principles. For example, Zhao et al.
proposed a Fabry–Perot-type fiber optic humidity sensor with a polyimide film coated
on the tip of a multimode fiber as an interference-type sensor [11]. This sensor measures
humidity by measuring changes in the reflected light intensity due to changes in film
thickness. Fiber Bragg gratings are optical structures with periodic disturbances in the
refractive index of waveguides. The sensor senses humidity by inducing a shift in the
Bragg wavelength due to a change in the volume of the humidity-sensitive film. Several
sensors based on this type of structure have been reported. For example, Li et al. proposed
a highly sensitive FBG humidity sensor coated with polyimide and graphene films. This
sensor exhibited high humidity sensitivity, with experimental results of 1.80 times that of a
sensor coated with only a polyimide film [12]. Thus, fiber optic sensors that can adapt to
environments where electrical sensors cannot be used have been widely studied [13–15].

We utilize plastic optical fibers with cores constructed from plastic. Plastic optical fiber
(POF) is an optical fiber with a core and cladding constructed from polymer plastic that has
the advantages of flexibility and lower cost compared to glass optical fibers. We developed
a light-absorbing POF humidity sensor that uses polyvinylpyrrolidone (PVP), a polymer
that swells with moisture, as the cladding for the POF [16]. PVP is a nonionic, water-soluble
polymer that is used in a wide range of applications and fields such as adhesives and
pigment dispersants due to its solubility in various organic solvents, high hygroscopic-
ity, and film-forming and adhesive properties. In this sensor, PVP is used for cladding,
taking advantage of its high hygroscopicity and film-forming properties. In this sensor, the
operation of the POF is converted from the leakage mode to the waveguide mode as the
refractive index decreases due to swelling. In the leakage mode region, the transmitted
light intensity only slightly decreases with increasing humidity. However, when switched
to the waveguide mode, the transmitted light intensity increases significantly with slight
humidity changes. For this reason, humidity measurements have thus far used humidity
levels at which the mode switches from leakage mode to waveguide mode as a starting
point [17,18]. For the mode to easily switch from low humidity, the refractive index of the
cladding should be close to that of the core. This can be realized, for example, by mixing a
low-refractive-index polymer in the cladding, which has been used for measurements in
humidity ranges above 60% RH. However, considering practical applications, it is essential
to measure humidity below 60% RH [19].

To enable this POF sensor to measure in the low-humidity range, active use of the
leakage mode can be considered. In the leakage mode, some light is reflected at the core-
cladding boundary, owing to the refractive index difference and the angle of incidence.
However, some of the light leaking into the cladding is reflected at the cladding–air interface
and returns to the core, resulting in a small change in the transmitted light intensity in
the leakage mode. Therefore, in this study, we propose a POF humidity sensor in which
a cladding with a high concentration of dye is applied to a POF with the shape corrected
by heating and stretching. As a result, the change in transmitted light intensity with the
change in refractive index of the cladding in the leakage mode is increased. We have
previously confirmed that dye doping allows for measurements in low humidity [20].
Extending that work, this study examines the effects of dye doping and sensor curvature,
as well as changes in the POF sensor sensitivity with the length of the sensing part.

2. Principle of Operation of Swellable Polymer-Clad POF Humidity Sensor
2.1. Structure and Principles

Certain polymers exhibit swelling properties in the presence of certain substances. One
such polymer, PVP, can swell selectively in water, reducing its refractive index from 1.52 to
1.49. This is because when water diffuses into PVP, the bonds between polymer molecules
expand through the water, causing the volume of the polymer to expand. This volume
expansion causes the molecular density of the polymer to become sparse and the polariz-
ability to decrease. This is because the dielectric constant also decreases accordingly. Other
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polymers that swell in response to water include polyvinyl alcohol and hydroxyethylcel-
lulose, among which PVP is characterized by its fast reaction rate and rapid decrease in
refractive index at high humidity. Figure 1 shows the sensor structure and operating prin-
ciple of the PVP and polyvinylidene fluoride mixed polymer (polyvinylidene difluoride:
PVDF) cladding POF humidity sensor.
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Figure 1. POF sensor model.

The cladding was doped with Brilliant Blue (BB), a dye used to increase absorbance.
The core was constructed from polymethyl methacrylate (PMMA, refractive index n1 = 1.489),
which is an acrylic resin that combines high transparency and impact resistance, and
is a plastic used in a variety of products, including aquariums and airplane windows.
Leveraging the fact that the intensity of the transmitted light changes significantly when the
fiber behavior is converted from the leakage mode to the waveguide mode in the presence
or absence of humidity, the ratio of the blend polymers was adjusted such that the refractive
index n2 of the cladding polymer in the unswollen state was slightly higher than that of the
core. The transmitted light intensity in the leakage mode is shown in Equation (1) using
the ray-tracing method

Pout =
π/2

∑
θ=0

P(θ){R(θ) + (1− R(θ))·α(c,θ)}m(θ) (1)

where m(θ) is the number of times a ray is reflected, and α is the transmittance of light
incident on the cladding back to the core, which depends on the dye concentrations c and θ.
Since this model uses the ray-tracing method, the reflectance R(θ) can be approximated by
Equation (2) from the power reflection coefficient of Fresnel reflection used for plane waves.

R(θ) =

(
n1cosθi −

√
n22 − n1

2sin2θi

)2

(n1cosθi +
√

n22 − n1
2sin2θi)

2 (2)

where θi is the angle of incidence at the boundary.
The second term in Equation (1) represents the effect of dye doping in the cladding.

As the dye concentration c is increased, the amount of light absorbed by the cladding
increases, resulting in a decrease in the transmittance α of the cladding. A decrease in α
results in a decrease in the transmitted light intensity in the leakage mode.

The transmitted light intensity in the waveguide mode is expressed by Equation (3):

Pout =
θcs

∑
θ=0

P(θ) +
π/2

∑
θ=θcs

P(θ){R(θ) + (1− R(θ))·α(c,θ)}m(θ) (3)

where θcs denotes the critical angle. Comparing Equations (1) and (3), it can be seen that
the transmitted light intensity increases rapidly when switching from the leakage mode
to the waveguide mode. In the conventional method, the large change in the transmitted
light intensity when switching from the leakage mode to the waveguide mode has been
used for measurement. Therefore, by reducing the transmitted light intensity in the leakage
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mode, the ratio of the transmitted light intensity in the waveguide mode and leakage
mode can be increased, thereby improving the sensitivity. Therefore, we improved the
sensitivity by doping the cladding with the dye. However, when the absorbance at a certain
wavelength is increased by adding the dye, the refractive index at that wavelength also
increases. Therefore, the refractive index difference between the core and cladding increases
at this wavelength, and the leakage mode humidity range becomes wider. Therefore, the
mode-switching start humidity, which can be used for measurement, increases.

Therefore, in this study, we propose the use of leakage mode for measurements at
low humidity. Thus, the first term in Equation (1), i.e., the change in the reflectance in
Equation (2) was used for measurement. To realize the measurement in the leakage mode, θi
in Equation (2) should be increased, and the second term in Equation (1) should be decreased.
Therefore, the curvature of the POF was removed, and the dye was doped. The reasons for
this are as follows.

2.2. Effect of POF Curvature

Since the POF is wound and housed on a shaft of diameter 20 cm, it is slightly curved
in its natural state with a radius of curvature of approximately 5.5 m−1. In previous sensors,
this curvature could be ignored, because the measurement was made in the waveguide
mode, and the effect of the refractive index difference between the core and cladding
was larger than the incident angle θi on the core-cladding boundary. However, since the
present measurement was performed in the leakage mode, the angle of incidence to the
core-cladding boundary directly affected the magnitude of the transmitted light intensity,
as shown in Equation (2). Therefore, we used a POF with a straight core shape by stretching
the fiber and heating it. By making the core shape closer to the ideal straight core shape,
the transmitted light intensity in the leakage mode increases, and the rate of change of
the transmitted light intensity with respect to the change in cladding refractive index
also increases.

It is difficult to keep the curvature of the sensor constant. By adding curvature to the
sensor, the closer the refractive index of the cladding is to the core, the more light leaks
into the cladding, resulting in a relatively high sensitivity based on the lowest transmitted
light level. However, if the curvature cannot be kept constant during measurement, the
sensitivity of the sensor will change. In addition, the curvature compromised the uniformity
of the cladding during the sensor creation. As a result, the reproducibility of humidity
characteristics was reduced due to the blurring of the curvature. However, by eliminating
the curvature and making the sensor straight, it is possible to improve the uniformity
of the cladding, suppress variations in sensitivity during measurement, and improve
sensor reproducibility.

2.3. Dye Doping

As described previously, doping with a dye increases the optical absorption for a given
wavelength, and at the same time, increases the refractive index. Doping the dye such that
the refractive index of the cladding is significantly higher than that of the core expands
the range of leakage modes and extends the range of possible measurements. In addition,
since sensors using the leakage mode measure Fresnel reflection, the greater the difference
in refractive index between the core and cladding, the greater the change in transmitted
light intensity. In other words, the measurement range and sensitivity can be increased by
doping with large amounts of dye.

3. Construction of the Leaky Waveguide POF Humidity Sensor

The POF sensor was fabricated as follows. First, POF (Eska SH-4001) (PMMA: refrac-
tive index 1.489) with a jacket core diameter of 0.98 mm was cut into 15-cm-long pieces.
Next, to stretch the POF in a straight line, a shaft and crank arm combination device was
used to fix both ends of the POF and stretch it. With the POF fixed in a straight line, the
POF was heated at 80 ◦C for 2 min, cooled to room temperature, and then the curvature and
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distortion of the POF was removed. Since marks were left at both ends after these processes,
the ends were cut at 1 cm intervals to remove the marks. Next, the jacket was removed
from the center of the 9 cm section, soaked in dioxane for 3 min, and then wiped off with an
industrial paper wiper (Kim wipe) to remove the cladding originally attached to the POF.
Next, a PVP:PVDF mixed dimethyl sulfoxide solution containing BB dye (mixing ratio 5:2)
was dip-coated onto the stretched PMMA core. The pull-up speed was set at 5 mm/s. The
cladding was dried at room temperature in air for 24 h. PVDF is a low-refractive-index
polymer (refractive index 1.42) and is used to adjust the refractive index of the cladding
and form a uniform cladding on the core. Dimethyl sulfoxide, a common solvent for PVP
and PVDF, was used as the solvent. PVP and PVDF were mixed in dimethyl sulfoxide on a
mass basis. The solution was stirred in a stirrer for 24 h to achieve a homogeneous solution.

4. Measurement Results and Discussion on Leakage Waveguide Type POF
Humidity Sensor

The sensor measurements were performed using the experimental system shown in
Figure 2. A laser beam (DPS-2002, NEOARK Corp., Tokyo, Japan) with a wavelength of
650 nm was connected to a photosensor amplifier (C6386-01, HAMAMATU PHOTONICS
K.K., Hamamatu, Japan) using a sensor head. A digital multimeter (NR500, KEYENCE,
Tokyo, Japan) was connected to read the voltage output from the optical sensor amplifier,
and humidity characteristics were reviewed on a PC. A reference humidity sensor (MR6662,
CHINO, Tokyo, Japan) was placed inside the chamber. A bottle filled with water was
prepared outside the chamber and filled with saturated water vapor by pumping air into
the water using a pump. The bottle was connected to the chamber with a tube to feed moist
air into the chamber and was controlled by adjusting a valve.
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Figure 2. Experimental system for measurements with the POF sensor.

The light from the laser source was connected directly to a fiber and propagated
in multiple modes. The sensor was fixed to the shaft to prevent it from bending during
measurement. The chamber was 16 cm wide, 16 cm deep, and 8 cm high. At the start of
the measurement, nitrogen gas was pumped into the chamber to reduce the humidity
in the chamber to 0% RH. Nitrogen does not affect the sensor because it accounts for
approximately 78% of air. After confirming that the humidity in the chamber had reached
0% RH, measurements were started with the reference humidity sensor and the optical
sensor amplifier, and the humidity characteristics were measured with the valve adjusted
so that the humidity in the chamber increased at 1% RH per min, thus making the humidity
in the chamber uniform.

Figure 3 shows the change in the transmitted light intensity versus humidity for the
sensor measured without thermal stretching (bending) and for the sensor measured after
removing curvature and distortion by thermal stretching (straightening). The vertical axis is
the output of the photosensor amplifier, which is the voltage value of the transmitted light
intensity value obtained from the photodiode and amplified by the amplifier. The humidity
characteristics of the bend-type sensor show that the change in transmitted light intensity
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in the leakage mode is small. This indicates that the bend-type sensor is suitable for
measurements at high humidity. Moreover, the linear-type sensor has a large angle of
incidence of light entering the core–cladding interface, resulting in less light absorption
by the cladding and an overall increase in the transmitted light intensity. This reduces the
likelihood that all light will leak out during leakage mode, indicating that leakage mode
can be used. In addition, since the fiber geometry is closer to an ideal shape, changes in the
leakage modes can be clearly observed.
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Adding dye to the cladding improves the absorbance of the cladding and increases its
refractive index relative to the wavelength of the laser light. Figure 4 shows the humidity
characteristics of a sensor with a cladding composition of 6.8% polymer concentration and
0.2% BB concentration. The transmitted light intensity on the vertical axis is a graph in
which the overall light intensity is converted to a sensitivity with the lowest transmitted
light intensity as 1.
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The addition of 0.2% BB dye to the cladding significantly improved the change in the
transmitted light intensity in the leakage mode. The conversion from leakage mode to
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waveguide mode approached approximately 70% RH from 60% RH, and the leakage mode
region was significantly expanded. The sensitivity was 0.22 dB/% RH between 20% RH and
70% RH, which was higher than that of a tungsten dioxide-coated optical absorption fiber
sensor (0.1213 dB/% RH between 35% RH and 85% RH) [21] and a U-shaped bent optical
fiber coated with silica film and doped with methylene blue (0.087 dB/% RH between 1.1%
RH and 4.1% RH) [22]. This is because the addition of BB dye to the cladding increased the
refractive index of the cladding for light at a wavelength of 650 nm of the laser light source
used in the measurement, and also increased the absorbance of the cladding. The higher
absorbance of the cladding reduced the amount of light that leaked into the cladding and
returned to the core, rendering the changes in light reflected at the core–cladding interface
clearly visible. As the refractive index difference between the core and cladding increased,
the reflectance change at the core–cladding interface increased, further expanding the
leakage-mode region.

Figure 5 shows the humidity characteristics of a sensor comprising a cladding with a
polymer concentration of 4% and BB dye concentration of 3%, measured at 0% RH.
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Figure 5. Humidity characteristics of a sensor comprising a cladding with a polymer concentration
of 4% and a BB concentration of 3%, measured at 0% RH humidity.

As the concentration of the BB dye increased, the refractive index of the cladding with
respect to the 650 nm wavelength became larger than that of the core, resulting in a leakage
mode between 0% RH and 95% RH. The sensitivity was as high as 0.1 dB/% RH from 0%
RH to 70% RH and 0.32 dB/% RH from 70% RH to 95% RH. The high sensitivity from
70% RH and up can be attributed to the PVP property that its refractive index changes
rapidly under high humidity. These results indicate that the sensor can measure from 0%
RH, confirming that a sensor capable of measuring from 0% RH to 95% RH was fabricated.

The relationship between the length of the sensing section and humidity characteristics
is shown in Figure 6. Sensors with sensing part lengths of 3, 6, and 9 cm were measured
for coatings comprising a polymer concentration of 3.9% and BB concentration of 0.1%.
The sensitivity of each sensor from 0% RH to 60% RH was 0.12 dB/% RH, 0.09 dB/% RH,
and 0.05 dB/% RH, with the sensitivity increasing with the length of the sensing section.
This is because the longer the sensing section, the higher the number of reflections and the
greater the change in transmitted light intensity.
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Figure 6. Comparison of humidity characteristics of sensors of length 3 cm, 6 cm, and 9 cm of the
sensing area comprising a cladding with a polymer concentration of 3.9% and BB 0.1%.

Figure 7 shows the time response of the sensor with a polymer concentration of 4%
and BB concentration of 0.5%, showing the change in transmitted light intensity when the
humidity was lowered from 45% RH to 0% RH and when it was raised from 0% RH to 45%
RH. The humidity change was determined by closing the chamber lid, rapidly introducing
nitrogen gas to lower the humidity from 45% RH to 0% RH, and opening the lid to raise the
humidity to 45% RH. When the humidity was lowered from 45% RH to 0% RH, the time
required for the transmitted light intensity to stabilize was approximately 80 s. When the
humidity was raised from 0% RH to 45% RH, the time until the transmitted light intensity
stabilized was approximately 150 s. The approximate response times from 10% to 90%
transmitted light intensity were 22 s from 45% RH to 0% RH and 50 s from 0% RH to
45% RH.
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5. Conclusions

To measure humidity over a wide range, including low humidity, we developed a
sensor using the leakage mode. The core shape was straightened to increase the angle
of incidence at the core–cladding interface, and the dye was doped into the cladding to
increase the refractive index difference between the core and cladding and the absorbance
of the cladding. This increased the change in the transmitted light intensity in the leakage
mode, which enabled measurements from low-humidity conditions. The experimental
results confirmed the change in the light intensity in the leakage mode by linearizing the
core geometry. In addition, the addition of the dye broadened the leakage mode region and
improved the sensitivity. Furthermore, it was confirmed that the sensor with a polymer
concentration of 4% and a BB concentration of 3% could measure in the humidity range
from 0% RH to 95% RH, with a sensitivity of 0.1 dB/% RH between 0% RH and 70% RH
and 0.32 dB/% RH between 70% RH and 95% RH. These results indicate that a sensor
with a measurement range of 60% RH or higher can be improved to a sensor capable of
measuring from 0% RH to 95% RH. Next, the variation in the transmitted light intensity
with the length of the detector element was checked, and it was confirmed that the longer
the detector element, the greater the variation in the transmitted light intensity. Finally, the
response time of the sensor was checked. The sensor had an estimated response time of
22 s for a decrease in humidity from 45% RH to 0% RH and 50 s for an increase in humidity
from 0% RH to 45% RH. In future work, we will consider improving the sensitivity in the
leakage mode by increasing the amount of light absorbed by the cladding by applying
precise microbending to increase the change in transmitted light intensity in the leakage
mode while maintaining reproducibility. We also plan to compare PVP with other swellable
polymers to see if PVP provides an advantage in reaction speed in sensors that measure in
leakage mode.
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