A Systematic Review of Sensor Fusion Methods Using Peripheral Bio-Signals for Human Intention Decoding
Abstract
:1. Introduction
2. Methods
- E0: Studies focusing on animals, the analysis of vital signs, humans under 18, electrical stimulation;
- E1: A fixed structure (should have the potential to be portable to be included), stationary instrumentation
- E2: No inclusion criteria met
- I0: Should use two or more sensing methods focusing on skeletal muscles and perform fusion to achieve better performance
3. Results
3.1. Fusion of EMG and MMG
3.2. Fusion of EMG and US
3.3. Fusion of EMG and NIRS
3.4. Fusion of EMG and Accelerometers
3.5. Fusion of EMG and IMU
3.6. Fusion of EMG and Accelerometer with Optical Sensing
3.7. Fusion of MMG and IMU
3.8. Fusion of EMG, US and MMG
3.9. Fusion of EMG, MMG and NIRS
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
EMG | Electromyography |
MMG | Mechanomyography |
US | Ultrasonography |
NIRS | Near-infrared wpectroscopy |
IMU | Inertial measurement unit |
MuMI | Muscle–machine interface |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
References
- Beckerle, P.; Salvietti, G.; Unal, R.; Prattichizzo, D.; Rossi, S.; Castellini, C.; Hirche, S.; Endo, S.; Amor, H.B.; Ciocarlie, M.; et al. A human–robot interaction perspective on assistive and rehabilitation robotics. Front. Neurorobot. 2017, 11, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dwivedi, A. Analysis, Development, and Evaluation of Muscle Machine Interfaces for the Intuitive Control of Robotic Devices. Ph.D. Thesis, The University of Auckland, Auckland, New Zealand, 2021. [Google Scholar]
- Vogel, J.; Castellini, C.; van der Smagt, P. EMG-based teleoperation and manipulation with the DLR LWR-III. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), San Francisco, CA, USA, 25–30 September 2011; pp. 672–678. [Google Scholar]
- Dwivedi, A.; Gorjup, G.; Kwon, Y.; Liarokapis, M. Combining electromyography and fiducial marker based tracking for intuitive telemanipulation with a robot arm hand system. In Proceedings of the 2019 28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), New Delhi, India, 14–18 October 2019; pp. 1–6. [Google Scholar]
- Shieff, D.; Turner, A.; Dwivedi, A.; Gorjup, G.; Liarokapis, M. An Electromyography Based Shared Control Framework for Intuitive Robotic Telemanipulation. In Proceedings of the 2021 20th International Conference on Advanced Robotics (ICAR), Ljubljana, Slovenia, 6–10 December 2021; pp. 806–811. [Google Scholar]
- Atzori, M.; Gijsberts, A.; Castellini, C.; Caputo, B.; Hager, A.G.M.; Elsig, S.; Giatsidis, G.; Bassetto, F.; Müller, H. Electromyography data for non-invasive naturally-controlled robotic hand prostheses. Sci. Data 2014, 1, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dwivedi, A.; Shieff, D.; Turner, A.; Gorjup, G.; Kwon, Y.; Liarokapis, M. A Shared Control Framework for Robotic Telemanipulation Combining Electromyography Based Motion Estimation and Compliance Control. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 9467–9473. [Google Scholar]
- Kwon, Y.; Dwivedi, A.; McDaid, A.J.; Liarokapis, M. Electromyography-Based Decoding of Dexterous, In-Hand Manipulation of Objects: Comparing Task Execution in Real World and Virtual Reality. IEEE Access 2021, 9, 37297–37310. [Google Scholar] [CrossRef]
- Liarokapis, M.V.; Artemiadis, P.K.; Katsiaris, P.T.; Kyriakopoulos, K.J.; Manolakos, E.S. Learning human reach-to-grasp strategies: Towards EMG-based control of robotic arm-hand systems. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation, St. Paul, MN, USA, 14–19 May 2012; pp. 2287–2292. [Google Scholar]
- Castellini, C.; Van Der Smagt, P. Surface EMG in advanced hand prosthetics. Biol. Cybern. 2009, 100, 35–47. [Google Scholar] [CrossRef] [Green Version]
- Hodges, P.; Pengel, L.; Herbert, R.; Gandevia, S. Measurement of muscle contraction with ultrasound imaging. Muscle Nerve 2003, 27, 682–692. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Fang, Y.; Zhou, D.; Li, K.; Cointet, C.; Liu, H. Ultrasonography and electromyography based hand motion intention recognition for a trans-radial amputee: A case study. Med. Eng. Phys. 2020, 75, 45–48. [Google Scholar] [CrossRef]
- Castellini, C.; Passig, G.; Zarka, E. Using ultrasound images of the forearm to predict finger positions. IEEE Trans. Neural Syst. Rehabil. Eng. 2012, 20, 788–797. [Google Scholar] [CrossRef] [Green Version]
- Sierra González, D.; Castellini, C. A realistic implementation of ultrasound imaging as a human–machine interface for upper-limb amputees. Front. Neurorobot. 2013, 7, 17. [Google Scholar] [CrossRef] [Green Version]
- Castellini, C.; Passig, G. Ultrasound image features of the wrist are linearly related to finger positions. In Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011; pp. 2108–2114. [Google Scholar]
- Ibitoye, M.O.; Hamzaid, N.A.; Zuniga, J.M.; Wahab, A.K.A. Mechanomyography and muscle function assessment: A review of current state and prospects. Clin. Biomech. 2014, 29, 691–704. [Google Scholar] [CrossRef]
- Silva, J.; Heim, W.; Chau, T. A self-contained, mechanomyography-driven externally powered prosthesis. Arch. Phys. Med. Rehabil. 2005, 86, 2066–2070. [Google Scholar] [CrossRef]
- Wu, H.; Huang, Q.; Wang, D.; Gao, L. A CNN-SVM combined model for pattern recognition of knee motion using mechanomyography signals. J. Electromyogr. Kinesiol. 2018, 42, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Wilson, S.; Vaidyanathan, R. Upper-limb prosthetic control using wearable multichannel mechanomyography. In Proceedings of the 2017 International Conference on Rehabilitation Robotics (ICORR), London, UK, 17–20 July 2017; pp. 1293–1298. [Google Scholar]
- Praagman, M.; Veeger, H.; Chadwick, E.; Colier, W.; Van Der Helm, F. Muscle oxygen consumption, determined by NIRS, in relation to external force and EMG. J. Biomech. 2003, 36, 905–912. [Google Scholar] [CrossRef]
- Nsugbe, E.; Phillips, C.; Fraser, M.; McIntosh, J. Gesture recognition for transhumeral prosthesis control using EMG and NIR. Iet-Cyber-Syst. Robot. 2020, 2, 122–131. [Google Scholar] [CrossRef]
- De Luca, C. Electromyography. In Encyclopedia of Medical Devices and Instrumentation; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006. [Google Scholar]
- Dwivedi, A.; Kwon, Y.; Liarokapis, M. Emg-based decoding of manipulation motions in virtual reality: Towards immersive interfaces. In Proceedings of the 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Toronto, ON, Canada, 11–14 October 2020; pp. 3296–3303. [Google Scholar]
- Dwivedi, A.; Kwon, Y.; McDaid, A.J.; Liarokapis, M. EMG based decoding of object motion in dexterous, in-hand manipulation tasks. In Proceedings of the 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob), Enschede, The Netherlands, 26–29 August 2018; pp. 1025–1031. [Google Scholar]
- Al-Mulla, M.R.; Sepulveda, F.; Colley, M. A review of non-invasive techniques to detect and predict localised muscle fatigue. Sensors 2011, 11, 3545–3594. [Google Scholar] [CrossRef] [Green Version]
- Saponas, T.S.; Tan, D.S.; Morris, D.; Balakrishnan, R.; Turner, J.; Landay, J.A. Enabling always-available input with muscle-computer interfaces. In Proceedings of the 22nd Annual ACM Symposium on User Interface Software and Technology, Victoria, BC, Canada, 4–7 October 2009; pp. 167–176. [Google Scholar]
- Kiguchi, K.; Hayashi, Y. An EMG-based control for an upper-limb power-assist exoskeleton robot. IEEE Trans. Syst. Man Cybern. Part (Cybernet.) 2012, 42, 1064–1071. [Google Scholar] [CrossRef]
- Artemiadis, P.K.; Kyriakopoulos, K.J. EMG-based control of a robot arm using low-dimensional embeddings. IEEE Trans. Robot. 2010, 26, 393–398. [Google Scholar] [CrossRef]
- Perusquía-Hernández, M.; Hirokawa, M.; Suzuki, K. Spontaneous and posed smile recognition based on spatial and temporal patterns of facial EMG. In Proceedings of the 2017 Seventh International Conference on Affective Computing and Intelligent Interaction (ACII), San Antonio, TX, USA, 23–26 October 2017; pp. 537–541. [Google Scholar]
- Jiang, S.; Gao, Q.; Liu, H.; Shull, P.B. A novel, co-located EMG-FMG-sensing wearable armband for hand gesture recognition. Sens. Actuators A Phys. 2020, 301, 111738. [Google Scholar] [CrossRef]
- Péter, A.; Andersson, E.; Hegyi, A.; Finni, T.; Tarassova, O.; Cronin, N.; Grundström, H.; Arndt, A. Comparing surface and fine-wire electromyography activity of lower leg muscles at different walking speeds. Front. Physiol. 2019, 10, 1283. [Google Scholar] [CrossRef] [Green Version]
- Woodward, R.B.; Stokes, M.J.; Shefelbine, S.J.; Vaidyanathan, R. Segmenting mechanomyography measures of muscle activity phases using inertial data. Sci. Rep. 2019, 9, 5569. [Google Scholar] [CrossRef] [Green Version]
- Ouamer, M.; Boiteux, M.; Petitjean, M.; Travens, L.; Salès, A. Acoustic myography during voluntary isometric contraction reveals non-propagative lateral vibration. J. Biomech. 1999, 32, 1279–1285. [Google Scholar] [CrossRef]
- Xie, H.B.; Zheng, Y.P.; Guo, J.Y. Classification of the mechanomyogram signal using a wavelet packet transform and singular value decomposition for multifunction prosthesis control. Physiol. Meas. 2009, 30, 441. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.-L.; Zhao, S.-N.; Hu, J.-H. MMG signal and its applications in prosthesis control. In Proceedings of the 4th International Convention on Rehabilitation Engineering & Assistive Technology, Shanghai, China, 21–23 July 2010; pp. 1–4. [Google Scholar]
- Talib, I.; Sundaraj, K.; Lam, C.K.; Hussain, J.; Ali, M. A review on crosstalk in myographic signals. Eur. J. Appl. Physiol. 2019, 119, 9–28. [Google Scholar] [CrossRef] [PubMed]
- Ortenzi, V.; Tarantino, S.; Castellini, C.; Cipriani, C. Ultrasound imaging for hand prosthesis control: A comparative study of features and classification methods. In Proceedings of the 2015 IEEE International Conference on Rehabilitation Robotics (ICORR), Singapore, 11–14 August 2015; pp. 1–6. [Google Scholar]
- Guo, W.; Sheng, X.; Liu, H.; Zhu, X. Toward an enhanced human–machine interface for upper-limb prosthesis control with combined EMG and NIRS signals. IEEE Trans.-Hum.-Mach. Syst. 2017, 47, 564–575. [Google Scholar] [CrossRef]
- Guo, W.; Sheng, X.; Liu, H.; Zhu, X. Development of a multi-channel compact-size wireless hybrid sEMG/NIRS sensor system for prosthetic manipulation. IEEE Sens. J. 2015, 16, 447–456. [Google Scholar] [CrossRef]
- Chapman, J.; Dwivedi, A.; Liarokapis, M. A Wearable, Open-Source, Lightweight Forcemyography Armband: On Intuitive, Robust Muscle–Machine Interfaces. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 September–1 October 2021; pp. 4138–4143. [Google Scholar]
- Shahmohammadi, M.; Dwivedi, A.; Nielsen, P.; Taberner, A.; Liarokapis, M. On Lightmyography: A New Muscle Machine Interfacing Method for Decoding Human Intention and Motion. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Guadalajara, Mexico, 1–5 October 2021; pp. 4744–4748. [Google Scholar]
- Saponas, T.S.; Tan, D.S.; Morris, D.; Balakrishnan, R. Demonstrating the feasibility of using forearm electromyography for muscle-computer interfaces. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Florence, Italy, 5–10 April 2008; pp. 515–524. [Google Scholar]
- Das, A.; Tashev, I.; Mohammed, S. Ultrasound based gesture recognition. In Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017; pp. 406–410. [Google Scholar]
- Artemiadis, P.K.; Kyriakopoulos, K.J. EMG-based teleoperation of a robot arm in planar catching movements using ARMAX model and trajectory monitoring techniques. In Proceedings of the 2006 IEEE International Conference on Robotics and Automation (ICRA 2006), Orlando, FL, USA, 15–19 May 2006; pp. 3244–3249. [Google Scholar]
- Godoy, R.V.; Lahr, G.J.G.; Dwivedi, A.; Reis, T.J.S.; Polegato, P.H.; Becker, M.; Caurin, G.A.P.; Liarokapis, M. Electromyography-Based, Robust Hand Motion Classification Employing Temporal Multi-Channel Vision Transformers. IEEE Robot. Autom. Lett. 2022, 7, 10200–10207. [Google Scholar] [CrossRef]
- Yang, C.; Chang, S.; Liang, P.; Li, Z.; Su, C.Y. Teleoperated robot writing using EMG signals. In Proceedings of the 2015 IEEE International Conference on Information and Automation, Lijiang, China, 8–10 August 2015; pp. 2264–2269. [Google Scholar]
- Han, J.S.; Song, W.K.; Kim, J.S.; Bang, W.C.; Lee, H.; Bien, Z. New EMG pattern recognition based on soft computing techniques and its application to control of a rehabilitation robotic arm. In Proceedings of the 6th International Conference on Soft Computing (IIZUKA2000), Iizuka, Japan, 1–4 October 2000; pp. 890–897. [Google Scholar]
- Fang, C.; He, B.; Wang, Y.; Cao, J.; Gao, S. EMG-centered multisensory based technologies for pattern recognition in rehabilitation: State of the art and challenges. Biosensors 2020, 10, 85. [Google Scholar] [CrossRef]
- Smith, P.A.; Dombrowski, M.; Buyssens, R.; Barclay, P. The impact of a custom electromyograph (EMG) controller on player enjoyment of games designed to teach the use of prosthetic arms. Comput. Games J. 2018, 7, 131–147. [Google Scholar] [CrossRef]
- Kyeong, S.; Kim, W.D.; Feng, J.; Kim, J. Implementation issues of EMG-based motion intention detection for exoskeletal robots. In Proceedings of the 2018 27th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), Nanjing, China, 27–31 August 2018; pp. 915–920. [Google Scholar]
- Pan, C.T.; Chang, C.C.; Yang, Y.S.; Yen, C.K.; Kao, Y.H.; Shiue, Y.L. Development of MMG sensors using PVDF piezoelectric electrospinning for lower limb rehabilitation exoskeleton. Sens. Actuators A Phys. 2020, 301, 111708. [Google Scholar] [CrossRef]
- Tarata, M.; Spaepen, A.; Puers, R. The accelerometer MMG measurement approach, in monitoring the muscular fatigue. Meas. Sci. Rev. 2001, 1, 47–50. [Google Scholar]
- DelPreto, J.; Rus, D. Sharing the load: Human–robot team lifting using muscle activity. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 7906–7912. [Google Scholar]
- DelPreto, J.; Salazar-Gomez, A.F.; Gil, S.; Hasani, R.; Guenther, F.H.; Rus, D. Plug-and-play supervisory control using muscle and brain signals for real-time gesture and error detection. Auton. Robot. 2020, 44, 1303–1322. [Google Scholar] [CrossRef]
- Huang, D.; Lin, P.; Fei, D.Y.; Chen, X.; Bai, O. Decoding human motor activity from EEG single trials for a discrete two-dimensional cursor control. J. Neural Eng. 2009, 6, 046005. [Google Scholar] [CrossRef] [PubMed]
- Kilicarslan, A.; Prasad, S.; Grossman, R.G.; Contreras-Vidal, J.L. High accuracy decoding of user intentions using EEG to control a lower-body exoskeleton. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 5606–5609. [Google Scholar]
- Jerbi, K.; Vidal, J.; Mattout, J.; Maby, E.; Lecaignard, F.; Ossandon, T.; Hamamé, C.; Dalal, S.; Bouet, R.; Lachaux, J.P.; et al. Inferring hand movement kinematics from MEG, EEG and intracranial EEG: From brain-machine interfaces to motor rehabilitation. IRBM 2011, 32, 8–18. [Google Scholar] [CrossRef]
- Cui, C.; Bian, G.B.; Hou, Z.G.; Zhao, J.; Zhou, H. A multimodal framework based on integration of cortical and muscular activities for decoding human intentions about lower limb motions. IEEE Trans. Biomed. Circuits Syst. 2017, 11, 889–899. [Google Scholar] [CrossRef] [PubMed]
- Salazar-Gomez, A.F.; DelPreto, J.; Gil, S.; Guenther, F.H.; Rus, D. Correcting robot mistakes in real time using EEG signals. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 6570–6577. [Google Scholar]
- Welcome to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Website! Available online: https://prisma-statement.org/ (accessed on 30 July 2012).
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Nostadt, N.; Abbink, D.A.; Christ, O.; Beckerle, P. Embodiment, presence, and their intersections: Teleoperation and beyond. ACM Trans.-Hum.-Robot. Interact. 2020, 9, 1–19. [Google Scholar] [CrossRef]
- Hsu, L.M.; Field, R. Interrater agreement measures: Comments on Kappan, Cohen’s Kappa, Scott’s π, and Aickin’s α. Underst. Stat. 2003, 2, 205–219. [Google Scholar] [CrossRef]
- Rau, G.; Shih, Y.S. Evaluation of Cohen’s kappa and other measures of inter-rater agreement for genre analysis and other nominal data. J. Engl. Acad. Purp. 2021, 53, 101026. [Google Scholar] [CrossRef]
- McHugh, M.L. Interrater reliability: The kappa statistic. Biochem. Med. 2012, 22, 276–282. [Google Scholar] [CrossRef]
- Altman, D.G. Practical Statistics for Medical Research; CRC Press: Boca Raton, FL, USA, 1990. [Google Scholar]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [Green Version]
- Tkach, D.; Hargrove, L.J. Neuromechanical sensor fusion yields highest accuracies in predicting ambulation mode transitions for trans-tibial amputees. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 3074–3077. [Google Scholar]
- Fukuhara, S.; Watanabe, S.; Oka, H. Novel mechanomyogram/electromyogram hybrid transducer measurements reflect muscle strength during dynamic exercise—Pedaling of recumbent bicycle. Adv. Biomed. Eng. 2018, 7, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Tsuji, H.; Misawa, H.; Takigawa, T.; Tetsunaga, T.; Yamane, K.; Oda, Y.; Ozaki, T. Quantification of patellar tendon reflex using portable mechanomyography and electromyography devices. Sci. Rep. 2021, 11, 2284. [Google Scholar] [CrossRef] [PubMed]
- Donnarumma, M.; Caramiaux, B.; Tanaka, A. Muscular Interactions Combining EMG and MMG sensing for musical practice. In Proceedings of the International Conference on New Interfaces for Musical Expression, Daejeon, Korea, 27–30 May 2013. [Google Scholar]
- Botter, A.; Beltrandi, M.; Cerone, G.; Gazzoni, M.; Vieira, T. Development and testing of acoustically-matched hydrogel-based electrodes for simultaneous EMG-ultrasound detection. Med. Eng. Phys. 2019, 64, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yan, J.; Liu, H. Comparative analysis of wearable a-mode ultrasound and SEMG for muscle-computer interface. IEEE Trans. Biomed. Eng. 2019, 67, 2434–2442. [Google Scholar] [CrossRef]
- Guo, W.; Yao, P.; Sheng, X.; Zhang, D.; Zhu, X. An enhanced human–computer interface based on simultaneous sEMG and NIRS for prostheses control. In Proceedings of the 2014 IEEE International Conference on Information and Automation (ICIA), Hailar, China, 28–30 July 2014; pp. 204–207. [Google Scholar]
- Paleari, M.; Luciani, R.; Ariano, P. Towards NIRS-based hand movement recognition. In Proceedings of the 2017 International Conference on Rehabilitation Robotics (ICORR), London, UK, 17–20 July 2017; pp. 1506–1511. [Google Scholar]
- Scano, A.; Zanoletti, M.; Pirovano, I.; Spinelli, L.; Contini, D.; Torricelli, A.; Re, R. NIRS-EMG for clinical applications: A systematic review. Appl. Sci. 2019, 9, 2952. [Google Scholar] [CrossRef] [Green Version]
- Fougner, A.; Scheme, E.; Chan, A.D.; Englehart, K.; Stavdahl, Ø. Resolving the limb position effect in myoelectric pattern recognition. IEEE Trans. Neural Syst. Rehabil. Eng. 2011, 19, 644–651. [Google Scholar] [CrossRef] [Green Version]
- Roy, S.H.; Cole, B.T.; Gilmore, L.D.; De Luca, C.J.; Thomas, C.A.; Saint-Hilaire, M.M.; Nawab, S.H. High-resolution tracking of motor disorders in Parkinson’s disease during unconstrained activity. Mov. Disord. 2013, 28, 1080–1087. [Google Scholar] [CrossRef]
- Gijsberts, A.; Caputo, B. Exploiting accelerometers to improve movement classification for prosthetics. In Proceedings of the 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR), Seattle, WA, USA, 24–26 June 2013; pp. 1–5. [Google Scholar]
- Gijsberts, A.; Atzori, M.; Castellini, C.; Müller, H.; Caputo, B. Movement error rate for evaluation of machine learning methods for sEMG-based hand movement classification. IEEE Trans. Neural Syst. Rehabil. Eng. 2014, 22, 735–744. [Google Scholar] [CrossRef]
- Wu, J.; Tian, Z.; Sun, L.; Estevez, L.; Jafari, R. Real-time American sign language recognition using wrist-worn motion and surface EMG sensors. In Proceedings of the 2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN), Cambridge, MA, USA, 9–12 June 2015; pp. 1–6. [Google Scholar]
- Joshi, D.; Hahn, M.E. Terrain and direction classification of locomotion transitions using neuromuscular and mechanical input. Ann. Biomed. Eng. 2016, 44, 1275–1284. [Google Scholar] [CrossRef]
- Gupta, H.; Anil, A.; Gupta, R. On the combined use of Electromyogram and Accelerometer in Lower Limb Motion Recognition. In Proceedings of the 2018 IEEE 8th International Advance Computing Conference (IACC), Greater Noida, India, 14–15 December 2018; pp. 240–245. [Google Scholar]
- Wang, W.; Chen, B.; Xia, P.; Hu, J.; Peng, Y. Sensor fusion for myoelectric control based on deep learning with recurrent convolutional neural networks. Artif. Organs 2018, 42, E272–E282. [Google Scholar] [CrossRef]
- Cannan, J.; Hu, H. A Multi-sensor armband based on muscle and motion measurements. In Proceedings of the 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO), Guangzhou, China, 11–14 December 2012; pp. 1098–1103. [Google Scholar]
- Wu, J.; Sun, L.; Jafari, R. A wearable system for recognizing American sign language in real-time using IMU and surface EMG sensors. IEEE J. Biomed. Health Inform. 2016, 20, 1281–1290. [Google Scholar] [CrossRef]
- Yang, X.; Chen, X.; Cao, X.; Wei, S.; Zhang, X. Chinese sign language recognition based on an optimized tree-structure framework. IEEE J. Biomed. Health Inform. 2016, 21, 994–1004. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Xu, B.; Zhou, X.; Qi, H. Research on gesture recognition based on sEMG and inertial sensor fusion. In Proceedings of the 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China, 12–14 October 2018; pp. 1562–1567. [Google Scholar]
- Yu, Y.; Chen, X.; Cao, S.; Zhang, X.; Chen, X. Exploration of Chinese sign language recognition using wearable sensors based on deep belief net. IEEE J. Biomed. Health Inform. 2019, 24, 1310–1320. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; He, J.; Qi, W.; Hu, Y.; Dai, J.; Xu, Y. Hybrid IMU/muscle signals powered teleoperation control of serial manipulator incorporating passivity adaptation. In Proceedings of the 2020 5th International Conference on Advanced Robotics and Mechatronics (ICARM), Shenzhen, China, 18–21 December 2020; pp. 228–233. [Google Scholar]
- Yoshikawa, M.; Taguchi, Y.; Kawashima, N.; Matsumoto, Y.; Ogasawara, T. Hand motion recognition using hybrid sensors consisting of EMG sensors and optical distance sensors. In Proceedings of the 2012 IEEE RO-MAN: The 21st IEEE International Symposium on Robot and Human Interactive Communication, Paris, France, 9–13 September 2012; pp. 144–149. [Google Scholar]
- Luan, J.; Chien, T.C.; Lee, S.; Chou, P.H. HANDIO: A Wireless Hand Gesture Recognizer Based on Muscle-Tension and Inertial Sensing. In Proceedings of the 2015 IEEE Global Communications Conference (GLOBECOM), San Diego, CA, USA, 6–10 December 2015; pp. 1–7. [Google Scholar]
- Woodward, R.; Shefelbine, S.; Vaidyanathan, R. Pervasive motion tracking and muscle activity monitor. In Proceedings of the 2014 IEEE 27th International Symposium on Computer-Based Medical Systems, New York, NY, USA, 27–29 May 2014; pp. 421–426. [Google Scholar]
- Woodward, R.B.; Shefelbine, S.J.; Vaidyanathan, R. Pervasive monitoring of motion and muscle activation: Inertial and mechanomyography fusion. IEEE/ASME Trans. Mechatron. 2017, 22, 2022–2033. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, Y.; Jin, R.; Yuan, X.; Sekha, R.; Wilson, S.; Vaidyanathan, R. Hand gesture recognition with convolutional neural networks for the multimodal UAV control. In Proceedings of the 2017 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS), Linkoping, Sweden, 3–5 October 2017; pp. 198–203. [Google Scholar]
- Huo, W.; Angeles, P.; Tai, Y.F.; Pavese, N.; Wilson, S.; Hu, M.T.; Vaidyanathan, R. A heterogeneous sensing suite for multisymptom quantification of Parkinson’s disease. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 1397–1406. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhong, S.; Niu, Y.; Chen, S.; Wang, T.; Chan, S.C.; Zhang, Z. A multimodal investigation of in vivo muscle behavior: System design and data analysis. In Proceedings of the 2014 IEEE International Symposium on Circuits and Systems (ISCAS), Melbourne, Australia, 1–5 June 2014; pp. 2053–2056. [Google Scholar]
- Han, S.; Chen, X.; Zhong, S.; Zhou, Y.; Zhang, Z. A novel outlier detection method for identifying torque-related transient patterns of in vivo muscle behavior. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 4216–4219. [Google Scholar]
- Ding, X.; Wang, M.; Guo, W.; Sheng, X.; Zhu, X. Hybrid sEMG, NIRS and MMG Sensor System. In Proceedings of the 2018 25th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), Stuttgart, Germany, 20–22 November 2018; pp. 1–6. [Google Scholar]
- Sheng, X.; Ding, X.; Guo, W.; Hua, L.; Wang, M.; Zhu, X. Toward an integrated multi-modal sEMG/MMG/NIRS sensing system for human–machine interface robust to muscular fatigue. IEEE Sens. J. 2020, 21, 3702–3712. [Google Scholar] [CrossRef]
- Delsys—Wearable Systems for Movement Science. Available online: https://delsys.com/ (accessed on 17 April 2012).
- Thalmic Labs. Available online: https://developerblog.myo.com/author/thalmic-labs/ (accessed on 17 April 2012).
- Atzori, M.; Müller, H. The Ninapro database: A resource for sEMG naturally controlled robotic hand prosthetics. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 7151–7154. [Google Scholar]
- Hamaoka, T.; McCully, K.K.; Quaresima, V.; Yamamoto, K.; Chance, B. Near-infrared spectroscopy/imaging for monitoring muscle oxygenation and oxidative metabolism in healthy and diseased humans. J. Biomed. Opt. 2007, 12, 062105. [Google Scholar] [CrossRef]
- g.tec Medical Engineering GmbH. Available online: https://www.gtec.at/ (accessed on 17 April 2012).
- About BioSemi. Available online: https://www.biosemi.com/company.htm (accessed on 17 April 2012).
- MyoWare 2.0 Muscle Sensor. Available online: https://myoware.com/ (accessed on 17 April 2012).
- Wenhui, W.; Xiang, C.; Kongqiao, W.; Xu, Z.; Jihai, Y. Dynamic gesture recognition based on multiple sensors fusion technology. In Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, USA, 3–6 September 2009; pp. 7014–7017. [Google Scholar]
- Dwivedi, A.; Kwon, Y.; McDaid, A.J.; Liarokapis, M. A learning scheme for EMG based decoding of dexterous, in-hand manipulation motions. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 2205–2215. [Google Scholar] [CrossRef]
- Oskoei, M.A.; Hu, H. Myoelectric control systems—A survey. Biomed. Signal Process. Control 2007, 2, 275–294. [Google Scholar] [CrossRef]
Databases | Search Term |
---|---|
Scopus, Pubmed, IEEE, Web of Science | (Skeletal Muscle OR Human Muscle) AND (Muscle Activity OR Electromyography OR Mechanomyography OR Sonomyography OR Myography) AND (Hybrid OR Multimodal OR Sensor Fusion OR Data Fusion) NOT (EKG OR EEG or Electrical Stimulation) |
Fusion Method | Study | Properties of Fusion Methods |
---|---|---|
Fusion of EMG and MMG | Tkach and Hargrove [69] Fukuhara et al. [70] Tsuji et al. [71] | Provide complementary information regarding the intention [72] |
Fusion of EMG and US | Botter et al. [73] Yang et al. [74] | Acquire information of both superficial and deep-seated muscles |
Fusion of EMG and NIRS | Guo et al. [75] Guo et al. [39] Paleari et al. [76] Guo et al. [38] | Assess the same domain under different perspectives [77] |
Fusion of EMG and Accelerometers | Fougner et al. [78] Roy et al. [79] Gijsberts and Caputo [80] Gijsberts et al. [81] Wu et al. [82] Joshi and Hahn [83] Gupta et al. [84] Wang et al. [85] | Dynamic and kinematic information of the user intentions |
Fusion of EMG and IMU | Cannan and Hu [86] Wu et al. [87] Yang et al. [88] Fang et al. [89] Yu et al. [90] Zhou et al. [91] | Dynamic and kinematic (six or more degrees of freedom) information of the user intentions |
Fusion of EMG and accelerometer with Optical Sensing | Yoshikawa et al. [92] Luan et al. [93] | Dynamic and kinematic information and complementary information to EMG data |
Fusion of MMG and IMU | Woodward et al. [94] Woodward et al. [95] Ma et al. [96] Huo et al. [97] | Dynamic and kinematic (six or more degrees of freedom) information of the user intentions; combination is cheaper than using EMG [32] |
Fusion of EMG, US and MMG | Chen et al. [98] Han et al. [99] | Provides complementary information regarding the intention and also acquires information of both, superficial and deep-seated muscles |
Fusion of EMG, MMG and NIRS | Ding et al. [100] Sheng et al. [101] | Provides complementary information regarding the intention and assesses the same domain under different perspectives [77] |
Study | Myographies | External Sensors | |||||
---|---|---|---|---|---|---|---|
EMG | MMG | US | NIRS | ACC | IMU | Optical | |
Fougner et al. [78] | X | X | |||||
Cannan and Hu [86] | X | X | |||||
Yoshikawa et al. [92] | X | X | |||||
Roy et al. [79] | X | X | |||||
Tkach and Hargrove [69] | X | X | |||||
Gijsberts and Caputo [80] | X | X | |||||
Woodward et al. [94] | X | X | |||||
Guo et al. [75] | X | X | |||||
Chen et al. [98] | X | X | X | ||||
Han et al. [99] | X | X | X | ||||
Gijsberts et al. [81] | X | X | |||||
Luan et al. [93] | X | X | |||||
Wu et al. [82] | X | X | |||||
Guo et al. [39] | X | X | |||||
Joshi and Hahn [83] | X | X | |||||
Wu et al. [87] | X | X | |||||
Woodward et al. [95] | X | X | |||||
Ma et al. [96] | X | X | |||||
Paleari et al. [76] | X | X | |||||
Yang et al. [88] | X | X | |||||
Guo et al. [38] | X | X | |||||
Fukuhara et al. [70] | X | X | |||||
Fang et al. [89] | X | X | |||||
Gupta et al. [84] | X | X | |||||
Wang et al. [85] | X | X | |||||
Botter et al. [73] | X | X | |||||
Ding et al. [100] | X | X | X | ||||
Huo et al. [97] | X | X | |||||
Yang et al. [74] | X | X | |||||
Yu et al. [90] | X | X | |||||
Zhou et al. [91] | X | X | |||||
Sheng et al. [101] | X | X | X | ||||
Tsuji et al. [71] | X | X |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dwivedi, A.; Groll, H.; Beckerle, P. A Systematic Review of Sensor Fusion Methods Using Peripheral Bio-Signals for Human Intention Decoding. Sensors 2022, 22, 6319. https://doi.org/10.3390/s22176319
Dwivedi A, Groll H, Beckerle P. A Systematic Review of Sensor Fusion Methods Using Peripheral Bio-Signals for Human Intention Decoding. Sensors. 2022; 22(17):6319. https://doi.org/10.3390/s22176319
Chicago/Turabian StyleDwivedi, Anany, Helen Groll, and Philipp Beckerle. 2022. "A Systematic Review of Sensor Fusion Methods Using Peripheral Bio-Signals for Human Intention Decoding" Sensors 22, no. 17: 6319. https://doi.org/10.3390/s22176319
APA StyleDwivedi, A., Groll, H., & Beckerle, P. (2022). A Systematic Review of Sensor Fusion Methods Using Peripheral Bio-Signals for Human Intention Decoding. Sensors, 22(17), 6319. https://doi.org/10.3390/s22176319