A Statistical Analysis of Response and Recovery Times: The Case of Ethanol Chemiresistors Based on Pure SnO2
Abstract
:1. Introduction
2. Theoretical Background
2.1. Flow and/or Diffusion inside the Test Chamber
2.2. Diffusion Phenomena in Proximity of the Metal Oxide Layer
2.3. Diffusion Phenomena through the Pores of the Metal Oxide Layer
2.4. Interactions between the Gas Molecules and the Metal Oxide
2.5. Diffusion Phenomena through the Bulk of Individual Nanostructures
3. Materials and Methods
- Ethanol concentration, CEtOH, expressed in parts per million (ppm);
- Sensor temperature, TS, which may be different from the environmental temperature (TE) depending on whether the sensor temperature is controlled through a heater embedded in the sensor device or through a furnace;
- Pore radius, rp, which is the peak value typically extrapolated from N2 adsorption/desorption measurements;
- Crystallite size, dc, which is the smallest size of elementary crystallites. It is the diameter for nanoparticles and nanowires, while it is the thickness for nanosheets;
- Chamber volume, which is the volume of the chamber where sensors are lodged for gas sensing tests;
- Flow, which is the flow used to supply the target gas and to restore the baseline (for those setups employ a gas flow; see the ‘measurement method’ variable for details).
- Morphology of elementary crystallites composing the sensing layer, which we divided into three classes, namely:
- ○
- ○
- ○
- Measurement method, which is roughly classified into two major classes:
- ○
- dynamic, often named the ‘flow through method’, refers to those setups employing a constant flow of gas through the test chamber [50,59,60]. Mass flow controllers are used to mix fluxes from certified bottles and control the atmosphere composition inside the test chamber. In these setups, the atmosphere surrounding the devices is continuously renewed by the injected flow, both when the atmosphere composition is changed as well as when the composition is kept constant. During the gas injection process, the gas concentration inside the flow is kept constant at the desired value. The device is immediately exposed to the target concentration if it is under a direct flow; otherwise, if the chamber is designed to involve the diffusion process, these should take place before the desired concentration is established in proximity of the sensor device;
- ○
- static, which refers to those setups in which the target gas is injected inside the test chamber through a device, such as a syringe [61,62], an evaporating system pre-filled with a proper amount of liquid [63] or a certified bottle [64], which is actuated only at the time of gas injection. After the quick injection, which causes the gas concentration at the time and place of the injection to be much larger than the equilibrium value, the atmosphere is allowed to reach the final homogeneous composition in the whole volume by diffusion. Concerning gas removal, the baseline atmosphere is quickly changed inside the chamber and allowed to reach the steady-state, homogeneous distribution with no flow.
- Heating method, which is classified in the following three classes:
- ○
- ○
- ○
- ○
4. Results
5. Discussion
6. Conclusions
- Stating whether a given sensor/material exhibits faster or slower response/recovery times with respect to the literature is not as simple as it may seem. Irregular data distributions, including several outliers and/or sub-clusters, are observed owing to the broad range of experimental differences that may occur between the works and their impact on sensor transients;
- Concerning the recovery times:
- the experimental setup, whether of the static or dynamic type, emerges as the main factor influencing the response and recovery transients, with the static setups being statistically faster than the dynamic ones;
- by splitting data into the two setup categories, the distributions become more regular, and effects related to the crystallite morphology and the heating method emerge and can be reasonably explained in terms of diffusion phenomena;
- Concerning the response times:
- tRES values are smaller than those of tREC, and this makes the differences between data distributions less pronounced with respect to the tREC case;
- despite difficulties induced by the small values, it seems reasonable to suppose that the setup effects observed for tREC also work for tRES;
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Güntner, A.T.; Magro, L.; van den Broek, J.; Pratsinis, S.E. Detecting Methanol in Hand Sanitizers. iScience 2021, 24, 102050. [Google Scholar] [CrossRef] [PubMed]
- Galstyan, V.; Ponzoni, A.; Kholmanov, I.; Natile, M.M.; Comini, E.; Sberveglieri, G. Highly Sensitive and Selective Detection of Dimethylamine through Nb-Doping of TiO2 Nanotubes for Potential Use in Seafood Quality Control. Sens. Actuators B Chem. 2020, 303, 127217. [Google Scholar] [CrossRef]
- Rebordão, G.; Palma, S.I.C.J.; Roque, A.C.A. Microfluidics in Gas Sensing and Artificial Olfaction. Sensors 2020, 20, 5742. [Google Scholar] [CrossRef] [PubMed]
- Gobbi, E.; Falasconi, M.; Concina, I.; Mantero, G.; Bianchi, F.; Mattarozzi, M.; Musci, M.; Sberveglieri, G. Electronic Nose and Alicyclobacillus Spp. Spoilage of Fruit Juices: An Emerging Diagnostic Tool. Food Control 2010, 21, 1374–1382. [Google Scholar] [CrossRef]
- Li, Z.; Askim, J.R.; Suslick, K.S. The Optoelectronic Nose: Colorimetric and Fluorometric Sensor Arrays. Chem. Rev. 2019, 119, 231–292. [Google Scholar] [CrossRef]
- Lange, U.; Mirsky, V.M. Integrated Electrochemical Transistor as a Fast Recoverable Gas Sensor. Anal. Chim. Acta 2011, 687, 7–11. [Google Scholar] [CrossRef]
- Malik, R.; Tomer, V.K.; Mishra, Y.K.; Lin, L. Functional Gas Sensing Nanomaterials: A Panoramic View. Appl. Phys. Rev. 2020, 7, 021301. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.; Liu, Y.; Wang, H.; Duo, Y.; Zhang, B.; Ge, Y.; Zhang, H.; Chen, W. Recent Advances in 0D Nanostructure-Functionalized Low-Dimensional Nanomaterials for Chemiresistive Gas Sensors. J. Mater. Chem. C 2020, 8, 7272–7299. [Google Scholar] [CrossRef]
- Leturcq, R.; Bhusari, R.; Barborini, E. Physical Mechanisms Underpinning Conductometric Gas Sensing Properties of Metal Oxide Nanostructures. Adv. Phys. X 2022, 7, 2044904. [Google Scholar] [CrossRef]
- Zhao, T.; Qiu, P.; Fan, Y.; Yang, J.; Jiang, W.; Wang, L.; Deng, Y.; Luo, W. Hierarchical Branched Mesoporous TiO2–SnO2 Nanocomposites with Well-Defined n–n Heterojunctions for Highly Efficient Ethanol Sensing. Adv. Sci. 2019, 6, 1902008. [Google Scholar] [CrossRef] [Green Version]
- Ponzoni, A. Metal Oxide Chemiresistors: A Structural and Functional Comparison between Nanowires and Nanoparticles. Sensors 2022, 22, 3351. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H. Gas Sensors Using Hierarchical and Hollow Oxide Nanostructures: Overview. Sens. Actuators B Chem. 2009, 140, 319–336. [Google Scholar] [CrossRef]
- Korotcenkov, G. Current Trends in Nanomaterials for Metal Oxide-Based Conductometric Gas Sensors: Advantages and Limitations. Part 1: 1D and 2D Nanostructures. Nanomaterials 2020, 10, 1392. [Google Scholar] [CrossRef]
- Lin, T.; Lv, X.; Li, S.; Wang, Q. The Morphologies of the Semiconductor Oxides and Their Gas-Sensing Properties. Sensors 2017, 17, 2779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, H.; Zhang, G.; Nagashima, K.; Takahashi, T.; Hosomi, T.; Yanagida, T. Metal–Oxide Nanowire Molecular Sensors and Their Promises. Chemosensors 2021, 9, 41. [Google Scholar] [CrossRef]
- Barsan, N.; Weimar, U. Conduction Model of Metal Oxide Gas Sensors. J. Electroceram. 2001, 7, 143–167. [Google Scholar] [CrossRef]
- Ponzoni, A. Morphological Effects in SnO2 Chemiresistors for Ethanol Detection: A Review in Terms of Central Performances and Outliers. Sensors 2021, 21, 29. [Google Scholar] [CrossRef]
- Annanouch, F.-E.; Bouchet, G.; Perrier, P.; Morati, N.; Reynard-Carette, C.; Aguir, K.; Martini-Laithier, V.; Bendahan, M. Hydrodynamic Evaluation of Gas Testing Chamber: Simulation, Experiment. Sens. Actuators B Chem. 2019, 290, 598–606. [Google Scholar] [CrossRef]
- Lezzi, A.M.; Beretta, G.P.; Comini, E.; Faglia, G.; Galli, G.; Sberveglieri, G. Influence of Gaseous Species Transport on the Response of Solid State Gas Sensors within Enclosures. Sens. Actuators B Chem. 2001, 78, 144–150. [Google Scholar] [CrossRef]
- Brenner, H. Elementary Kinematical Model of Thermal Diffusion in Liquids and Gases. Phys. Rev. E 2006, 74, 036306. [Google Scholar] [CrossRef]
- Di Francesco, F.; Falcitelli, M.; Marano, L.; Pioggia, G. A Radially Symmetric Measurement Chamber for Electronic Noses. Sens. Actuators B Chem. 2005, 105, 295–303. [Google Scholar] [CrossRef]
- Lo Sciuto, G.; Kałużyński, P.; Coco, S. 3D Finite Element Simulation Model of a Chemiresistor Gas Sensor Based on ZnO and Graft Comb Copolymer Integrated in a Gas Chamber. J. Mater. Sci. Mater. Electron. 2022, 33, 5037–5048. [Google Scholar] [CrossRef]
- Wang, J.-Y.; Meng, Q.-H.; Jin, X.-W.; Sun, Z.-H. Design of Handheld Electronic Nose Bionic Chambers for Chinese Liquors Recognition. Measurement 2021, 172, 108856. [Google Scholar] [CrossRef]
- Hamimid, S.; Fenni, M.; Guellal, M. Effect of Molecular Weight Ratio on Diffusion of Light Gases into Air. Phys. Fluids 2021, 33, 116106. [Google Scholar] [CrossRef]
- Hamimid, S.; Guellal, M.; Bouafia, M. Limit of the Buoyancy Ratio in Boussinesq Approximation for Double-Diffusive Convection in Binary Mixture. Phys. Fluids 2021, 33, 036101. [Google Scholar] [CrossRef]
- Kempers, L.J.T.M. A Comprehensive Thermodynamic Theory of the Soret Effect in a Multicomponent Gas, Liquid, or Solid. J. Chem. Phys. 2001, 115, 6330–6341. [Google Scholar] [CrossRef]
- Jiang, T.; Meng, X.; Jin, L. Transport Properties of the Binary Gas Mixtures Containing CO2, N2, SF6, and CF4 at Low Density. AIP Adv. 2021, 11, 095015. [Google Scholar] [CrossRef]
- Mohammad-Aghaie, D.; Papari, M.M.; Ebrahimi, A.R. Determination of Transport Properties of Dilute Binary Mixtures Containing Carbon Dioxide through Isotropic Pair Potential Energies. Chin. J. Chem. Eng. 2014, 22, 274–286. [Google Scholar] [CrossRef]
- Tiemann, M. Porous Metal Oxides as Gas Sensors. Chem.-Eur. J. 2007, 13, 8376–8388. [Google Scholar] [CrossRef]
- Shao, Q.; Huang, L.; Zhou, J.; Lu, L.; Zhang, L.; Lu, X.; Jiang, S.; Gubbins, K.E.; Zhu, Y.; Shen, W. Molecular Dynamics Study on Diameter Effect in Structure of Ethanol Molecules Confined in Single-Walled Carbon Nanotubes. J. Phys. Chem. C 2007, 111, 15677–15685. [Google Scholar] [CrossRef]
- Levitz, P. Knudsen Diffusion and Excitation Transfer in Random Porous Media. J. Phys. Chem. 1993, 97, 3813–3818. [Google Scholar] [CrossRef]
- Guo, W.; Wang, Z. Composite of ZnO Spheres and Functionalized SnO2 Nanofibers with an Enhanced Ethanol Gas Sensing Properties. Mater. Lett. 2016, 169, 246–249. [Google Scholar] [CrossRef]
- Tan, W.; Yu, Q.; Ruan, X.; Huang, X. Design of SnO2-Based Highly Sensitive Ethanol Gas Sensor Based on Quasi Molecular-Cluster Imprinting Mechanism. Sens. Actuators B Chem. 2015, 212, 47–54. [Google Scholar] [CrossRef]
- Yoon, J.-W.; Choi, S.H.; Kim, J.-S.; Jang, H.W.; Kang, Y.C.; Lee, J.-H. Trimodally Porous SnO2 Nanospheres with Three-Dimensional Interconnectivity and Size Tunability: A One-Pot Synthetic Route and Potential Application as an Extremely Sensitive Ethanol Detector. NPG Asia Mater. 2016, 8, e244. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Fu, W.; Li, H.; Fu, X.; Wang, Y.; Bala, H.; Wang, X.; Sun, G.; Cao, J.; Zhang, Z. Synthesis and Characterization of Hierarchical Porous SnO2 for Enhancing Ethanol Sensing Properties. Appl. Surf. Sci. 2016, 363, 560–565. [Google Scholar] [CrossRef]
- Gardner, J.W. A Non-Linear Diffusion-Reaction Model of Electrical Conduction in Semiconductor Gas Sensors. Sens. Actuators B Chem. 1990, 1, 166–170. [Google Scholar] [CrossRef]
- Varpula, A.; Novikov, S.; Haarahiltunen, A.; Kuivalainen, P. Transient Characterization Techniques for Resistive Metal-Oxide Gas Sensors. Sens. Actuators B Chem. 2011, 159, 12–26. [Google Scholar] [CrossRef]
- Rumyantseva, M.; Kovalenko, V.; Gaskov, A.; Makshina, E.; Yuschenko, V.; Ivanova, I.; Ponzoni, A.; Faglia, G.; Comini, E. Nanocomposites SnO2/Fe2O3: Sensor and Catalytic Properties. Sens. Actuators B Chem. 2006, 118, 208–214. [Google Scholar] [CrossRef]
- Korotcenkov, G.; Brinzari, V.; Golovanov, V.; Blinov, Y. Kinetics of Gas Response to Reducing Gases of SnO2 Films, Deposited by Spray Pyrolysis. Sens. Actuators B Chem. 2004, 98, 41–45. [Google Scholar] [CrossRef]
- Brynzari, V.; Korotchenkov, G.; Dmitriev, S. Simulation of Thin Film Gas Sensors Kinetics. Sens. Actuators B Chem. 1999, 61, 143–153. [Google Scholar] [CrossRef]
- Rumyantseva, M.N.; Makeeva, E.A.; Badalyan, S.M.; Zhukova, A.A.; Gaskov, A.M. Nanocrystalline SnO2 and In2O3 as Materials for Gas Sensors: The Relationship between Microstructure and Oxygen Chemisorption. Thin Solid Films 2009, 518, 1283–1288. [Google Scholar] [CrossRef]
- Tobias, P.; Mårtensson, P.; Göras, A.; Lundström, I.; Lloyd Spetz, A. Moving Gas Outlets for the Evaluation of Fast Gas Sensors. Sens. Actuators B Chem. 1999, 58, 389–393. [Google Scholar] [CrossRef]
- Helwig, A.; Müller, G.; Sberveglieri, G.; Faglia, G. Gas Response Times of Nano-Scale SnO2 Gas Sensors as Determined by the Moving Gas Outlet Technique. Sens. Actuators B Chem. 2007, 126, 174–180. [Google Scholar] [CrossRef]
- Morrison, S.R. Adsorption. In The Chemical Physics of Surfaces; Morrison, S.R., Ed.; Springer: Boston, MA, USA, 1977; pp. 223–262. ISBN 978-1-4615-8007-2. [Google Scholar]
- Al-Hashem, M.; Akbar, S.; Morris, P. Role of Oxygen Vacancies in Nanostructured Metal-Oxide Gas Sensors: A Review. Sens. Actuators B Chem. 2019, 301, 126845. [Google Scholar] [CrossRef]
- Kamp, B.; Merkle, R.; Maier, J. Chemical Diffusion of Oxygen in Tin Dioxide. Sens. Actuators B Chem. 2001, 77, 534–542. [Google Scholar] [CrossRef]
- Hernandez-Ramirez, F.; Prades, J.D.; Tarancon, A.; Barth, S.; Casals, O.; Jimenez-Diaz, R.; Pellicer, E.; Rodriguez, J.; Morante, J.R.; Juli, M.A.; et al. Insight into the Role of Oxygen Diffusion in the Sensing Mechanisms of SnO2 Nanowires. Adv. Funct. Mater. 2008, 18, 2990–2994. [Google Scholar] [CrossRef]
- Acharyya, S.; Nag, S.; Kimbahune, S.; Ghose, A.; Pal, A.; Guha, P.K. Selective Discrimination of VOCs Applying Gas Sensing Kinetic Analysis over a Metal Oxide-Based Chemiresistive Gas Sensor. ACS Sens. 2021, 6, 2218–2224. [Google Scholar] [CrossRef]
- Mitchell, M.; Muftakhidinov, B.; Winchen, T.; Wilms, A.; van Schaik, B.; badshah400; Mo-Gul; The Gitter Badger; Jędrzejewski-Szmek, Z.; kensington; et al. Markummitchell/Engauge-Digitizer: Nonrelease. Zenodo 2020. [Google Scholar] [CrossRef]
- Lee, S.-H.; Galstyan, V.; Ponzoni, A.; Gonzalo-Juan, I.; Riedel, R.; Dourges, M.-A.; Nicolas, Y.; Toupance, T. Finely Tuned SnO2 Nanoparticles for Efficient Detection of Reducing and Oxidizing Gases: The Influence of Alkali Metal Cation on Gas-Sensing Properties. ACS Appl. Mater. Interfaces 2018, 10, 10173–10184. [Google Scholar] [CrossRef]
- Tricoli, A.; Pratsinis, S.E. Dispersed Nanoelectrode Devices. Nat. Nanotechnol. 2010, 5, 54–60. [Google Scholar] [CrossRef]
- Yue, L.; Ge, J.; Luo, G.; Bian, K.; Yin, C.; Guan, R.; Zhang, W.; Zhou, Z.; Wang, K.; Guo, X. A Facile Large-Scale Synthesis of Porous SnO2 by Bronze for Superior Lithium Storage and Gas Sensing Properties Through a Wet Chemical Reaction Strategy. J. Electron. Mater. 2018, 47, 2545–2556. [Google Scholar] [CrossRef]
- Kida, T.; Suematsu, K.; Hara, K.; Kanie, K.; Muramatsu, A. Ultrasensitive Detection of Volatile Organic Compounds by a Pore Tuning Approach Using Anisotropically Shaped SnO2 Nanocrystals. ACS Appl. Mater. Interfaces 2016, 8, 35485–35495. [Google Scholar] [CrossRef] [PubMed]
- Kuang, X.; Liu, T.; Shi, D.; Wang, W.; Yang, M.; Hussain, S.; Peng, X.; Pan, F. Hydrothermal Synthesis of Hierarchical SnO2 Nanostructures Made of Superfine Nanorods for Smart Gas Sensor. Appl. Surf. Sci. 2016, 364, 371–377. [Google Scholar] [CrossRef]
- Luo, L.; Jiang, Q.; Qin, G.; Zhao, K.; Du, G.; Wang, H.; Zhao, H. Gas Sensing Characteristics of Novel Twin-Layered SnO2 Nanoarray Fabricated by Substrate-Free Hydrothermal Route. Sens. Actuators B Chem. 2015, 218, 205–214. [Google Scholar] [CrossRef]
- Kuang, X.; Liu, T.; Li, T.; Zeng, W.; Peng, X.; Zhang, H. Hydrothermal Synthesis of SnO2 Hierarchical Nanostructures and Their Gas Sensing Properties. Mater. Technol. 2016, 31, 260–265. [Google Scholar] [CrossRef]
- Guan, Y.; Wang, D.; Zhou, X.; Sun, P.; Wang, H.; Ma, J.; Lu, G. Hydrothermal Preparation and Gas Sensing Properties of Zn-Doped SnO2 Hierarchical Architectures. Sens. Actuators B Chem. 2014, 191, 45–52. [Google Scholar] [CrossRef]
- Wang, B.; Sun, L.; Wang, Y. Template-Free Synthesis of Nanosheets-Assembled SnO2 Hollow Spheres for Enhanced Ethanol Gas Sensing. Mater. Lett. 2018, 218, 290–294. [Google Scholar] [CrossRef]
- Francioso, L.; de Pascali, C.; Creti, P.; Radogna, A.V.; Capone, S.; Taurino, A.; Epifani, M.; Baldacchini, C.; Bizzarri, A.R.; Siciliano, P.A. Nanogap Sensors Decorated with SnO2 Nanoparticles Enable Low-Temperature Detection of Volatile Organic Compounds. ACS Appl. Nano Mater. 2020, 3, 3337–3346. [Google Scholar] [CrossRef]
- Hoa, L.T.; Cuong, N.D.; Hoa, T.T.; Khieu, D.Q.; Long, H.T.; Quang, D.T.; Hoa, N.D.; Hieu, N.V. Synthesis, Characterization, and Comparative Gas Sensing Properties of Tin Dioxide Nanoflowers and Porous Nanospheres. Ceram. Int. 2015, 41, 14819–14825. [Google Scholar] [CrossRef]
- Zhang, Y.; He, X.; Li, J.; Miao, Z.; Huang, F. Fabrication and Ethanol-Sensing Properties of Micro Gas Sensor Based on Electrospun SnO2 Nanofibers. Sens. Actuators B Chem. 2008, 132, 67–73. [Google Scholar] [CrossRef]
- Fan, X.-X.; He, X.-L.; Li, J.-P.; Gao, X.-G.; Jia, J. Ethanol Sensing Properties of Hierarchical SnO2 Fibers Fabricated with Electrospun Polyvinylpyrrolidone Template. Vacuum 2016, 128, 112–117. [Google Scholar] [CrossRef]
- Xue, N.; Zhang, Q.; Zhang, S.; Zong, P.; Yang, F. Highly Sensitive and Selective Hydrogen Gas Sensor Using the Mesoporous SnO2 Modified Layers. Sensors 2017, 17, 2351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.-H.; Meng, F.-F.; Chu, Z.; Luo, T.; Peng, F.-M.; Jin, Z. Mesoporous SnO2 Nanowires: Synthesis and Ethanol Sensing Properties. Adv. Condens. Matter Phys. 2017, 2017, 9720973. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.-C.; Lee, C.-M.; Lo, Y.-J. Reducing Gas-Sensing Performance of Ce-Doped SnO2 Thin Films through a Cosputtering Method. RSC Adv. 2017, 7, 4724–4734. [Google Scholar] [CrossRef] [Green Version]
- Choi, K.S.; Park, S.; Chang, S.-P. Enhanced Ethanol Sensing Properties Based on SnO2 Nanowires Coated with Fe2O3 Nanoparticles. Sens. Actuators B Chem. 2017, 238, 871–879. [Google Scholar] [CrossRef]
- Naghadeh, S.B.; Vahdatifar, S.; Mortazavi, Y.; Khodadadi, A.A.; Abbasi, A. Functionalized MWCNTs Effects on Dramatic Enhancement of MWCNTs/SnO2 Nanocomposite Gas Sensing Properties at Low Temperatures. Sens. Actuators B Chem. 2016, 223, 252–260. [Google Scholar] [CrossRef]
- Sankar, C.; Ponnuswamy, V.; Manickam, M.; Suresh, R.; Mariappan, R.; Vinod, P.S. Structural, Morphological, Optical and Gas Sensing Properties of Pure and Ce Doped SnO2 Thin Films Prepared by Jet Nebulizer Spray Pyrolysis (JNSP) Technique. J. Mater. Sci. Mater. Electron. 2017, 28, 4577–4585. [Google Scholar] [CrossRef]
- Zhang, B.; Fu, W.; Meng, X.; Ruan, A.; Su, P.; Yang, H. Enhanced Ethanol Sensing Properties Based on Spherical-Coral-like SnO2 Nanorods Decorated with α-Fe2O3 Nanocrystallites. Sens. Actuators B Chem. 2018, 261, 505–514. [Google Scholar] [CrossRef]
- Li, R.; Chen, S.; Lou, Z.; Li, L.; Huang, T.; Song, Y.; Chen, D.; Shen, G. Fabrication of Porous SnO2 Nanowires Gas Sensors with Enhanced Sensitivity. Sens. Actuators B Chem. 2017, 252, 79–85. [Google Scholar] [CrossRef]
- Ling-min, Y.; Sheng, L.; Bing, Y.; Miao-miao, H.; Meng-di, K.; Xinhui, F. A Highly Sensitive Ethanol Gas Sensor Based on Mesoporous SnO2 Fabricated from a Facile Double-Surfactant Template Method. Mater. Lett. 2015, 158, 409–412. [Google Scholar] [CrossRef]
- Xie, N.; Guo, L.; Chen, F.; Kou, X.; Wang, C.; Ma, J.; Sun, Y.; Liu, F.; Liang, X.; Gao, Y.; et al. Enhanced Sensing Properties of SnO2 Nanofibers with a Novel Structure by Carbonization. Sens. Actuators B Chem. 2018, 271, 44–53. [Google Scholar] [CrossRef]
- Wang, T.T.; Ma, S.Y.; Cheng, L.; Luo, J.; Jiang, X.H.; Jin, W.X. Preparation of Yb-Doped SnO2 Hollow Nanofibers with an Enhanced Ethanol–Gas Sensing Performance by Electrospinning. Sens. Actuators B Chem. 2015, 216, 212–220. [Google Scholar] [CrossRef]
- Liu, J.; Wang, T.; Wang, B.; Sun, P.; Yang, Q.; Liang, X.; Song, H.; Lu, G. Highly Sensitive and Low Detection Limit of Ethanol Gas Sensor Based on Hollow ZnO/SnO2 Spheres Composite Material. Sens. Actuators B Chem. 2017, 245, 551–559. [Google Scholar] [CrossRef]
- Keine, C. Mood’s Mediantest. Available online: https://Github.Com/ChristianKeine/Moods-Mediantest (accessed on 17 August 2020).
- Komorowski, M.; Marshall, D.C.; Salciccioli, J.D.; Crutain, Y. Exploratory data analysis. In Secondary Analysis of Electronic Health Records; MIT Critical Data; Springer: Cham, Switzerland, 2016; pp. 185–203. ISBN 978-3-319-43742-2. [Google Scholar]
- Kotchasak, N.; Wisitsoraat, A.; Tuantranont, A.; Phanichphant, S.; Yordsri, V.; Liewhiran, C. Highly Sensitive and Selective Detection of Ethanol Vapor Using Flame-Spray-Made CeOx-Doped SnO2 Nanoparticulate Thick Films. Sens. Actuators B Chem. 2018, 255, 8–21. [Google Scholar] [CrossRef]
- Punginsang, M.; Wisitsoraat, A.; Sriprachuabwong, C.; Phokharatkul, D.; Tuantranont, A.; Phanichphant, S.; Liewhiran, C. Roles of Cobalt Doping on Ethanol-Sensing Mechanisms of Flame-Spray-Made SnO2 Nanoparticles−electrolytically Exfoliated Graphene Interfaces. Appl. Surf. Sci. 2017, 425, 351–366. [Google Scholar] [CrossRef]
- Yamazoe, N. New Approaches for Improving Semiconductor Gas Sensors. Sens. Actuators B Chem. 1991, 5, 7–19. [Google Scholar] [CrossRef]
- Zaretskiy, N.P.; Menshikov, L.I.; Vasiliev, A.A. On the Origin of Sensing Properties of the Nanostructured Layers of Semiconducting Metal Oxide Materials. Sens. Actuators B Chem. 2012, 170, 148–157. [Google Scholar] [CrossRef]
- Wang, Q.; Yao, N.; An, D.; Li, Y.; Zou, Y.; Lian, X.; Tong, X. Enhanced Gas Sensing Properties of Hierarchical SnO2 Nanoflower Assembled from Nanorods via a One-Pot Template-Free Hydrothermal Method. Ceram. Int. 2016, 42, 15889–15896. [Google Scholar] [CrossRef]
- Li, H.; Zhu, D.; Yang, Z.; Lu, W.; Pu, Y. The Ethanol-Sensitive Property of Hierarchical MoO3-Mixed SnO2 Aerogels via Facile Ambient Pressure Drying. Appl. Surf. Sci. 2019, 489, 384–391. [Google Scholar] [CrossRef]
- Bunpang, K.; Wisitsoraat, A.; Tuantranont, A.; Singkammo, S.; Phanichphant, S.; Liewhiran, C. Highly Selective and Sensitive CH4 Gas Sensors Based on Flame-Spray-Made Cr-Doped SnO2 Particulate Films. Sens. Actuators B Chem. 2019, 291, 177–191. [Google Scholar] [CrossRef]
- Gulevich, D.; Rumyantseva, M.; Gerasimov, E.; Khmelevsky, N.; Tsvetkova, E.; Gaskov, A. Synergy Effect of Au and SiO2 Modification on SnO2 Sensor Properties in VOCs Detection in Humid Air. Nanomaterials 2020, 10, 813. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhang, M.; Wang, H. Simulation of Gas Sensing Mechanism of Porous Metal Oxide Semiconductor Sensor Based on Finite Element Analysis. Sci. Rep. 2021, 11, 17158. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wang, Y.; Zhao, P.; Li, W.; Wang, Q.; Sun, P.; Chuai, X.; Lu, G. Porous α-Fe2O3 Microflowers: Synthesis, Structure, and Enhanced Acetone Sensing Performances. J. Colloid Interface Sci. 2017, 505, 1039–1046. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ponzoni, A. A Statistical Analysis of Response and Recovery Times: The Case of Ethanol Chemiresistors Based on Pure SnO2. Sensors 2022, 22, 6346. https://doi.org/10.3390/s22176346
Ponzoni A. A Statistical Analysis of Response and Recovery Times: The Case of Ethanol Chemiresistors Based on Pure SnO2. Sensors. 2022; 22(17):6346. https://doi.org/10.3390/s22176346
Chicago/Turabian StylePonzoni, Andrea. 2022. "A Statistical Analysis of Response and Recovery Times: The Case of Ethanol Chemiresistors Based on Pure SnO2" Sensors 22, no. 17: 6346. https://doi.org/10.3390/s22176346
APA StylePonzoni, A. (2022). A Statistical Analysis of Response and Recovery Times: The Case of Ethanol Chemiresistors Based on Pure SnO2. Sensors, 22(17), 6346. https://doi.org/10.3390/s22176346