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Abstract: To address the problem of low prediction accuracy of precipitation time series data, an im-
proved overall mean empirical modal decomposition–prediction–reconstruction model (MDPRM) is
constructed in this paper. First, the non-stationary precipitation time series are decomposed into mul-
tiple decomposition terms by the improved overall mean empirical modal decomposition (MEEMD).
Then, a particle swarm optimization support vector machine (PSO-SVM) and convolutional neural
network (CNN) and recurrent neural network (RNN) models are used to make predictions according
to the characteristics of different decomposition terms. Finally, the prediction results of each decom-
position term are superimposed and reconstructed to form the final prediction results. In addition,
the application is carried out with the summer precipitation in the Wujiang River basin of Guizhou
Province from 1961 to 2018, using the first 38 years of data to train MDPRM and the last 20 years of
data to test MDPRM, and comparing with a feedback neural network (BP), a support vector machine
(SVM), a particle swarm optimization support vector machine (PSO-SVM), a convolutional neural
network (CNN), and a recurrent neural network (RNN), etc. The results show that the mean relative
error (MAPE) of the proposed MDPRM is reduced from 0.31 to 0.09, the root mean square error
(RMSE) is reduced from 0.56 to 0.30, and the consistency index (α) is significantly improved from
0.33 to 0.86, which has a higher prediction accuracy. Finally, the trained MDPRM predicts the average
summer precipitation in the Wujiang River basin from 2019 to 2028 to be 466.42 mm, the minimum
precipitation in 2020 to be 440.94 mm, and the maximum precipitation in 2024 to be 497.94 mm.
Based on the prediction results, the agricultural drought level is evaluated using the Z index, which
indicates that the summer is normal in the 10-year period. The study provides technical support for
the effective guidance of regional water resources’ allocation and scheduling and drought mitigation.

Keywords: improved overall mean empirical modality (MEEMD); particle swarm optimization support
vector machine (PSO-SVM); convolutional neural network (CNN); recurrent neural network (RNN);
improved overall mean empirical modality decomposition–prediction–reconstruction model (MDPRM)

1. Introduction

Precipitation prediction can scientifically and rationally guide the planning, develop-
ment, and distribution of regional water resources, reduce flood and drought disaster losses,
and alleviate water shortages, etc. The prediction results can provide reference for water
supply and demand analysis, water supply planning, and water resources management.
By analyzing the precipitation data of the Wujiang River basin, it is concluded that the
average precipitation in the summer (June–August) accounts for 45.16% of the annual
average precipitation in 58 years from 1961 to 2018, which is the main part of the annual
precipitation and the months in which extreme precipitation is concentrated. Therefore,
the correct understanding and grasp of the development of extreme precipitation events in
Guizhou Province seasonal time scale change characteristics and accurate prediction, for
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effective guidance of the summer flood period of water resources scheduling management
and safe flood control work is of great significance. Precipitation is a weakly correlated
highly complex nonlinear dynamical system with interannual variation not in a fixed
cycle, but with various time-scale changes and local fluctuations, making it difficult and
less accurate to predict precipitation in the medium and long term. Most scholars have
predicted regional precipitation by single methods such as the grey system theory, fuzzy
mathematics, artificial neural network, wavelet transform, and support vector machine,
which greatly affect the medium- and long-term prediction of non-stationary time series
due to the different characteristics and applicability conditions of each model method and
the large uncertainty of parameter estimation. However, the improved integrated empirical
modal decomposition (MEEMD) of precipitation data can more accurately identify the
hierarchical features in the precipitation data, effectively reduce the interference between
the decomposition terms, reduce the complexity of prediction, and select a suitable predic-
tion method for each decomposition term to improve the overall prediction accuracy and
prediction efficiency of the combined prediction methods with more obvious advantages.

Related studies conducted at home and abroad are as follows: Zhang et al., used
envelope entropy (PE) to improve the pseudo-components of integrated empirical modal
decomposition (EEMD) to reduce the non-smoothness of time series in order to improve
the prediction accuracy of annual runoff in the lower Yellow River. A new coupled model
of improved integrated empirical modal decomposition autoregressive integrated moving
average (MEEMD-ARIMA) is constructed and applied to the runoff prediction of the lower
Yellow River. The results show that the model has high accuracy and outperforms the com-
plementary EEMD-autoregressive integrated moving average (CEEMD-ARIMA) model
or the complementary EEMD-autoregressive integrated moving average (EEMD-ARIMA)
model, providing a new idea and method for annual runoff prediction [1]; Wu et al., pro-
posed a new coupled model based on an improved grey BP neural network (BPNN) and
MEEMD-ARIMA for predicting wave energy as an integrated model. A case study was
conducted using wind and wave data from actual ocean measurements to verify the validity
of the proposed wave energy prediction model [2]. Wang et al., used the China Shanghai
Futures Exchange (CSFE) to predict wave energy by introducing the mirror image expan-
sion (ME), the empirical mode decomposition (EMD), the cuckoo search (CS) algorithm,
and the Elman neural network. (SFE) gold futures AU0 price data from 29 August 2013 to
18 October 2018, a mirror image extension improved integrated empirical mode decom-
position (MEEMD)-CS-Elman model is constructed. The empirical results of the model
show that Elman combined with EMD outperforms single Elman, and by applying the pro-
posed model investors can make more scientific and accurate decisions and better reduce
investment risks [3]. Song et al., proposed a MEEMD-sparse autoencoder (SAE)-Elman
ultra-short-term wind portfolio forecasting method, which improves the EMD step in the
decomposition process of the MEEMD algorithm by using cubic triangular Hermitian
interpolation. The MEEMD is used to decompose the raw wind power data into IMF
components, obtain the sample entropy values of each IMF component, and combine them
to reduce the computational effort in modeling. Then, a deep-learning SAE prediction
model is built for the high-frequency components and an Elman neural network prediction
model is introduced for the low-frequency components. Finally, the wind power predic-
tion values are obtained by superimposing the previous data and analyzing the errors.
By comparing several prediction models in the example, the prediction accuracy of the
combined prediction model is improved and can be applied to ultra-short-term prediction
of wind power [4]. Xie et al., proposed a new method based on the MEEMD, approximate
entropy, and a weighted least square support vector machine (WLS-SVM). The method
focuses on the chaotic sequences from time-frequency analysis and improves the model
performance as follows: firstly, the time series is decomposed into a series of subsequences
with significantly different complexity using MEEMD. Then, a new subsequence is gen-
erated by combining subsequences of similar complexity with the approximate entropy
method, which can effectively concentrate the component feature information and reduce
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the computational scale. Finally, a WLS-SVM prediction model is built for each new sub-
sequence. Meanwhile, the input dimension and optimal parameters of the model are
selected by using the phase space reconstruction theory and the grid search method and
then each prediction value is superimposed as the final prediction result. Experiments were
conducted with landslide deformation data from Damba and compared with a wavelet
neural network, a support vector machine, a least square support vector machine, and
various combination schemes. The experimental results show that the algorithm has high
prediction accuracy. Even in the period of rapid fluctuation of landslide deformation, it
can ensure better prediction and it can control the residual values better and effectively
reduce the error interval [5]. Lin et al., used the MEEMD method combined with a long
short-term memory neural network (LSTM) for precious metal price prediction in order to
achieve a higher prediction accuracy of precious metal prices. Multiscale reciprocal entropy
(MPE) analysis shows that MEEMD has better decomposition than EEMD. Then, each
eigenmodal component (IMF) obtained from MEEMD is input into LSTM for prediction.
Finally, the prediction values of each IMF are added to obtain the final prediction results.
The improved integrated empirical modal decomposition-long and short-term memory
neural network (MEEMD-LSTM) improves the prediction performance compared with
the traditional multilayer perceptron neural network (MLP), the support vector regres-
sion (SVR), and the combined prediction model super learner (SL). The best prediction
performance of MEEMD-LSTM was comprehensively and statistically demonstrated using
a multi-span model confidence set (MCS) test. Furthermore, the study shows that the
model still shows better prediction accuracy both at different ratios of the training and
test sets and at different periods of the business cycle. This competitive precious metal
price forecasting model is a promising technique for government agencies, investors, and
related companies [6]. Yang et al., proposed a novel hybrid model that combines MEEMD
and LSTM and is optimized by an improved whale optimization algorithm (IWOA). The
model is based on the nonlinear and non-smooth properties of carbon prices. First, the
original carbon price is decomposed into nine IMF components and one residual using the
MEEMD model. Then, the random forest method is applied in the LSTM neural network
to determine the input variables for each IMF and residual. Finally, the IWOA-optimized
LSTM model is used to predict the carbon price. The hybrid model proposed in this study
achieved higher prediction performance than the other 11 benchmark models in predicting
carbon prices in Beijing, Fujian, and Shanghai. The model proposed in the study provides a
novel and effective carbon price forecasting tool for the government and enterprises [7].
Yang et al., proposed a multi-factor carbon price forecasting method MEEMD-LSTM. The
method is based on MEEMD decomposing data as potential input variables into LSTM
neural networks for forecasting and a production rule-based machine inference system can
automatically search and optimize parameters of the LSTM to further improve the predic-
tion results. The experimental results show that the proposed method has better prediction
results, robustness, and adaptability compared with the LSTM model without MEEMD
decomposition and the single-factor MEEMD-LSTM method [8]. The characteristics of the
above combined prediction methods are shown in Table 1, and in general, the MEEMD
decomposition–prediction–reconstruction method is an advanced method for predicting
non-smooth and nonlinear signals and has achieved better prediction results in annual
runoff, wave energy, gold futures AU0 price data, wind power, landslide deformation,
precious metal prices, and carbon prices, but a lot of research is still needed in precipitation
time series data prediction.
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Table 1. Study of correlation portfolio prediction methods.

Serial Number Researchers Model Algorithm Effect Prediction Scenarios Research Time

[1] Zhang et al. MEEMD-ARIMA Better than CEEMD-ARIMA
model or EEMD-ARIMA model

Annual runoff in the
lower reaches of the

Yellow River
2020

[2] Wu et al. Improved Grey
BPNN-MEEMD-ARIMA

The effectiveness of the
proposed wave energy

forecast model is validated.

Prediction of
wave energy 2021

[3] Wang et al. MEEMD-CS-Elman Better than EMD-Elman or
MEEMD-Elman model

Gold futures AU0
price data 2021

[4] Song et al. MEEMD-SAE-Elman Better than Elman, EMD-Elman,
EMD-SAE-Elman

Wind power
ultra-short-term 2020

[5] Xie et al. MEEMD+WLS-SVM

Better than Wavelet Neural
Network, Support Vector
Machine, Least Squares
Support Vector Machine

Landslide
Deformation

Prediction in Danba
2017

[6] Lin et al. LSTM-MEEMD Better than MLP, SVR and SL Precious Metals Price 2022

[7] Yang et al. MEEMD-LSTM.
and IWOA

Better than 11
other benchmark models Carbon price 2020

[8] Yang et al. MEEMD-LSTM Better than LSTM models and
one-factor MEEMD-LSTM Carbon price 2022

To this end, MDPRM is proposed in this paper and applied to the summer precipi-
tation prediction in the Wujiang River basin. The improved integrated empirical modal
decomposition (EEMD) algorithm is constructed by improving the integrated empirical
modal decomposition (MEEMD) through the randomness detection based on the permuta-
tion entropy (PE). First, the original summer precipitation signal x in the Wujiang River
basin for 58 years (1961–2018) is decomposed into five layers of IMF1-IMF4 with different
frequencies and the residual term RS5, and the errors of each decomposition term are
checked. Second, the prediction methods such as PSO-SVM, CNN, and RNN are preferred
to carry out simulations for different decomposition terms that meet the requirements.
Third, the predicted values of each decomposition term are combined to form. Finally, the
constructed MDPRM is used to predict the summer precipitation in the Wujiang River
basin for the next 10 years (2019–2028) and to evaluate the drought situation. The results
show that the MDPRM constructed in this paper significantly improves the prediction
accuracy and outperforms BP, SVM, PSO-SVM, CNN, and RNN, etc. The MDPRM fully
combines the ability of MEEMD to accurately identify multi-level features of nonlinear and
non-smooth signals and preferably selects PSO-SVM, CNN, RNN, and other prediction
models for the combination of prediction, which provides a new method to improve the
regional precipitation. It provides a new way of thinking and a method to improve the
accuracy of regional precipitation prediction.

2. MEEMD Principle

The MEEMD algorithm is constructed by improving the EEMD based on the random-
ness detection of PE. For non-stationary signals, the MEEMD method decomposition steps
are as follows [9–11]:

(1) To the original signal S(t), add white noise signals ni(t) and −ni(t) with zero mean,
respectively, i.e.,:

S+
i (t) = S(t) + aini(t) (1)

S−i (t) = S(t)− aini(t) (2)

where ni(t) denotes the added white noise signal, ai denotes the amplitude of the
added noise signal, i = 1, 2, · · · , Ne and, Ne denotes the number of added white noise
pairs. The EMD decomposition is performed on S+

i (t) and S−i (t), respectively, to
obtain the first-order IMF component series,

{
I+i1 (t)

}
and

{
I−i1 (t)

}
(i = 1, 2, · · · , Ne).

The components I1(t) = 1
2N

Ne
∑

i=1

[
I+i1 (t) + I−i1 (t)

]
obtained above are integrated and
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averaged. I1(t) is checked for anomalies. The PE of the time series is calculated
according to Equation (3), and, if the PE value of the signal is greater than θ0, it
is considered as an anomalous signal, otherwise it is considered as approximately
smooth. After several experiments, it is found that θ0 is more appropriate to take
0.55~0.6, and 0.6 is taken in this paper. The PE of the time series {x(i), i = 1, 2, · · · , N}
can be defined in the form of Shannon entropy as:

Hp(m) = −
m

∑
g=1

Pg ln Pg (3)

where m is the embedding dimension and Pg is the frequency of occurrence of each
symbol sequence.

(2) If I1(t) is abnormal, continue (1) until the IMF component Ip(t) is not an abnormal signal.
(3) Separate the first p − 1 components that have been decomposed from the original

signal, i.e.,:

r(t) = S(t)−
p−1

∑
j=1

I j(t) (4)

(4) Then, the EMD decomposition is performed on the remaining signal r(t). The decom-
position steps of EMD are as follows [12,13]:
1© For any signal s(t), first determine the extreme value points on s(t) and then

connect all the extreme value points and the extreme small value points with a
curve, respectively.

2© The two curves are used as the upper and lower envelopes of s(t), respectively.
The mean value of each point of the upper and lower envelopes is m, and the
difference between s(t) and m is h, then h = s(t)−m.

3© Consider h as the new s(t), repeat the above operation, when m meets the condition
of zero or near zero, h is small enough or one of the h monotonic functions, record
c1 = h. Consider c1 as IMF1(t) and then record as s(t)− c1 = r1(t).

4© Consider r1(t) as a new s(t) and repeat the above process. Obtain IMF2(t),
c2,r2, IMF3(t), c3, r3, . . . , in turn. The process terminates when cn or rn(t)
satisfies the given termination condition (the residual term is small enough or
becomes a monotonic function) and the decomposition is obtained as:

s(t) =
n

∑
i=1

IMFi(t) + rn(t) (5)

where rn(t) is called the residual term.

(5) All the obtained IMF components are arranged from high frequency to low frequency to
obtain the decomposition terms IMF1, IMF2, . . . , IMFN, and the residual term RSN.

3. MDPRM Design and Forecasting Methodology
3.1. MDPRM Design

Due to the complexity of precipitation prediction, especially because the high-frequency
components are random variables and non-stationary signals, it is difficult to make accu-
rate predictions using conventional prediction methods. In this paper, we propose a new
combined MDPRM precipitation prediction model, as shown in Figure 1. The specific steps
of MDPRM modeling are as follows [14–16]:

Step 1: data pre-processing: complete data storage management, basic analysis of mean
and variance interrelationship of data, and calculation of correlation coefficients
between data; eliminating obviously wrong data through analysis and deriving
usable sample set on this basis; decomposing the usable sample set using MEEMD.
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Step 2: training and testing: the prediction models are built, trained, and tested using
PSO-SVM, CNN, and RNN, respectively, according to the signal characteristics of
each decomposition term.

Step 3: prediction of each decomposition term: on the basis of completing training and
testing, the constructed prediction methods are used to predict the components of
different frequencies respectively.

Step 4: combined reconstruction of prediction values: the final prediction results are ob-
tained by combining the prediction values of each component, and the evaluation
and feedback of the prediction results are completed.

Figure 1. The MDPRM model structure.

3.2. Forecasting Methods

Since precipitation is subject to the combined effects of many physical elements such
as atmospheric circulation, hydrometeorological elements, and physical geography, it
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is a weakly correlated highly complex nonlinear dynamical system whose interannual
variation is not moving in a fixed cycle but contains various time-scale variations and local
fluctuations, and this characteristic leads to the difficulty and low accuracy in predicting
precipitation in the medium and long term. MEEMD is used to decompose the precipitation
data into different decomposition terms and to select PSO-SVM, CNN, and RNN for
prediction according to the characteristics of different decomposition terms to reduce the
prediction errors caused by the non-smoothness of the data [17].

3.2.1. PSO-SVM

In the PSO algorithm, it is assumed that there are N particles in D-th dimensional
space, xi = (xi1, xi2, · · · xid) denotes the position of particle i, vi = (vi1, vi2, · · · , vid) denotes
the velocity of particle i, pbestid = (pi1, pi2 · · · , pid) denotes the best position passed by
particle individually, and pbestd = (g1, g2 · · · , gd) denotes the best position experienced by
the population, and in each iteration, the d-th dimensional velocity of particle i is updated
according to Equation (6) [18]:

Vk+1
id = ωVk

id + c1γ1(pbestid − xk
id) + c2γ2(gbestd − xk

id) (6)

The d-th dimensional position of particle i is updated according to Equation (7):

xk+1
id = xk

id + Vk+1
id (7)

where Vk
id denotes the d-th dimensional component of the velocity vector of the flight of par-

ticle i at the d-th iteration, xk
id denotes the d-th dimensional component of the position vector

of particle i in the kth iteration; c1 and c2 denote that the learning factors are non-negative
constants and take values in the range [1.2, 2], c1 is the step used to adjust the particle flying
to its optimal position, and c2 is the step used to adjust the particle flying to the optimal
position of the whole population; γ1 and γ2 denote random numbers in the interval [0, 1];
ω is the inertia weight, which describes the effect of the particle’s inertia on the velocity, and
its value can regulate the ability of the particle swarm algorithm to find the global and local
optimal. −Vmax ≤ Vk+!

id ≤ Vmax−Vmax ≤ Vk+!
id ≤ Vmax, Vmax is a predetermined positive

constant that limits the range of velocity variation. The iteration termination condition is
generally chosen as the maximum number of iterations or the optimal position searched by
the particle swarm so far and satisfying a predetermined minimum adaptation threshold,
depending on the specific problem. The values of the parameter penalty coefficient (c) and
kernel function (g) are updated using PSO optimization and are re-substituted into the
SVM model for training, its output is saved, and the adaptation values of the particles are
calculated using Equation (8).

f it(i) = (
l

∑
i=1

(yi − yi)
2)

1
2

, i = 1, 2, · · · , l (8)

where f it(i) denotes the adaptation value of the i-th particle; l denotes the number of sam-
ples; yi denotes the model prediction of the i-th particle; yi denotes the model expectation
of the i-th sample [19].

SVM is a supervised learning model commonly used in pattern recognition, classifica-
tion, and regression analysis. In recent years, SVM has shown many unique advantages
in solving problems of small samples, nonlinearity, high-dimensional pattern recognition,
etc. It can avoid the problems of overfitting and local minima that often occur in neural
networks, has a small generalization error, has a good generalization ability, and has been
widely used to solve some regression problems. The particle swarm optimization algo-
rithm is an evolutionary computation technique whose basic idea is to find the optimal
solution through information transfer and information sharing among individuals in a
population [20,21].
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The basic idea of the SVM method is to map the data x in the input space to a high-
dimensional feature space through a predefined nonlinear mapping Φ : Rn → Rm(m ≥ n) ,
and then do linear regression in this space. Given a data point set of {(xi, yi), i = 1, 2, · · · , N},
where xi ∈ Rn is the input vector, i.e., the regional rainfall historical time series data, yi ∈ Rn

is the output vector corresponding to xi, i.e., the rainfall forecast data, and N is the total
number of data points, the SVM performs functional regression estimation by Equation (9).

f (x) = ω ·Φ(x) + b (9)

where ω and Φ(x) are m-dimensional vectors; “ · ” denotes the dot product in the feature
space; b ∈ R is the threshold value [22].

Therefore, the particle swarm algorithm is used to find the optimal solution of the
parameter penalty look (c) and kernel function (g) in the SVM model and arriving at the
optimized SVM can effectively solve the shortcomings of small samples, nonlinearity, high
dimensionality, and local minimum, while PSO has the advantages of simple operation
and fast convergence [23].

3.2.2. CNN

CNN, as one of the artificial neural networks, has become a hot research topic in
the field of deep learning and the features of weight sharing and local window sliding
make it better to simulate biological neural networks. The model has been improved by
continuous machine learning and knowledge accumulation, so that the accuracy of the
CNN in predicting sequence specificity has been significantly improved [24].

(1) The input data of the convolutional layer is the output data of the input layer or
sampling layer and each convolutional kernel and the feature map of the previous layer
perform the convolutional calculation to obtain the feature map of this layer.

xl
j = f

[
∑

i∈Pj
xl−1

i × wl
ij + bl

j

]
(10)

where f (~) is the nonlinear mapping Relu activation function, which is calculated as follows:

f (u) =
{

u, i f u > 0
0, otherwise

(11)

Pj represents the selected window on the input feature, i.e., the position on the input
feature corresponding to the current convolution kernel at the time of computation during
the convolution process; xl−1

i and xl
j are the corresponding values on the input feature at

layer l − 1 and the output feature at layer l, respectively; wl
ij is the weight value of the

convolution kernel; bl
j is the bias of the feature, one corresponding to each layer [25].

(2) The fully connected layer can be regarded as a simple single layer perceptron
that performs the fully connected computation of all the data in the previous layer. The
calculation formula is:

xl = f (ul), ul = wl ∗ xl−1 + bl (12)

where f (~) is the nonlinear mapping Relu activation function, xl is the output value of the
fully connected layer, and wl and bl are the weight values and biases when computing the
l − 1-th layer to the l-th layer [26].

(3) The output layer (regression layer): assuming that the regression problem corre-
sponds to the i-th input feature xi labeled yi = (y1, y2, · · · , ym)

T, M is the total dimension-
ality of the marker vector, then li

t denotes the prediction error (also called residual) between
the network regression prediction ŷi

t on sample i and the true value yi
t marker in the t-th

dimension [27].
li
t = yi

t − ŷi
t (13)
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The l2 loss function for N samples is defined as follows:

Ll2loss =
1
N

N

∑
i=1

M

∑
t=1

(li
t

)2
(14)

3.2.3. RNN

The RNN has a good memory capability and can well portray the influence of one
moment on subsequent moments, which is especially suitable for dealing with problems
that need to consider time-dependent factors. Based on the current state of research in
product price analysis and prediction, this paper will use the RNN algorithm to solve the
current shortcomings by modeling the highly nonlinear precipitation input and output
layers to predict and analyze the future situation. For the time series prediction model, the
input and output data are correlated and suitable for the RNN model with memory. Let x,
s, and o be 3 vectors that denote the values of input layer, hidden layer, and output layer. U,
V, and W denote the weight matrices of input layer and hidden layer, hidden layer and
output layer, and hidden layer and hidden layer, respectively:

st = f (Uxt + Wst − 1 + bs) (15)

Ot = g(Vst + bo) (16)

where st is the hidden state at moment t; xt is the input at moment t; st−1 is the hidden
state at moment t − 1 and Ot is the output at moment t; f and g are the excitation functions
of the output and hidden layers, and bs and bo are the biases of the output and hidden
layers [28–30].

3.3. Evaluation of Prediction Results
3.3.1. Prediction Accuracy Evaluation

Some of the measured data are used as training samples to rate the parameters of each
algorithm and the rest of the measured data are used as test samples and prediction results
to compare the prediction effect of each algorithm. In this paper, absolute percentage error
(e), mean relative error (MAPE), root mean square error (RMSE), and consistency index
(α) are used to evaluate the simulation accuracy. The smaller the MAPE and RMSE, the
higher the simulation accuracy; the larger the α, the closer to 1, the higher the simulation
accuracy [31].

(1) Calculate the e according to Formula (17).

e =
|Ri −Oi|

Oi
× 100% (17)

(2) Calculate the MAPE according to Formula (18).

MAPE =
1
n

n

∑
i=1

|Ri −Oi|
Oi

(18)

(3) Calculate the RMSE according to Formula (19).

RMSE =

√√√√√ n
∑

i=1
(Ri −Oi)

2

n
(19)
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(4) Calculate the α according to Formula (20).

α = 1−

n
∑

i=1
|Ri −Oi|

n
∑

i=1
(|Ri −O′|+ |Oi −O′|)

(20)

where Oi is the actual value, Ri is the test value, n is the number of samples, and O′ is
the actual mean value. The smaller the relative error and the root mean square error
are, the higher the test accuracy is. The larger the consistency index and effective
coefficient are, and the closer they are to 1, the higher the test accuracy is [32].

3.3.2. Z-Index Drought Evaluation

Z-index is one of the most widely used indicators. To calculate the Z index, it is assumed
that the precipitation at a certain time period obeys the Person-III type distribution, and
by normalizing the precipitation, then its probability density function can be converted by
conversion operation. The Z index method, by assuming the rainfall at a certain time period,
obeys the Person-III type distribution, and as the time series grows, the precipitation usually
obeys normal distribution or close to normal distribution. When calculating the Z value,
the skewness coefficient is used. When the standard variable φi is determined, the Z value
mainly depends on the skewness coefficient Cs, and the Z value is not only related to the
precipitation amount but also related to the precipitation distribution characteristics of the
area. (1) Z > 1.645, heavy flooding; (2) 1.037 < Z ≤ 1.645, heavy flooding; (3) 0.842 < Z ≤ 1.037,
partial flooding; (4) −0.842 ≤ Z ≤ 0.842, normal; (5) −1.037 ≤ Z ≤ −0.842, partial drought;
(6) −1.645 ≤ Z ≤ −1.037, heavy drought; (7) Z < −1.645, severe drought [31].

4. Validation of the Prediction Model
4.1. Overview of the Study Area

The Wu River is the largest tributary on the right bank of the upper reaches of the
Yangtze River and the largest river in Guizhou, originating in Yindong Village, Furshan
Township, and Weining County, at the eastern foot of the Wumeng Mountains in northwest-
ern Guizhou Province, called the Sanji River. The Wujiang River basin spans 41 counties
(cities and districts) in eight cities (states) in western, central, and northeastern Guizhou. In
the west, the watershed with Hengjiang River and Niujiang River is the Wumeng Mountain
branch; in the south, the watershed with Hongshui River and its tributary Beipanjiang
River is the Wumeng Mountain and Miaoling Mountain Range; in the northwest, the
watershed with Chishui River and Qijiang River is the Dalou Mountain Range; in the
east, the watershed with Yuanjiang River system is the Wuling Mountain Range; in the
northeast, the watershed is adjacent to Yangtze River and Hubei Qing Shuijiang River. The
watershed area of the Wujiang River basin in Guizhou is 66,807 km2, accounting for 76% of
the total watershed area. Therefore, the analysis and prediction of annual precipitation in
the Wujiang River basin is highly representative of the region and Figure 2 shows the water
system map of the Wujiang River basin.
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Figure 2. River system map of the Wujiang River Basin.

4.2. Data and Methods
4.2.1. Data Sources and Processing

The precipitation data in this paper were obtained from 58 years (1961–2018) of
precipitation monitoring data from 17 ground stations in the Wujiang River basin compiled
by the Guizhou Provincial Meteorological Bureau, which were accurate and credible. In
terms of data processing, the day-by-day data were firstly counted to obtain the multi-year
average and chronological average for each month and season, respectively.

4.2.2. Data Overview

As shown in Figure 3, the multi-year average precipitation in the Wujiang River basin
in the summer from 1961 to 2018 was 518.66 mm. The minimum value occurred in 1972
with 256.92 mm and the maximum value occurred in 1998 with 676.36 mm. According to
the trend value curve, it can be seen that the average annual precipitation in the Wujiang
River basin showed an increasing trend, with an average annual increase of 0.5691 mm.
According to the 5-year sliding average curve, it can be seen that the average annual summer
precipitation in the Wujiang River basin has roughly undergone a cycle of abundance→
depletion→ abundance→ depletion over the 51 years from 1961 to 2018.

Figure 3. Seasonal precipitation in the Wujiang River Basin (1986–2018).
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4.3. Implementation of the Prediction Model
4.3.1. MEEMD Decomposition of Precipitation Time Series

The quarterly precipitation series of the Wujiang River basin has obvious nonlinearity
and non-smoothness. In order to better analyze the precipitation time series locally to obtain
higher prediction accuracy, we used MEEMD to decompose the precipitation sample data
of the Wujiang River basin for a total of 58 summers from 1961–2018. In the decomposition,
the white noise intensity is set to 0.2, the maximum number of intrinsic modes is 6, the
number of joining noise is 30, the embedding dimension is 6, and the time delay is 1.
When the alignment entropy of the signal θ0 = 0.55, the original signal x of precipitation is
decomposed into IMF1~IMF3 and the residual term (RS4). When the alignment entropy
of the signal is taken as θ0 = 0.6, the decomposition is IMF1~IMF4 and the residual term
(RS5). Figure 4 shows the results of MEEMD decomposition of precipitation.

Figure 4. Results of MEEMD decomposition of summer precipitation in the Wujiang River basin.

It was calculated that the MAPE of the reconstructed signal and the original signal
for the MEEMD four-layer decomposition was 0.17, while the MAPE of the reconstructed
signal and the original signal for the MEEMD five-layer decomposition was 1.95 × 10−17,
indicating that the actual components of the MEEMD five-layer decomposition and the
original signal were in good agreement; thus, the five-layer decomposition was used in this
paper. Taking the summer precipitation of the Wujiang River basin in Guizhou Province
from 1961–2018 as an example, the first 38 years of data to train the network and the last
20 years of data to test the network, the decomposition terms and based on the root mean
square error index to filter, IMF1, IMF2 decomposition terms change faster with time, for
the high frequency part of the summer precipitation signal, will be predicted using the
PSO-SVM. The IMF3 and IMF4 decomposition terms change slowly with time and are the
low-frequency part of the summer precipitation signal with strong periodicity, which will
be predicted by CNN, while the residual term RS5 will be predicted by the RNN model.

4.3.2. PSO-SVM Prediction

Parameter initialization: learning factor (c1 = 1.5; c2 = 1.7); maximum number of
evolutions (maxgen) = 200; maximum number of populations (sizepop = 20); initial value of
k (k = 0.6), relationship between rate and x (v = kX); elasticity coefficient in front of velocity
in the rate update formula (wV = 1); velocity in front of the population update formula
elasticity coefficient (wP = 1); cross validation parameter (v = 5); maximum value of the
variation of parameter c (popcmax = 100); minimum value of the variation of parameter c
(popcmin = 1); maximum value of the variation of parameter g (popgmax = 0.5); minimum
value of the variation of parameter g (popgmin = 0.3). The population size was (pop = 500).
Figure 5 shows the comparison between the predicted and actual values of IMF1~IMF2,
where Figure 5a,b shows that the predicted values of the IMF1 and IMF2 subsets are very
close to the actual values, which verifies the validity of the PSO-SVM model. Figure 5c,d
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shows the well-trained adaptation functions of IMF1 and IMF2, respectively. Among
them, the IMF1 trained optimal penalty factor c = 1, kernel function g = 100, and fitness
CVmse = 0.235533; the IMF2 trained optimal penalty factor c = 1, kernel function g = 8, and
fitness CVmse = 0.1275.

Figure 5. Comparison of predicted and actual values of IMF1−IMF2. (a) IMF1 predicted versus true
values; (b) IMF2 predicted versus true values; (c) IMF1 fitness value; (d) IMF2 adaptation value.

4.3.3. CNN Prediction

The CNN is constructed as three layers: one input layer, one convolutional layer, and
one fully connected layer. The input samples are 55 sets of 2 × 2 × 1 3D data, the convolu-
tional layer is set up as four convolutional kernels for convolutional operation, respectively,
and the size of the convolutional kernels is 1 × 1. The output of the convolutional layer is
used as the input of the fully connected layer, which constitutes a single layer perceptron
and outputs the prediction values.

(1) Input layer: the size of the input layer is 2 × 2 × 1;
(2) convolution layer: since the input data matrix is small, a smaller 1 × 1 convolution

kernel is used. The number of convolution kernels is four and the step size is one.
In order to prevent the matrix from losing too much information in the convolution
process, the Padding = ‘same’ method is used to make up the zeroes. At the same
time, the step length of convolution is set to one;

(3) batch normalization layer: the mean−variance method is used to batch normalize;
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(4) activation function layer: the reluLayer activation function is used. The constructed
CNN model is shown in Figure 6.

Figure 6. CNN model.

The training CNN neural network parameters are set as follows: trainingOptions:
solverName is the stochastic gradient descent (sgdm) of the driving volume, initial learning
rate = 0.01, LearnRateDropFactor = 10−3; LearnRateDropPeriod = 20; MiniBatchSize = 64;
MaxEpochs = 4000; the first 35 sets of data were used for training the network, and the
last 20 sets of data were used for testing. Figure 7 shows the CNN network model and the
comparison of IMF3−IMF4. It can be seen that the predicted value of the trained model using
CNN is very close to the actual value, which verifies the effectiveness of the CNN model.

Figure 7. Comparison of IMF3−IMF4 predicted true values.

4.3.4. RNN Prediction of the Residual Term RS5

The RNN model is used to predict the decomposition term RS5. The original sample
data is normalized using the maximum–minimum method, the sample data structure is
58 × 1 times the series data, and the data series is processed into 55 × 10 by the [in,out] =
create_serino (lie_samp,10) statement, and the first 10 columns of sample data are selected
for correlation analysis; it is found that the correlation coefficient of the first 9 columns of
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sample data is greater than 0.5, which is a strong correlation, that is, when 50 years can
represent the general distribution of the whole series. Given a precipitation time series with
input data xn = (x1, x2, · · · xt, · · · x49) and output data y = x50, the sequence goes through
a cycle of roughly 5 years, and the input data is further processed into 9 × 5 × 49 by data
preprocessing, normalization, and structuring, and the output layer is 9 × 1. The network
structure is established as dimensions, with the number of neurons in the input layer being
9, the number of neurons in the hidden layer being 10, and the number of neurons in the
output layer being 1. The activation function is selected as sigmoid, learning rate = 0.001,
training step = 5000, batch = 20, and the learning rate algorithm is RAdam. Figure 8 shows
the structure of the RNN and Figure 9 shows the comparison between the predicted and
actual values of RS5.

Figure 8. The structure of RNN.

Figure 9. Comparison of the predicted and actual values of RNN.
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4.4. Evaluation and Analysis of Simulation Results

Algorithms such as BP, SVM, PSO−SVM, CNN, RNN, and MDPRM were selected to
train the summer precipitation data of the first 38 years from 1961–2018 in the Wujiang
River basin with the same initial value settings; the latter 20 sets of data were tested, and
the simulation results and the measured data were compared and analyzed. Figure 10
shows the comparison of the results of the simulation of summer precipitation changes in
the Wujiang River basin.

Figure 10. Comparison of summer precipitation test results in the Wujiang River basin from 1999–2018.

Overall, the passing rate of the six forecast models is 100% (the absolute percentage
error is less than 20% as the passing standard). From Figure 10, it can be intuitively seen that
the prediction results of the combined MEEMD model in this paper are closer to the true
values and have better prediction accuracy. In order to evaluate the model performance
more comprehensively, the statistical values of MAPE, RMSE, and α are given in Table 2. As
can be seen in Table 2, the MAPE of MEEMD decreases from 0.31 to 0.09, RMSE decreases
from 0.56 to 0.30, and α increases significantly from 0.33 to 0.86. It can be seen that the
MDPRM model is significantly better than the other five models, with a more accurate
time−series data prediction capability.

Table 2. Evaluation of simulation accuracy of different model algorithms.

Serial Number Model Algorithm MAPE RMSE α

1 BP 0.14 0.37 0.64
2 SVM 0.12 0.35 0.75
3 PSO−SVM 0.29 0.54 0.45
4 CNN 0.32 0.57 0.33
5 RNN 0.26 0.51 0.53
6 MDPRM 0.09 0.30 0.86

4.5. Application of Precipitation Prediction Results

The MEEMD decomposition of 58 years of summer precipitation in the Wujiang River
basin from 1961–2018 was used to predict the precipitation IMF1′, IMF2′, IMF3′, IMF4′, and
RS5′ for the next 10 years using a combined prediction model, and the precipitation prediction
value S was obtained by accumulating S = IMF1′ + IMF2′ + IMF3′ + IMF4′ + RS5′. The
prediction results are shown in Table 3. According to the prediction results, Z indicators
are used to analyze the drought level characteristics of the Wujiang River basin in the next
10 years. According to the MDPRM prediction results, the average precipitation of summer
precipitation in the Wujiang River basin is 466.42 mm in 2019–2028, the minimum precipitation
is 440.94 mm in 2020, and the maximum precipitation is 497.94 mm in 2024. Further using Z
indicators, the assessment of the agricultural drought level shows that the summer season is
normal during this 10-year period.
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Table 3. Precipitation forecast and drought assessment for the summer of 2019–2028 in the Wujiang
River basin.

Decomposition Items Prediction Method
Years

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028

IMF1′ PSO−SVM −0.09 −0.09 −0.09 −0.09 −0.09 −0.09 −0.09 −0.09 −0.09 −0.09
IMF2′ PSO−SVM 5.09 −7.04 −6.85 0.11 −6.15 2.03 2.44 1.85 −5.38 −2.11
IMF3′ CNN −53.30 −64.53 −50.68 −24.92 −1.26 10.70 9.25 −0.54 −9.73 −10.83
IMF4′ CNN 33.07 27.04 19.43 9.54 0.47 −8.58 −17.32 −24.53 −30.55 −35.04
RS5′ RNN 488.51 485.56 485.77 489.00 493.07 493.87 493.01 493.18 489.20 492.24

Predicted Results (mm) 473.29 440.94 447.58 473.64 486.05 497.94 487.30 469.87 443.45 444.18
Z-index −0.35 −0.65 −0.59 −0.34 −0.23 −0.12 −0.22 −0.38 −0.63 −0.62

Drought Level Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal

5. Conclusions

(1) By setting the MEEMD method with the white noise intensity of 0.2, the maximum
number of intrinsic modes of 6, the number of times to join the noise of 30, the
embedding dimension of 6, the time delay of 1, and the PE of the signal taken as 0.6,
the original summer precipitation signal x of the Wujiang River basin for 58 years
(1961–2018) is decomposed into IMF1-IMF4 and the residual term RS5, which can
accurately identify hierarchical features of precipitation data, effectively suppress
the modal mixing phenomenon in the EMD decomposition process, and reduce the
reconstruction error.

(2) In this paper, a new precipitation MDPRM is proposed, i.e., according to the prediction
accuracy and prediction efficiency, the PSO−SVM is used to predict IMF1 and IMF2
decomposition terms, CNN is used to predict IMF3 and IMF4 decomposition terms, and
RNN is used to predict the residual term RS5, and the precipitation prediction values are
obtained by accumulating the prediction values of each sub−term. Compared with BP,
SVM, PSO-SVM, CNN, and RNN, MAPE is reduced from 0.31 to 0.09, RMSE is reduced
from 0.56 to 0.30, and α is significantly increased from 0.33 to 0.86, indicating that the
MDPRM constructed in this paper improves the prediction accuracy.

(3) The MDPRM constructed in this paper was used to predict the summer precipitation
in the Wujiang River basin for the next 10 years from 2019 to 2028 and the predicted
results showed that the average precipitation for the next 10 years was 466.42 mm,
with a minimum of 440.94 mm in 2020 and a maximum of 497.94 mm in 2024. Further
assessment of the agricultural drought rating using the Z indicator showed that the
summers were normal during the 10 years. The results of the precipitation prediction
and drought characteristics analysis provide technical support for the scheduling and
efficient use of water resources in the summer to maximize economic, social, and
ecological benefits.
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