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Abstract: The Convenient and accurate identification of the traffic load of passing vehicles is of
great significance to bridge health monitoring. The existing identification approaches often require
prior environment knowledge to determine the location of the vehicle load, i.e., prior information of
the road, which is inconvenient in practice and therefore limits its application. Moreover, camera
disturbance usually reduces the measurement accuracy in case of long-term monitoring. In this study,
a novel approach to identify the spatiotemporal information of passing vehicles is proposed based on
computer vision. The position relationship between the camera and the passing vehicle is established,
and then the location of the passing vehicle can be calculated by setting the camera shooting point as
the origin. Since the angle information of the camera is pre-determined, the identification result is
robust to camera disturbance. Lab-scale test and field measurement have been conducted to validate
the reliability and accuracy of the proposed method.

Keywords: vehicle spatiotemporal information; computer vision; pose estimation; field measurement

1. Introduction

Traffic load is the main variable load on bridges. With the development of the trans-
portation industry, traffic flow increases and it accelerates the fatigue cracking of bridge,
which leads to the collapse of bridge. The information of traffic flow is important for bridge
design, maintenance and reinforcement. Therefore, the accurate and effective identification
of traffic load is crucial, including both weight and the spatiotemporal information of
vehicle.

The weigh-in-motion (WIM) technique was proposed to obtain the weight of a passing
vehicle [1,2], and it can measure both weight and number of axles. In many studies, data
from WIM measurement was used to build the traffic load model and further investigate
the effect of traffic load on the bridge. Caprani et al. [3] investigated the characteristic
traffic load effects of mixing load on short and medium span bridges where data from WIM
measured was used. O’Connor and O’Brien [4] compared various load effect extrapolation
techniques using WIM data and analyzed the factors affecting the extrapolation accuracy.
OBrien et al. [5] constructed a Monte Carlo simulation model by using WIM data to deter-
mine the traffic load effect on a bridge. Although the load effect can be estimated by using
data of WIM measurement, it is still necessary to identify the transversal and longitudinal
distribution of traffic load in real time, especially for bridge health monitoring [6]. Bridge
weigh-in-motion (B-WIM) is different from the traditional WIM system [7]. Except for
weight and number of axles, B-WIM can be arranged to obtain the load information. Schol-
ars also used the measurement from the B-WIM system to estimate the vehicle location.
Yuan et al. [8] analyzed the spatial distribution of vehicles on a bridge on the basis of
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previous studies. Yu et al. [9] proposed a novel method to identify the location information
of vehicles by using the data from the B-WIM measurement. However, due to the char-
acteristics of ill-conditioned equations, it is still difficult to identify multiple vehicles by
the B-WIM algorithm. Hence, the existing WIMs alone cannot obtain the complete traffic
load distribution information of the whole bridge. Other indirect methods to identify the
location and amplitude of traffic load from structure response have also been investigated,
and they can be classified into three categories: interpretive method [10], time domain
method [11] and time—frequency domain method [12]. However, because these methods
are based on beam theory, they can only be used to identify the longitudinal location of
vehicle. In addition, they generally require a large amount of numerical calculations due to
the usage of finite element (FE) model, which also limits their application.

In recent years, computer vision technology has been introduced in the field of
structural health monitoring by detecting vehicles and identifying the location informa-
tion [13-15]. Ojio et al. [16] proposed a contactless B-WIM system to weigh vehicles passing
over a bridge without installing any sensors on the bridge. Feng et al. [17] introduced an
innovative weighing method by visually estimating the contact pressure and contact area of
vehicle tires. Later, various methods, such as background subtraction method [18], tempo-
ral difference method [19], Gaussian mixture model method [20], optical flow method [21],
and match template method [22], were investigated to extract vehicle spatiotemporal in-
formation. Wang et al. [23] proposed a real-time robust algorithm to recognize targets in a
complex background based on circle and line features, and they [24] further developed a
high-precision target localization method for real-time visual measurement. Cao et al. [25]
developed two algorithms to detect and track moving vehicles in aerial infrared image
sequences. Jeong et al. [26] proposed an approach of spatiotemporal local-remote sensor
fusion to identify vehicle location. Liu et al. [27] detected fast moving vehicles by using
pose estimation with the Convex—Hull model. Lopez-Sastre et al. [28] improved the multi-
vehicle tracking technique by using viewpoint estimation sensor. Tang et al. [29] developed
an algorithm to extract the vehicle spatial distribution and 3D trajectory in a cross-camera
traffic scene. However, these methods are highly sensitive to environmental conditions,
which makes the vehicle spatiotemporal information acquisition less robust. With the
development of deep learning technology, the powerful recognition ability of convolutional
neural network (CNN) in image processing is recognized. Therefore, the identification of
spatiotemporal information has become efficient and reliable. Some vehicle spatiotemporal
information acquisition methods based on deep learning have appeared recently. Zhang
et al. [30] proposed a method to obtain the spatiotemporal information of vehicles on the
bridge based on DCNN technology and image calibration method. Zhou et al. [31] used
the trained faster R-CNN model to detect the vehicle and employed Kalman filter to track
its location. Gomaa et al. [32] developed a robust algorithm to detect vehicle by using CNN
and optical flow. Jian et al. [33] developed a traffic sensing method that can automatically
identify vehicle weight and speed. Xia et al. [34] proposed a traffic monitoring method
for complex traffic scenes. Ge et al. [35] constructed a full bridge traffic load distribution
monitoring framework based on YOLO-v3 machine vision. In fact, the spatial information
of the vehicle can be obtained by using the dual target detection model, which can also
detect the contour and tail of the vehicle and the visual principle. On this basis, Zhu
et al. [36] used the YOLO-v4 detector to detect the vehicle and obtain the 3D boundary box.

Although deep learning technique makes the detection of multiple vehicles possible in
complex scenes, there are still some problems in vehicle detection regarding vehicle spatial
recognition. For example, the use of a camera to record vehicle motion needs to establish
the relationship between the road surface coordinates and the image coordinates, where
the prior spatial information of the road should be known. The common practice is to mark
several points on the road and measure the distances between these points to establish the
projection matrix on site. It can achieve satisfactory results. However, when the vehicle
travels outside the area with the prior environment knowledge, it is difficult to estimate
the location of vehicles. Hence, this method can only estimate the location of vehicle when
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it is in the area with prior environment knowledge. Jian et al. [33] developed a traffic
sensing method that can automatically identify vehicle weight and speed. On the one hand,
environmental vibration causes camera disturbance in long-term monitoring. The change
in camera position also makes the identification results inaccurate, so the camera needs
to be calibrated again, which is time-consuming. On the other hand, it usually difficult to
obtain the environmental information of the whole bridge. Hence, it can hardly obtain the
spatiotemporal information of vehicles on the whole bridge, which affects the assessment
of bridge health condition.

In order to calculate the spatiotemporal information more conveniently, it is necessary
to avoid prior work and reduce the interference induced by camera disturbance. In this
study, an accurate and convenient method to identify the spatiotemporal information of
passing vehicles is proposed based on computer vision. First, deep learning technology is
used to detect vehicles in the video. Then, camera calibration is conducted to obtain the
camera internal parameter matrix and distortion coefficients. Finally, the camera pose is
used to estimate the spatial relationship between the camera and the vehicle to obtain the
vehicle spatiotemporal information.

The main contributions of this study are summarized as follows. (1) Prior environment
knowledge can be avoided so that it is more convenient in practice. (2) The adverse effect of
camera interference can be reduced. (3) The feasibility of YOLO-v5 on identifying passing
vehicles was investigated and discussed.

The following text is organized as: Section 2 briefs the framework of the proposed
method. Section 3 introduces the YOLO-v5 detector framework, explains the generation
process of the data set, and provides the performance analysis of the detection model.
Section 4 presents the proposed method to identify vehicle spatiotemporal distribution. In
Section 5, the accuracy of spatiotemporal information recognition and robustness to camera
disturbance are verified by lab tests. Section 6 shows the field measurement by using the
proposed method, and conclusions and discussions are summarized in Section 7.

2. Framework of the Proposed Method

The framework of the proposed method consists of a hardware system and software
system, as shown in Figure 1. The hardware system includes surveillance cameras to
record video of traffic flow (Figure 2) and the software system includes a dynamic vehicle
detection module and vehicle tracking module to identify the spatiotemporal information
of passing vehicles.

Input video information
Vehicle passing time

Relate the vehicles H d
\ and weight information araware Syste m

Deep learning to

acquire vehicles

Vehicle size -
Obtain vehicle feature
points
Software system

Establish the world

coordinate system \J Camera pose Vehicle space-
on the vehicle \ estimation time information

Figure 1. Framework of the proposed method.
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Figure 2. On-site hardware layout.

The main task of the dynamic vehicle detection module is to identify vehicles in the
video. Although a passing vehicle can be easily detected by background subtraction and
Gaussian mixture model method, it is vulnerable to weak light and its performance on
detecting multiple vehicles is poor. Deep learning-based target detection methods such as
R-CCN and Fast R-CNN usually have two steps, which detects vehicles in real time with
difficulty. Therefore, YOLO-v5 was adopted in this study.

The main task of the vehicle tracking module is to calculate the location of the identified
vehicle and reconstruct its trajectory. Most of the existing methods need prior environment
knowledge, which is not convenient to obtain in practice. Therefore, a novel vehicle
tracking method is proposed, which can identify the position information of the vehicle
without prior environment knowledge. It mainly uses the principle of pose estimation to
obtain several marked points from the vehicle when the vehicle size is known and uses
the position information of the marked points to calculate the shooting position of the
camera. Because the marked points move with the vehicle, the relative position relationship
between vehicle and camera at each time should be calculated. The camera position remains
unchanged, and the mileage information of the vehicle can be deduced accordingly. This
method does not need prior environment knowledge, overcomes the influence of camera
disturbance, and is suitable for large-scale and long-term monitoring.

3. Vehicle Detection Based on YOLO-v5
3.1. YOLO-v5 Model

Several versions have been released since the start of the YOLO detector. Some scholars
have achieved good recognition results by using YOLO-v3 and YOLO-v4. The network
structure of YOLO-v3 is a classic one stage structure, consisting of four modules: Input,
Backbone, Neck and Prediction. YOLO-v4 has involved many innovations on the basis of
YOLO-v3. From YOLO-v4 to YOLO-v5, great improvements have been made. The size
of YOLO-v5 is nearly 90% smaller than that of YOLO-v4 and the accuracy of YOLO-v5 is
equivalent to that of YOLO-v4. In the official code of YOLO-v5, there are four versions in
the target detection network, namely, YOLO-v5s, YOLO-v5m, YOLO-v51 and YOLO-v5x.
The accuracy and computational efficiency of the four versions are slightly different. YOLO-
v5 not only keep the advantages of high precision and high efficiency of previous products,
but also provides users more options. Moreover, considering the follow-up long-term
monitoring, it is necessary to implement a small size target detection model in embedded
devices. Therefore, YOLO-v5 is used as the detector in this study.

Figure 3 shows the network structure of YOLO-v5s.The network is mainly divided
into four parts: Input, Backbone, Neck and Prediction. The differences between YOLO-v5
and other versions are briefly introduced. In the Input module, the function of self-adaptive
image scaling is improved, which scales the original image to a standard size and sends
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it into the detection network. YOLO-v5 modifies the letterbox function and adaptively
adds the least black edges to the original image to improve speed. In the Backbone module,
the Focus structure is added, in which the slicing operation to slice the input image into
a feature map is the most important. For a 640 x 640 x 3 image, it first becomes a
320 x 320 x 12 feature map, and then transforms to a 320 x 320 x 32 feature map after a
convolution operation. YOLO-v5 has two CSP structures, CSP1_X structure is applied to
the Backbone, and CSP2_X structure is applied to the Neck. The Neck adopts FPN+PAN
structure, and the size of the image after feature extraction becomes smaller. Through three
times of up-sampling, the image is mapped from small resolution to large resolution, and
three feature maps with different sizes are obtained for the subsequent prediction. Finally,
the loss function is expressed as:

Distance_2?2 v?
CIOU_Loss =1 — (IOU — - — 1
- ( Distance_C? (1 -1I0U) + U) @
4 w8t wP\?
V= p= (arctanw — arctanh—p> 2)

where v is the parameter to measure the consistency of the aspect ratio.
Backbone Neck Prediction Output
255x80x80
. c8s . 1 :.4
\~," .1 = m;@nm

Input

Figure 3. YOLO-v5s network structure.

3.2. Model Training and Performance Analysis

The model training needs a vehicle dataset. The vehicle images in the dataset in this
study were either pictured by camera or downloaded from the internet. The labeling tool
was used to label the vehicle in the figure, as shown in Figure 4a. The dataset was divided
into two parts by random sampling: one was the training set including 80% of the images
and the other was the test set including 20% of the images. The former was used to train
the network and the latter was used to evaluate the detector.

Figure 4. (a) Label the vehicle using the data labeling tool. (b) Vehicle detection by YOLO-v5.

The actual traffic flow video was used to verify the vehicle recognition capability
of the model in the field measurement. Figure 4b shows the vehicle detection results at
10 am. The position information and category probability in the image are provided in the
form of a bounding box. It was found that the model used in this study can accurately
detect the vehicle under the condition of fast driving, and it has good detection results



Sensors 2022, 22, 6437

60of 17

when multiple targets are presence in the vision. However, when the vehicle has obvious
occlusion, vehicle contour positioning may lead to large errors.

4. Vehicle Spatiotemporal Distribution Recognition
4.1. Corner Points Marking

Four points on the passing vehicle are marked first, which are used to identify the
location of vehicle. Generally, the marked points should be on geometric corners of the
vehicle. This is because the captured vehicle boundary or geometric corner has significant
color change and brightness change, which is helpful to detect the marked points in the
image and obtain the corresponding 2D coordinates. For any image in the video, once
the vehicle is identified, the marked points can be detected and their 2D coordinates can
be obtained accordingly. When there are multiple vehicles in the image, all vehicles can
be identified simultaneously by YOLO-v5, and the marked points on each vehicle can be
detected separately.

4.2. Determination of the Relative Position of the Camera and Vehicle

A method to obtain the relative position of camera and vehicle by using the marked
point information in world coordinates is proposed in this study. In fact, the number of
marked points, 1, is important in this method.

When there is only one marked point (n = 1) on the vehicle, as shown in Figure 5a, P4
is the marked point and Oc is the optical center of the camera. Suppose that the marked
point is in the center of the image; then, P1-Oc is the Z-axis of the camera. Then, the camera
may be at any point on a sphere with an arbitrary radius and center of Py; hence, there are
infinite solutions and the relative position of camera and vehicle cannot be determined.

% 3] = O¢
a8
5 03 0. // \\rz\ "
I / > P2
[
p; ®
(a) (b)

Figure 5. (a) Relative position of the camera and vehicle (n = 1). (b) Relative position of the camera
and vehicle (n = 2).

When there are two marked points (n = 2) on the vehicle, as shown in Figure 5b,
namely, P; and Py, the additional constraint condition makes Oc-P1-P; form a triangle.
Since the positions of P; and P, are determined, the edge P1P; of the triangle can be
determined. In addition, the vector OcP; and the direction angle of Oc-P; can also be
determined accordingly. Therefore, the length of OcPy, 11, and the length of OcP;, 1y, can
be calculated. In this case, two spheres are obtained: one has center P; and radius r; and
the other has center P, and radius r,. Obviously, the camera is located at the intersection
line of the two spheres, so there are still infinite solutions.

When there are three marked points (n = 3) on the vehicle, that is, there is one more
marked point, P3, there should be one more sphere with center P3 and radius OcP3. The
camera is located at the intersection of the three spheres. Since there are four solutions, one
may need additional information to determine the solution.

When there are more than three marked points (1 > 3) on the vehicle, all spheres
should have only one intersection point, and it is the exact location of the camera. Hence,
at least four marked points should be selected on a vehicle. Perspective-n-point (P-n-P)



Sensors 2022, 22, 6437

7 of 17

technique is usually adopted to match point on 3D object to 2D point. The relationship
between the coordinates of point on the 3D object in the world coordinates and coordinates
of corresponding point in the image plane can be constructed, and the pose of camera (six
degrees of freedom: position coordinates and three direction angles) can be determined
accordingly. As shown in Figure 6, when the coordinates of point C; in the world coordinate
system and the coordinates of the corresponding point in the image plane are known,
combined with the internal parameter matrix and distortion coefficient of the camera, the
rotation vector and translation vector transformed from the world coordinate system to the
image plane coordinate system can be calculated.

Camera coordinate system

@ G (xy2)
* o
@ O ® O
° Rt

World coordinate system
Figure 6. Relationship between 3D points (world coordinates) and 2D points (image coordinates).

If the camera position remains unchanged and the world coordinate system is estab-
lished on the moving object, the displacement information of the moving object can be
obtained. It should be noted that the coordinates of marked point in world coordinate
system can be determined either through the depth map or by setting the world coordi-
nate system during initialization. Therefore, the pose estimation method does not need a
polar constraint and can obtain better motion estimation. As a summary, the relationship
from the world coordinate system to the pixel coordinate system has been proposed by
predecessors [37].

Before actual measurement, the internal parameter matrix and distortion coefficient
of the camera should be calibrated. A chessboard composed of black-and-white square
intervals was used as the calibration object for camera calibration, and the orientation of the
chessboard was changed many times to capture images. After calibration, the parameters
and distortion coefficient were obtained for actual measurement.

4.3. Identification Vehicle Spatial Information by Using Pose Estimation

The Direct Linear Transformation (DLT) method was used to determine the external
parameters of the camera. For a specific point P, having coordinates (X, Y, Z) in the world
coordinate system, its corresponding pixel coordinate (x,y) can be expressed as:

N X
Y

y| =KT|, ®3)

1 1

where K is the internal parameter matrix of camera and T is the transformation matrix.
K is predetermined in the calibration, while T is to be determined.
Multiplying K~! on both sides of Equation (1), one can obtain:
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X X

. X Y 1 ri2 rs b Y
K|yl =[R t s | = | 2 13 b |, (4)

1 1 31 T2 T3 f3] |

where R is the rotation matrix and t is the translation vector. Therefore, once the trans-
formation matrix is obtained, the coordinates (X, Y, Z) in the world coordinate system
can be calculated by using Equation (2). For one pair of marking points, there can be two
equations. The transformation matrix has 12 elements, so it needs at least 6 pair of marking
points to obtain the solution. However, since R is the rotation matrix, it is an orthogonal
matrix with determinant 1 and there are constraints that RRT = 1 and det(R) = 1. Hence,
the following equations can be obtained:

2 +rp? +r32 =1

ri1r21 + r12r2 + 113123 =0

11131 + r12r32 + r13r33 = 0 5)
112 +120° + 152 =1

1131 + I22r3p + 123133 = 0
r312 + 1‘322 + 1‘332 =1

Therefore, the transformation matrix can be obtained by three pairs of marking points.
In order to improve the accuracy, four pairs of marking points were selected in this study
and the transformation matrix was solved by using least squares method. The pose mini-
mizing the reprojection error can be found by using Levenberg-Marquardt optimization.
Then, the rotation angle of each axis of the camera (GCX, Ocy, GCZ) in the world coordinate
system can be calculated by using the rotation matrix R. After obtaining the three rotation
angles of the camera, the coordinates of the camera (x, Y., z¢) in the world coordinate
system can be determined as well. Finally, as long as the exact location information of
the camera in the world coordinate system is known, including both rotation angles and
coordinates, the coordinates of point on a 3D object in the world coordinate system can be
calculated using Equation (1) and the motion information or trajectory of the point can be
obtained.

When the vehicle travels along a straight line, the spatiotemporal information of the
vehicle can be obtained by directly recording the coordinates of X and Y in the world
coordinate system at each time, as shown in Figure 7. When the vehicle travels along a
curved path, the world coordinate system changes with the vehicle driving direction. In
this case, the directly obtained coordinates X and Y cannot correctly reflect the vehicle
location information. The coordinates should be corrected by using the turning angle of
the vehicle. Because the camera is fixed during the measurement, the Z axis in the world
coordinate system is perpendicular to the ground, so 6., can reflect the turning angle of
the vehicle, which is also called the yaw angle. The yaw angle of the vehicle before and
after entering the curve is recorded as Af,. By using the geometric relationship, the vehicle
location information X; and Y; are obtained as:

X; = X cos AB, + Y sin A6, (6)
Y; = XsinAf; — Y cos AB, 7)

If the vehicle is on the right side of the camera and turns to the right, the location
information can be calculated by Equations (6) and (7). However, when the vehicle on the
left side of the camera turns to the right and the vehicle on the right side of the camera
turns to the left, Equations (6) and (7) can be transformed as:

Xy = X cos AB, + Ysin Af, (8)
Y; = Y cos AB, — X sin A6, 9)
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Figure 7. Determination of vehicle location in straight and curved paths.

In practice, a vehicle usually has a clear boundary and the size information can be
easily obtained. Hence, the world coordinate system is established on the vehicle, and the
location information of four points is selected to calculate the transformation matrix. The
four points can be selected from a surface of the vehicle. Figure 8 shows an example: Four
points, A, B, C, and D on the top surface are selected and the world coordinate system is
established on the truck. The pixel coordinates of A, B, C and D are tracked and matched
with the world coordinates to obtain the rotation matrix and translation vector of different
planes of the vehicle during moving. Since the camera is fixed, therefore, the six degrees of
freedom of the vehicle can be deduced by using Equations (4) and (5).

Figure 8. The selected four points and world coordinate system on the truck.

4.4. Summary of the Proposed Method

The steps of the proposed method are summarized as follows:

Step 1: The internal parameter matrix and distortion coefficients of camera are obtained
through camera calibration.

Step 2: At least 4 pairs of marked points are selected and their coordinates in world
coordinate system and pixel coordinate system are determined.
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Step 3: The external parameter matrix of the camera is calculated by using DLT
method.

Step 4: The six degrees of freedom of the camera are obtained according to the external
parameter matrix.

Step 5: The location information of the vehicle in the world coordinates is deduced
from the video recorded by the camera.

5. Verification by Lab-Scale Tests

In order to verify the proposed method and investigate the influence of camera
disturbance on the proposed method, a total of four tests were conducted in the lab
where a model truck was used. Figure 9 shows the layout of the model truck and camera
in the lab. In Test 1 to Test 4, the model truck moved along the straight line on the model
continuous bridge.

Figure 9. Layout of the model truck and camera.

5.1. Verification of the Accuracy of the Recognized Vehicle Spatiotemporal Information

Test 1 and Test 2 were conducted to verify the accuracy of the proposed method. In
order to obtain the accurate spatiotemporal information of the vehicle, several points on the
bridge deck were marked, which were uniformly arranged along the straight line. Hence,
the locations of these points on the bridge deck were known. When the vehicle moved
along the bridge deck, the vehicle was recorded in the form of images, and its location was
estimated by the proposed method, which was further compared to the results obtained by
the marked points to obtain relative error. In Test 1, the camera was placed at one location
near the track, as shown in Figure 9. In Test 2, the location of the camera changed, and
the time history of location information of the truck was identified again to investigate the
influence of camera location on identification accuracy.

Figure 10a shows the images of the model truck taken by the camera in Test 1. The
location of model truck in each image was identified by the proposed method and the
spatiotemporal information is summarized in Table 1. The first eight columns show the
pixel coordinates of the selected four points. The following two columns show the identified
coordinates of the center of rectangle ABDC in world coordinate system, and the last column
shows the percentage error of the Y coordinate in world coordinate system. It is observed
that the maximum relative error is only 1.07%, indicating that the proposed method can
identify the spatiotemporal information of passing vehicles with high accuracy. Figure 10b
shows the trajectory of the model truck in Test 1.
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Figure 10. (a) The model truck photographed by the camera in Test 1. (b) Trajectory of the model

truck in Test 1.

Table 1. Pixel coordinates of four selected points and identification results in Test 1.

B C D X Y Error (x)

1142 1401 1484 1201 2450 2779 2821 2423 401.35 155.94 0.34%
975 1241 1323 1056 2163 2514 2531 2196 450.81 155.91 0.18%
818 1077 1165 903 1921 2251 2293 1961 502.68 155.45 0.54%
656 921 1004 752 1694 2004 2069 1739 550.43 155.11 0.08%
514 787 859 621 1471 1776 1857 1547 601.73 156.00 0.29%
397 647 730 499 1283 1576 1657 1357 648.08 155.65 0.30%
266 508 591 362 1101 1379 1454 1176 694.36 155.07 0.81%
144 389 469 253 927 1205 1273 1016 744.76 155.39 0.70%

42 274 361 139 776 1039 1120 871 791.45 155.36 1.07%

Figure 11a shows the images of the model truck taken by the camera in Test 2, in which
the camera was moved to the other side of the vehicle. The location of model truck in each
image was identified and the spatiotemporal information is summarized in Table 2. The
maximum relative error is 3.49%, also indicating that the proposed method can accurately
identify the spatiotemporal information of passing vehicles even if the location of camera

changes. Figure 11b shows the trajectory of the model truck in Test 2.
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Figure 11. (a)The model truck photographed by the camera in Test 2. (b)Trajectory of model truck in

Test 2.

Table 2. Pixel coordinates of four selected points and identification results in Test 2.

B C D X Y Error (x)
1862 1201 2201 1280 1225 2545 1659 2681 413.94 —186.97 3.49%
1931 1037 2269 1103 1352 2267 1766 2391 463.14 —194.12 2.92%
2010 878 2330 942 1475 2008 1873 2116 513.6 —193.21 2.72%
2077 726 2389 788 1587 1774 1967 1873 560.2 —188.45 1.85%
2145 583 2446 637 1688 1558 2056 1647 607.31 —193.19 1.22%
2206 448 2498 501 1780 1368 2133 1447 650.31 —194.18 0.05%
2257 325 2544 373 1860 1184 2202 1260 697.75 —190.90 0.32%
2312 206 2592 253 1941 1016 2270 1084 744.96 —191.64 0.67%
2363 96 2636 140 2018 855 2338 913 796.74 —193.05 0.41%

Test 1 and Test 2 prove that using the proposed method to calculate the vehicle spa-
tiotemporal information has high accuracy, and it is not limited by the camera installation
location. Hence, the camera can be installed in a specific location on the actual traffic road,
which is convenient in practice.

5.2. Investigation of Robustness to Camera Disturbance

Test 3 and Test 4 were conducted to investigate the robustness of the proposed method
to camera disturbance. The location of camera was kept the same with that in Test 1, but
the camera was rotated randomly, as shown in Figure 12. In the three tests, the model truck
moved along the same path, but the speed had slight variations. Figure 13 presents the
trajectories of the model truck in Test 1, Test 3 and Test 4, and it may be concluded that the
proposed method is robust to camera disturbance, which is beneficial in real applications.
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Figure 13. Trajectories of the model truck in Test 1, Test 3 and Test 4.

6. Verification by Field Measurement

Field measurement has also been carried out to further validate the proposed method.
The camera was set on a pedestrian overpass, as shown in Figure 14a. The measurement
was conducted in the morning when the traffic condition was good and there was no
environmental interference. The locations of vehicles on the three lanes on the right were
identified.

(b)

Figure 14. (a) Camera on pedestrian overpass. (b)Detection of vehicles in field measurement.

The camera was calibrated before measurement. The vehicles were first detected
by YOLO-v5s, as shown in Figure 14b. Four points of the shadow area at the bottom of
the vehicle were selected as the marked points to establish the world coordinate system.
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Although one point was blocked by the vehicle itself, the pixel coordinates of the blocked
points can be approximated because the bottom is a regular rectangle.

Figure 15 shows the trajectory of the taxi on the upper-right corner in Figure 14b in
the field measurement. The origin is the location of camera. The Y-axis is the transverse
direction of the road, and the X-axis is the longitudinal direction of the road.
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Figure 15. Detection of vehicles in field measurement.

In order to verify the feasibility of the proposed method, the method requiring prior
environment knowledge is used as a baseline or reference. Assuming that the road surface
is flat, the specific relationship between coordinates in world coordinate system and pixel
coordinate system can be written as

u ann app a3 | [ Xw
Z.|v| = |ax 4 a3 | | Yo (10)
1 a3 az; 433 1

where u and v are pixel coordinates, Xy, and Y;, are world coordinates of points, the
3 x 3 matrix is the projection matrix, and a33 is equal to 1. At least four pairs of reference
points are required to determine the values of eight variables. As shown in Figure 16 and
Table 3, one can obtain the pixel coordinates of P1, P2, P3 and P4 to calculate the projection
transformation matrix.

Unit: m
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@)
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Figure 16. Reference points in the world coordinate system.
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Table 3. Correspondence between two coordinate systems.

Points Number u (Pixel) v (Pixel) x (m) y (m)
P1 442 674 0 0
P2 1233 684 10.5 0
P3 534 280 0 20
P4 900 281 10.5 20

Figure 17 shows the relative error of the proposed method compared to the baseline.
It is found that the relative error is in the range from 0.17% to 7.66%, indicating that the
proposed method using pose estimation to calculate the spatiotemporal information of
passing vehicles also has great performance in field measurement, and also because prior
environment knowledge is not required, which is convenient in real application.
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Figure 17. Distribution of error values.

7. Conclusions and Discussions

Compared with other work in this field, this study focused on identifying vehicle
spatiotemporal information without prior spatial information of the road. Firstly, the deep
learning-based vehicle recognition was introduced. YOLO-v5 was adopted in this study
due to its unique engineering design. Through the training sets, the YOLO-v5 detector was
used to identify the traffic flow, speed and other information, which is of great significance
for understanding the traffic situation. Then, a pose estimation technology was proposed
to solve the positioning problem of passing by vehicles. The traditional method can obtain
accurate results when the vehicle is in the area where the prior environment knowledge
is known, but it may fail once the vehicle is outside the area. The main advantage of the
proposed method is to avoid the prior environment knowledge, and to use the camera itself
as a reference point to estimate the vehicle location. This method can provide the spatial
distribution of vehicles with respect to time and therefore it is expected to be applied to the
traffic load estimation on bridges. The feasibility of this method was verified by lab-scale
test and field measurement. The following findings and conclusions were drawn:

1.  The proposed method can identify the spatiotemporal information of passing vehicles
with high accuracy. Its accuracy is not dependent on the location of camera, so the
camera can be installed at convenient locations.

2. There is no need to know the prior information of road before measurement, so mark-
ing on the road can be eliminated. Hence, it is possible to detect the spatiotemporal
information of vehicles passing along curved path.

3. Itisrobust to camera disturbance and it can work as long as the camera is calibrated
and the internal parameter matrix and distortion coefficient are known, so it is suitable
for long-term monitoring.

4. It also has some limitations, such as high sensitivity to pixel coordinates. When
the vehicle is far away, the estimation is less accurate. The results obtained by this
method are also affected by poor environmental conditions such as extreme weak and
strong light.

5. Itis admitted that this method cannot fully automatically identify the spatiotemporal
information of vehicles since it needs to select marked points manually. For the
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recognition principle and the effect of multiple vehicles in the same field of vision,
there is little difference, but it will increase the workload. How to update the algorithm
to fully automatically identify the spatiotemporal information of vehicles should be
further investigated in the future.

6. The method of using binocular vision system to reduce the influence of pixels, and
obtain more accurate vehicle marking points based on deep learning should also be
explored, so as to obtain the spatiotemporal information of vehicle more conveniently.
In addition, it is great to implement the algorithm model in embedded devices to
achieve long-term monitoring.
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