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Abstract: In fault diagnosis research, compound faults are often regarded as an isolated fault mode,
while the association between compound faults and single faults is ignored, resulting in the inability
to make accurate and effective diagnoses of compound faults in the absence of compound fault
training data. In an examination of the rotate vector (RV) reducer, a core component of industrial
robots, this paper proposes a compound fault identification method that is based on an improved
convolutional capsule network for compound fault diagnosis of RV reducers. First, one-dimensional
convolutional neural networks are used as feature learners to deeply mine the feature information of
a single fault from a one-dimensional time-domain signal. Then, a capsule network with a two-layer
stack structure is designed and a dynamic routing algorithm is used to decouple and identify the
single fault characteristics for compound faults to undertake the diagnosis of compound faults of RV
reducers. The proposed method is verified on the RV reducer fault simulation experimental bench,
the experimental results show that the method can not only diagnose a single fault, but it is also
possible to diagnose the compound fault that is composed of two types of single faults through the
learning of two types of single faults of the RV reducer when the training data of the compound
faults of the RV reducer are missing. At the same time, the proposed method is used for compound
fault diagnosis of bearings, and the experimental results confirm its applicability.

Keywords: compound fault diagnosis; convolutional neural network; capsule network; RV reducer

1. Introduction

Industrial robots are at the core of intelligent manufacturing [1]. As a core component
of industrial robots, the health of rotate vector (RV) reducers is an important factor affecting
the long-term stable operation of the industrial robots [2,3]. Different from the single
fault setting in the laboratory, the different faults are interrelated in an actual operation
environment, and compound faults are more common [4] and are the main reason for
the failure of the RV reducer [5,6]. The coupling of different types of single faults into
a compound fault makes them more difficult to identify [7] and more dangerous than a
single fault [8]. Therefore, it is highly significant in the realm of engineering to research
compound fault diagnoses of RV reducers.

The RV reducer is composed of a front stage of a planetary gear reducer and a rear stage
of a cycloid pinwheel reducer [9]. Due to its complex structure, it is a complicated process
to diagnose and identify the damaged parts. Ferrography analysis, acoustic emission
analysis, and vibration analysis are the most commonly used methods to monitor the
health status of RV reducers [10]. In a ferrography analysis, Peng [11] designed a neural
network to classify the wear particles in oil to determine the wear mode of an RV reducer.
Although this method determines the wear mode inside the RV reducer, the method is
time-consuming and cannot determine the location of a wear failure. In acoustic emission
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technology, Liang [2] uses a wavelet transform to denoise the acoustic emission signal, and
predicts the failure trend of the RV reducer by using a hidden Markov model. An [12]
carried out time-frequency feature extraction of acoustic emission signals of an RV reducer
at different speeds and working conditions, and used these time-frequency features to
qualitatively evaluate the crankshaft wear effect. Yang [13] combined compressed sensing
and wavelet energy pooling to extract the fault features of RV acoustic emission signals and
implemented a single fault classification of planetary wheel wear and sun wheel wear in an
RV reducer. Although acoustic emission technology has achieved good results in early fault
diagnoses of RV reducers, the acquisition of acoustic emission signals often requires a very
high sampling frequency. A large amount of redundant data has a great impact on data
transmission and storage and is not conducive to the long-term condition monitoring of RV
reducers. In vibration analysis, since the vibration signal of the machine contains the fault
information of the mechanical equipment, vibration analysis is commonly used for fault
diagnosis. Many scholars have proposed different fault diagnosis methods and ideas that
are based on the characteristics of machine learning algorithms and vibration acceleration
signals. Common machine learning algorithms include support vector machines [14,15],
artificial neural networks [16], and Bayesian [17]. However, traditional machine learning
methods require prior knowledge to manually extract the characteristics of the vibration
signals, and the selected feature extraction methods are different for different fault types.
Therefore, the diagnostic methods of manually extracting fault features are extremely
dependent on experts’ experience and knowledge of fault diagnoses. Moreover, due to the
complex structure and working condition identifications of RV reducers, the research on
the fault mechanisms of RV reducers is limited, so the results are obtained by methods that
are based on a combination of fault mechanisms, and signal processing is relatively limited.

In recent years, deep learning technology, which is widely used in computer vision [18],
natural language processing [19], speech recognition [20], and other fields, has been intro-
duced into the fault diagnosis field. End–end intelligent diagnosis modes have become a
hot research topic. Methods that are based on deep learning avoid the constraints of the
fault mechanism and prior knowledge in feature engineering and achieve good diagnosis
effects and performances. Yang [21] reconstructed the one-dimensional vibration signal of
an RV reducer into a two-dimensional matrix and used a CNN to mine the two-dimensional
matrix for fault features. Peng [2] used dropout to perform random interference on the
input signal and fused different features of the input signal for extraction by a multiscale
convolution kernel to enhance the feature extraction of networks under strong noise inter-
ferences. The identification of planetary wheel wear and cycloid wear of an RV reducer was
achieved while under the influence of strong noise. Chen [22] obtained the first four order
nonlinear output frequency response functions (NOFRFs) from the vibration acceleration
signal of the RV reducer and transformed the spectrum of NOFRFs into a two-dimensional
image. CNN was used to extract fault features from a two-dimensional image, and fault
classification was carried out for three single faults of a planetary gear frame pitting, cycloid
pin wheel pitting and eccentric wheel wear, and two compound faults that were composed
of single faults. The above methods have achieved good results in the fault diagnosis of
RV reducers, but their fault diagnosis recognition is slightly insufficient. First, faults of
several equipment parts are not a mutually exclusive events; that is, the fault of Part A does
not mean that Part B will not fail. Second, the relationship between a single fault and a
compound fault is ignored, and a compound fault that is composed of a single fault cannot
be diagnosed through the learning of a single fault.

In the mechanism of fault generation, a compound fault is not an isolated fault event,
and it is closely related to a single fault. A compound fault is also composed of multiple
single faults. Yuan [23] showed that a compound fault that is composed of a single fault
is the superposition of a single fault vector with different frequencies in the time domain
and has multiple single fault feature components in fault characteristics, and the fault
characteristics are independent of each other. In 2017, Sabour [24] proposed a capsule
network and achieved excellent results on the MNIST overlapping handwritten datasets.
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Inspired by the identification of overlapping handwritten digit sets by capsule networks
and combined with previous research results on the mechanism of compound faults, an
intelligent diagnosis method for compound faults of RV reducers that was based on an
enhanced convolution capsule network (ECCN) was designed. First, the convolutional
neural network is used as the feature extractor, and the one-dimensional single fault
vibration signal is used to train the feature extractor. Second, a double stack capsule
network is designed as the decoupling classifier to decouple and classify the compound
fault features of the RV reducer that were extracted by the feature extractor. Finally,
the margin loss function is used to optimize the model. Through an RV reducer fault
experiment and the XJTU-SY rolling bearing accelerated life test dataset, the proposed
method is verified experimentally, and the effectiveness and superiority of the proposed
method are proven. The main research contributions of the proposed method are as follows:

(1) This paper proposes a compound fault diagnosis method for RV reducers that is based
on an improved convolutional capsule network. First, the single fault data of the RV
reducer are used to train the feature extractor that is composed of a deep convolutional
neural network. After training, the feature extractor is used to extract the features of
the RV compound faults, and the decoupling classifier that is composed of a double
stack capsule network is used to decouple and classify the compound fault features
of the RV reducers to implement the learning and diagnosis of compound faults by
single faults.

(2) In this paper, the margin loss function is used as the cost loss function of the model
to train the model, and the sum of the losses of each type of fault identification is
used as the cost loss value. This ensures that the components of the feature set of the
extracted fault classes are relatively independent and are not interfered with by other
fault features so that the network has an independent fault feature extraction ability.

(3) In this paper, a decoupling classifier that is based on a two-layer stack capsule network
is designed, and the proposed features are classified and collected. The squashing
function is selected as the normalized activation function of the feature vector, which
ensures the independence of the various fault identification and enables the network
to have the ability to output multiple tags.

(4) The method in this paper can train the model only with the normal RV reducer and
the single fault training dataset when the compound fault data are missing. It can
still identify and classify the compound faults that are formed by the combination of
single faults and output its single fault component.

This paper’s chapters are arranged as follows. The second chapter briefly introduces
the relevant theoretical background knowledge of convolutional neural networks and
capsule networks. The third chapter describes the proposed model and the model’s design
ideas in detail. In Section 4, the proposed method is verified and analyzed by an RV reducer
fault experiment and the XJTU-SY rolling bearing accelerated life test dataset. Finally,
conclusions and prospects for future work are given in Section 5.

2. Theoretical Background
2.1. One-Dimensional Convolutional Neural Network

Unlike traditional neural networks, convolutional neural networks achieve feature
extraction of one-dimensional vibration signals by forming a feature extractor from a stack
of multiple convolutional and pooling layers. After the fault features are extracted, the
features are classified using the full connectivity layer. After the feature classification
is completed, the output features are normalized using the softmax function, and the
normalized features are labeled using the agmax function. In general, a one-dimensional
convolutional neural network [25] contains a total of four key steps: feature extraction,
feature classification and label output, and model training, the structure of which is shown
in Figure 1.
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Figure 1. The structure of one-dimensional convolutional neural network. 
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2.1.1. Feature Extraction

As the core of the feature extractor, the convolution layer mainly includes convolution
operation and activation operation. In the convolution operation, the convolution kernel is
used as the feature detector, and it is convolved with the input data to obtain a new feature
layer. The convolution operation formula is expressed as follows:

xl
j = ∑

i
wl

ij ∗ xl−1
i + bl

j (1)

xl
j is the j-th eigenvalue of the l-th convolution layer. wl

ij and bl
j are the weights and

biases, respectively, and * represents the convolution operation between the convolution
kernel and input signal.

So that the network has nonlinear expression capabilities and makes it more conducive
to the feature mining of one-dimensional signals, the activation function leakyReLU [26] is
used to carry out a nonlinear mapping of the features. This allows the network to mine
the negative feature information and have nonlinear feature expression capabilities. An
expression is formulated as follows:

yl
j = leakyReLU(xl

j) = max
{

0, xl
j

}
+ leak ∗min(0, xl

j) (2)

The value of leak is empirically taken as 0.05.
After the convolution layer, a pooling layer is usually connected. The pooling layer

can be regarded as a special convolution operation. An input layer with the size of n× 1 is
divided into multiple small units of k× 1, and the maximum output of each small unit is
calculated. A new feature layer y with the size of n/k× 1 is formed as yl

d to achieve the
purpose of a feature reduction of input feature yl

j and the elimination of the redundant
features to prevent the network from overfitting. The expression is as follows:

yl
d = max

(j−1)k+1≤t≤jk

{
yl

t

}
(3)

Through layer-by-layer stacking of the convolution layer and pooling layer, the net-
work can learn deeper features that have stronger discrimination and have stronger nonlin-
ear table abilities.

2.1.2. Feature Classification

After the features are extracted, the convolutional neural network uses the fully
connected neural network as a feature classifier to classify the proposed features. Before
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entering the fully connected layer, the learned feature matrix first needs to be expanded
and transformed into a one-dimensional feature array. Using the feature array as input to
the fully connected layer. The fully-connected layer assigns weights to each feature value
in the feature array, thus enabling the transfer of the bottom features to the top features. Its
calculation formula is as follows.

Ol
j = ReLU(wl

ijO
l−1
i + bl

i) (4)

wl
ij and bl

j are the weights and biases of the fully connected layer. Ol−1
i is the i-th

eigenvalue of the output of the previous fully connected or pooled layer. Ol
i is the j-th

eigenvalue of the output of the fully connected layer. The classification of the bottom
features Ol−1

i into the top features is accomplished through the weight coefficients wl
ij and

biases bl
j.

2.1.3. Label Output

After obtaining the output features, the softmax function [27] is used to normalize the
output features Ol

j. The mathematical expression of the Softmax function is as follows:

Ôj = softmax(Ol
j) =

exp(Ol
j)

∑C
j=1 exp(Ol

j)
(5)

Ôj is the feature obtained after softmax normalization. The argmax function [5] is used
to find the maximum Ôj for label output, so as to clarify the type of fault, and the label
output is calculated as follows:

label = argmax(Ôj) (6)

2.1.4. Model Training

After building the convolutional neural network model, the network model needs to
be trained. The weight parameters in the neural network are optimized to achieve the goal
of fault classification. The convolutional neural network is trained with cross entropy as the
cost loss function of the model. The optimal combination of parameters is found by finding
the minimum loss value of the model. Suppose that given a training set {xi, yi}M

i=1, M is
the number of samples, sample xi corresponds to label yi ∈ {1, 2, 3.., C}. C is the number of
categories. The cross-entropy loss [28] is calculated as follows:

J(w, b) = − 1
M

[
M

∑
m=1

C

∑
C=1

1{ym = c} log(Ôj)

]
(7)

1{∗} is the indicator function returns, a class classification correct return value of 1,
classification error return value of 0.

2.2. Capsule Network and Dynamic Routing Algorithm

The core idea of the capsule network [24] is to transform the traditional scalar neurons
into vector neurons and take the vector as the input and output of the network to reduce
the loss of the feature information in the transmission process to improve the recognition
ability of the network. The capsule network consists of two layers of capsule layers. The
feature vector is transmitted between the underlying neurons and the upper neurons by a
dynamic routing algorithm. The principle of the dynamic routing algorithm is shown in
Figure 2. The entire whole operation process can be divided into four stages:
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In the first stage, there is an expansion of the feature matrix that is obtained by the
feature extractor to obtain the feature vector ui. The feature vector ui is multiplied by
the weight wj|i to obtain the prediction vector ûj|i. wj|i encodes the important space and
other relations between the underlying eigenvector ui and the high-level vector vj, and its
expression is as follows:

ûj|i= wj|i ∗ ui (8)

In the second stage, the output vector dj is obtained by a weighted summation of the
prediction vector ûj|i, and its expression is shown in Equation (10), where kl is the number
of input feature vectors, and cj|i is the coupling coefficient. The intent is to assign a coupling
coefficient to the underlying feature vector so that the underlying feature vector can be
more reasonably classified into the matching upper feature vector. In the formula, the sum
of all the coupling coefficients cj|i is 1, and the value of cj|i is obtained by updating the
value of bj|i through dynamic routing. The formula is as follows:

cj|i= softmax(b j|i) = exp(b j|i)/∑i
n=1 exp(b j|n

)
(9)

dj = ∑Kl
i=1 cj|iûj|i (10)

In the third stage, by using the squashing function, a nonlinear mapping is carried out
on the output vector dj, and the modulus of its output vector is normalized to 0 ∼ 1, to
obtain the output vector vj:

vj =

∣∣∣∣dj
∣∣∣∣2

1+
∣∣∣∣dj
∣∣∣∣2 dj∣∣∣∣dj

∣∣∣∣ (11)

In the fourth stage, which is dynamic routing, the similarity between the predicted
feature vector ûj|i and the output feature vector vj is calculated by the inner product to
optimize the update bj|i, as shown in Formula (12).

bj|i ← bj|i + ûj|i · vj (12)

If the similarity between the predicted feature vector ûj|i and the output feature vector
dj is higher, the value of bj|i is larger, and then the coupling coefficient cj|i corresponding to
the predicted feature vector ûj|i is increased by Formula (9). If the similarity is lower, the
value of bj|i is reduced. Through continuous iterative optimization, the optimal coupling
coefficient cj|i is obtained so that the bottom feature vector can be better classified and
clustered into the upper similar feature vector, and the final output feature vector vj is
obtained. The modal length of the output feature vector vj is the probability of the existence

of the jth class. pj = ‖vj‖ =
√

vj
2
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3. The Proposed Fault Diagnosis Method

In recent years, convolutional neural networks have achieved many good results in the
field of fault diagnosis with their powerful feature extraction ability. As a feature classifier
for convolutional neural networks, fully connected neural networks have a powerful
nonlinear fitting capability and can formulate the classification model in detail on the
problem of fault feature classification. However, due to the large number of parameters of
the fully connected neural network, it is easy to lead to overfitting of the network model,
which lacks robustness in fault identification and cannot effectively identify unknown
faults with large variability. Therefore, the traditional convolutional neural network cannot
effectively identify compound faults in the absence of compound fault training data. As
shown in the literature [2,22], although the convolutional neural network has learned two
kinds of single faults of cycloid pin wheel pitting and planetary wheel pitting of RV reducer,
it is unable to identify the compound fault that is composed of cycloid pin wheel pitting
and planetary wheel pitting by learning two kinds of single faults. At the same time, due to
the limitation of Equations (5) and (6), the classifier of the traditional convolutional neural
network can only label the largest fault feature, and cannot guarantee the independence
of fault identification, so it cannot completely identify the single fault component in the
composite fault signal.

In 2017 Sabour Proposed the Capsule Network. The capsule network has a strong
ability for feature classification and identification, which can identify the composition
of overlapping numbers through single-digit learning, and conduct multi-label output,
resulting in the effect shown in Figure 3. This is an important inspiration for the identifi-
cation of compound faults. Can the network diagnose a compound fault consisting of a
combination of two single faults of the RV reducer through the learning of a single fault
of the RV reducer, and when a compound fault occurs the network outputs the single
fault component inside the compound fault to achieve the effect as shown in Figure 4. In-
spired by the literature [8], and through an in-depth study of Compound fault mechanisms.
This paper improves the traditional convolutional neural network, combines the powerful
feature extraction ability of the convolutional neural network with the excellent feature
classification ability of the capsule network, and replaces the fully connected layer of the
traditional convolutional neural network with the capsule layer to further improve the
feature classification ability of the convolutional neural network enables the network model
to identify the composite faults composed of single faults through the learning of single
faults when the composite fault data is lacking. Solve the problem that the traditional
convolutional neural network cannot effectively identify the composite fault due to the
lack of composite fault training data.
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to identify the composite faults composed of single faults through the learning of single 
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3.1. Model Structure

In the network structure, ECCN uses a convolutional neural network as a feature
extractor, which is responsible for mining more useful information from the original signal,
while avoiding an overreliance on prior knowledge and the complex manual selection
of the traditional feature engineering methods. As a compound fault decoupling device,
the capsule network can match and identify compound faults based on the characteristic
information of a single fault. The fault diagnosis of the RV reducer is implemented by
combining a convolutional neural network with a capsule network. The proposed method
includes four steps, feature extraction, feature classification, label output, and model
training. The network structure is shown in Figure 5.
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The entire ECCN model consists of two convolution layers and two capsule layers. In
the feature extraction layer that is composed of convolutional neural networks, to obtain
more feature information, a larger convolution kernel is used to increase the receptive field
of the network. This can reduce the influence of data noise in vibrations to a certain extent
to improve the anti-noise ability of the model. The detailed parameters of the model are
shown in Section 3.2.

In feature classification, traditional convolutional neural networks use fully connected
neural networks to categorize and subset features, while the feature matrix is transformed
into a one-dimensional feature array before entering the fully connected layer, and the
neurons are passed between each other by scalar operations, resulting in the loss of many
feature-to-feature vector information. To address this problem, this paper designs a two-
layer stacked capsule network as a classifier for compound fault features. The feature vector
is used as the carrier of feature classification, and the dynamic routing algorithm is used
to calculate the similarity between the feature vectors to achieve the feature classification.
Compared with a simple scalar operation, the vector operation of the capsule network can
use more detailed information for fault recognition, which is the key to implementing the
matching and recognition of compound faults through single fault learning.

On the output of the results, the softmax classifier that is widely used in convolutional
neural networks can only output single-label fault features, which cannot guarantee the
independence of the output of each feature. To address this problem, this paper uses the
squashing function to independently normalize the output vector to ensure the mutual
independence of feature recognition among the fault classes without interfering with each
other. At the same time, the output feature vector is labeled by norm, so that the network
has multilabel output abilities.

After iterating the output feature vector v through the dynamic routing algorithm, the
modal length of each output vector v is calculated to obtain the final predicted probability
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value ppred = [p1, p2, · · · , pc]. Each pi in ppred represents the probability that the input
sample belongs to class i, and the closer the value of pi is to 1, the greater the probability
that the sample belongs to class i.

Each type of fault has a prediction probability value, and to limit the number of
output labels, a confidence threshold ϕ is set to limit the number of output prediction
labels. If pi is greater than the selected confidence threshold ϕ, it means that the i-th class
exists and the i-th class labels are output. In contrast, the opposite result means that the
class does not exist and does not output the label. To obtain reliable classification results,
the maximum likelihood estimation method is usually used to give a large confidence
threshold ϕ. However, a larger confidence threshold means less prediction and a higher
error rate. Therefore, this paper designs an adaptive confidence threshold according to the
independence of each fault occurrence and defines the average probability of all the fault
classes as the confidence threshold. The formula is described as follows:

ϕ = average(ppred) =
1
C

C

∑
i=1

pi (13)

To further illustrate the superiority of the proposed method, this paper uses Figure 6
to illustrate the fault characteristics of the RV reducer. As shown in Figure 6, assuming
that the fault characteristics of the planetary wheel wear and solar wheel wear of the RV
reducer are represented by a circle and triangle, respectively, the compound fault of the
RV reducer includes two kinds of fault characteristics of planetary wheel wear and solar
wheel wear. Traditional fully-connected layer classifiers are trained and identified based
on one data class, and, therefore, cannot identify the difference between compound faults
and single faults. Therefore, it can only identify and output the most feature or the most
obvious fault type in the compound fault; that is, it cannot output the multilabel output
of the compound fault. The proposed method in this paper consists of a convolutional
neural network and capsule network, and the obtained network can effectively match
and identify the characteristics of a single fault from the compound fault and perform
multilabel outputs according to the identified fault to achieve the goal of multilabel outputs
of compound faults.
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3.2. Model Training

ECCN uses the cost function of the margin loss function [29] as the cost function of
the multilabel prediction. Compared with the cross entropy cost loss function, the margin
loss function cost function that is based on Euclidean distance can directly measure the
similarity between the categories. This loss function expands the difference between classes,
effectively reduces the variation within the class, and thus improves the diagnostic accuracy
of the network. The mathematical expression of the margin loss function is as follows:

J = ∑C
c=1 Lc = ∑C

c=1

{
Tcmax (0, m+ − ||vc

∣∣∣∣) 2
+ λ(1− Tc)max (0,

∣∣∣∣vc
∣∣∣∣−m−) 2

}
(14)

Tc is an indicator function, and if Tc is 1, category c exists, and if it is equal to 0,
category c does not exist. ||vc|| indicates the probability of identifying the fault classes.
m+ and m− represent the upper and lower bounds of ||vc||, respectively, and λ represents
the regularization parameter reduction of a class loss of an object. In this paper, m+= 0.9,
m− = 2, and λ = 3, meaning that when a class of objects exists, the ||vc||. value should
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not be less than 0.9, and when a class of objects does not exist, the ||vc|| value should not
exceed 0.1.

3.3. Fault Diagnosis Process

In this paper, a deep learning network that can be used for compound fault diagnosis
of RV reducer faults is constructed by improving the convolutional neural network. Its
diagnostic flow chart is shown in Figure 7. The specific steps of ECCN fault diagnosis
are as follows: (1) data acquisition; (2) data preprocessing; (3) dividing the dataset into a
training sample set and a test sample set, in which the training sample only contains single
fault data and does not contain compound fault data; (4) design the model structure and
initialize the parameters; (5) use the training set to train the model and optimize the model
parameters by calculating the loss function and backpropagation; (6) test the model with a
test dataset containing composite failure data; (7) output the probability of occurrence of
each fault; (8) determine whether the probability value of the i-th type is greater than the
threshold ϕ, if it is greater than the i-th type of fault exists; and (9) output fault label, get
fault diagnosis results.
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4. Experimental Verification
4.1. Experimental Apparatus and Data Description

To verify the effectiveness of the method that is proposed in this paper, a test was
first carried out on the RV reducer fault simulation experimental bench. The test bench
comprises of five parts, a load, swing arm, support seat, servo motor, and RV reducer,
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as shown in Figure 8. The servo motor drives the RV reducer to drive the swing arm
to perform a reciprocating rotation. In order to be closer to industrial practice, the RV
reducer drives the swing arm to do reciprocating motion in the working condition design.
The operation angle range is 0 ∼ 90◦, and the maximum rotation speed is 100◦/s. From
the initial 0◦ to the limit position 90◦, the swing arm goes through three operating states
acceleration, steady speed, and deceleration. From the limit 90◦ to the initial position
0◦, the swing arm also goes through three operating states acceleration, steady speed,
and deceleration.

Sensors 2022, 22, x FOR PEER REVIEW 12 of 23 
 

 

acceleration 
transducer

RV 
reducer

planet 
gear

sun 
gear

load acceleration 
transducer

RV 
reducer

swing 
arm

servo 
motor

support 
seat  

Figure 8. RV reducer fault simulation experimental bench. 

The planetary wheel and solar wheel are the two core parts of the RV reducer. Due 
to long-term operation in heavy loads and time-varying working conditions, the contact 
area of the two gears is prone to damage [6]. Therefore, this paper takes the wear fault of 
the planetary wheel and sun wheel as the research object. Single fault processing is carried 
out on the sun wheel and planetary wheel of the RV reducer by using WEDM technology. 
The processing sizes are 0.5 mm, 0.3 mm, and 0.1 mm, which are used to simulate faults 
with different wear degrees. The fault pictures are shown in Figure 9. 

  
(a) Multitooth wear of sun gear (b) Multitooth wear of planetary gear 

Figure 9. RV reducer fault pictures. 

This RV reducer has four states: normal, multitooth wear of the sun gear, multitooth 
wear of planetary gear, and compound fault (multitooth wear of the planetary gear and 
multitooth wear of the sun gear). The acquisition card is a 9234 acquisition card, the sensor 
is an ICP acceleration sensor, the sensor number is IMI_603C01, the sensitivity is 100 mV/g, 
and the acceleration sensor is calibrated using the US PCB handheld acceleration sensor 
calibrator 394C06 before data acquisition. The sampling time is 26 s and the sampling fre-
quency is 6400 Hz. The time domain diagram of the vibration signal of the RV reducer 
under four working conditions is shown in Figure 10. 

Figure 8. RV reducer fault simulation experimental bench.

The planetary wheel and solar wheel are the two core parts of the RV reducer. Due to
long-term operation in heavy loads and time-varying working conditions, the contact area
of the two gears is prone to damage [6]. Therefore, this paper takes the wear fault of the
planetary wheel and sun wheel as the research object. Single fault processing is carried out
on the sun wheel and planetary wheel of the RV reducer by using WEDM technology. The
processing sizes are 0.5 mm, 0.3 mm, and 0.1 mm, which are used to simulate faults with
different wear degrees. The fault pictures are shown in Figure 9.
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Figure 9. RV reducer fault pictures.

This RV reducer has four states: normal, multitooth wear of the sun gear, multitooth
wear of planetary gear, and compound fault (multitooth wear of the planetary gear and
multitooth wear of the sun gear). The acquisition card is a 9234 acquisition card, the sensor
is an ICP acceleration sensor, the sensor number is IMI_603C01, the sensitivity is 100 mV/g,
and the acceleration sensor is calibrated using the US PCB handheld acceleration sensor
calibrator 394C06 before data acquisition. The sampling time is 26 s and the sampling
frequency is 6400 Hz. The time domain diagram of the vibration signal of the RV reducer
under four working conditions is shown in Figure 10.
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Figure 10. Vibration signal of the RV reducer in four healthy conditions: (a) normal condition,
(b) multitooth wear of planetary gear, (c) multitooth wear of the sun gear, and (d) compound fault.

The RV reducer drives the swing arm to make a reciprocating motion. A reciprocat-
ing motion takes 2.7 S. At the sampling frequency of 6400 Hz, the RV reducer contains
17,280 data points in one operation cycle. To ensure the speed and recognition efficiency of
the network, the number of data points for a set of training data should be 2n and contain
at least one run cycle, so the data length for each set of training data should be set to 32,768.

After the training data length is determined, the data enhancement of the 1D vibration
signal of the RV reducer is performed using the overlap slicing method. Data enhancement
can increase the training data and improve the model’s generalization ability. In data
enhancement, the equal data length window is used to divide the data of one-dimensional
vibration signal, and more data samples are obtained by moving the window. The window
moves one step s forward to get a data sample xi until sufficient data samples are obtained.
In this experiment, the data length of the window is 32,768, and the step size is 64. The
detailed visualization of the overlapping slice method is shown in Figure 11:
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After obtaining sufficient sample data, the sample data were normalized by z-score.
The standardized data were used as the input data for the ECCN network, and the z-score
standardization formula was:

Yi =
xi − x

σ
(15)
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In the formula: Yi is the standardized data, xi is the original data x is the original data
mean, and σ is the original data variance.

After data preprocessing, TensorFlow generates the training and test sets of the net-
work. Due to the complex operation state and the load moving with the swing arm during
the operation, the force condition of the RV reducer is constantly changing. This leads to
the RV reducer running in a non-stationary state, the difference in data is significant, and
the small amount of training data cannot effectively identify the state of the RV reducer.
After several tests, when the number of training sets reached 1000 sets, a better result was
achieved for the fault state identification of the RV reducer.

The fault types include normal, planetary gear multi-tooth wear, sun gear multi-tooth
wear, and compound fault. Each type of fault has 2000 samples except for the compound
fault. Each sample contains 32,768 data points. To verify the model’s generalization ability,
the training set and the test set are divided according to the ratio of 1: 1. The composition
of the training and test sets is shown in Table 1.

Table 1. RV reducer data description.

Data

Health Conditions

Normal Multitooth Wear of
Planetary Gear

Multitooth Wear of
Sun Gear Compound Fault

train 1000 1000 1000 —
test 1000 1000 1000 1000

label 1 2 3 2&3

It is worth noting that the compound fault data are not involved in the model training
during the whole experiment, and the whole training set only includes the vibration data
of the RV reducer in three states: normal, planetary wheel wear, and sun wheel wear. After
the model training, the compound fault data sample will be used to test the decoupling
classification performance of the ECCN model.

4.2. ECCN Model Parameters

As described in the second part, the model is divided into four key steps, as follows:

(1) The first step of feature extraction: The design of a dimensional convolutional neural
network is to learn and extract the features with depth discrimination and sensitivity
from the original vibration signal. In this experiment, two convolution pooling layers
are designed. Convolution layer 1 uses the 150 × 1 wide convolution kernel to extract
the feature of the signal to reduce the influence of noise [30]. Convolution layer 2
uses a large number of 8 × 1 narrow convolutions to mine the underlying features
to extract the deep features of the signal. At the same time, to reduce the training
parameters of the model and improve the training speed, a pooling layer is added
after each convolution layer for feature reduction;

(2) The second step is feature classification: The capsule networks with sizes of 8 × 12
and 3× 16 are stacked to form a decoupling classifier to classify and collect the feature
vectors that are extracted by the feature extractor;

(3) The third step is label output: the output layer solves the L2 norm of the output feature
vector to obtain the probability of various faults;

(4) The fourth step is model training: the margin loss function is used as the cost loss
function to train the model. The maximum number of training iterations is 20, and
the batch size is 64. The Adam optimizer is used to train the model.

The proposed methods were run under the Spyder platform of Anaconda software,
and the deep learning frameworks were TensorFlow 1.14.0 and Keras 2.2.4. The computer
hardware configuration was Intel Core i7-6700 CPU @ 3.4 GHz dual-core CPU with 32 GB
memory. The entire model uses the kears toolbox to build the network model. The detailed
parameters of the model structure are shown in Table 2.
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Table 2. ECCN Model structure parameters.

Type Activation
Function

Parameters
Name Parameters Output Size

input layer / / / (32,768, 1)
convolution layer leakyReLU Kernels 150 × 32 × 2 (16,310, 32, 1)

pooling layer / Pooling size 2 (8155, 32, 1)
convolution layer leakyReLU Kernels 8 × 128 × 2 (4078, 128, 1)

pooling layer / Pooling size 2 (2039, 128, 1)
precapsule layer squash Vectors 8 × 12 (12, 8)

digital capsule layer squash Vectors 3 × 16 (3, 16)
output layer / 3 (3, 1)

4.3. Experimental Results and Analysis

To verify the effectiveness of the proposed ECCN model in the compound fault
diagnosis of RV reducers, this paper selects a CNN for experimental comparison. In terms
of model parameters, except for the loss function and classifier, the other parameters of
the CNN model are consistent with those of the ECCN. In addition, this paper also selects
the existing compound fault diagnosis methods DDCN [8] and DECN [31] to verify the
performance of the above model in the fault diagnosis of RV reducers. In model training,
all the models only use single fault training samples, including normal, multitooth wear of
the sun gear, and multitooth wear of the planetary gear to train the model. CNN, DCCN,
DECN, and ECCN are tested by using test samples, including single fault and compound
fault. Each model is tested ten times, and the average value of the ten experiments is
taken as the model’s accuracy. The diagnostic results are shown in Table 3. The average
accuracy of ECCN is 98.50%, and the average accuracy of the other three models is 70.25%,
71.5%, and 92.75%, respectively. In terms of the average accuracy, ECCN is 5.75% higher
than the DDCN with the best effect among the three comparison models, and ECNN is
7% and 5% higher than CNN and DDCN in the single fault diagnosis of planetary wheel
wear and solar wheel wear, respectively. In compound fault diagnosis, ECCN has been
greatly improved compared with other methods, and the DCNN with the best effect in
the comparison models increased the accuracy of the compound fault identification by
5%. Due to the limitation of the softmax function, CNN cannot output multiple labels for
compound faults, so it is not compared.

Table 3. RV reducer data classification results.

Normal Multitooth Wear
of Planetary Gear

Multitooth Wear
of Sun Gear

Compound
Fault

Average
Accurate Rate

CNN 100% 92% 89% — 70.25%
DECN 94% 78% 40% 74% 71.50%
DDCN 100% 86% 93% 92% 92.75%
ECCN 100% 99% 98% 97% 98.50%

The classification confusion matrix includes classification accuracy and misclassifica-
tion error, which are important metrics for testing the classification results. In Figure 10,
the ordinate of the confusion matrix represents the real label of the sample, the abscissa
represents the prediction label of the model, and labels 1, 2, and 3 represent the normal,
planetary wheel wear, and solar wheel wear of the RV reducer, respectively. Labels 2&3
represent the compound fault label that is composed of the planetary wheel wear and solar
wheel wear. Other labels are similar in turn. The color column on the right side represents
the corresponding relationship between the value and the color.

(a), (b), (c) and (d) in Figure 10 are the classification confusion matrices of CNN, DECN,
DCNN, and the proposed method ECNN, respectively. In Figure 12a, the accuracy of the
traditional CNN in single fault identification is above 89%, and the identification effect is
good. However, in the compound fault identification, 53% of the compound fault data are



Sensors 2022, 22, 6442 15 of 21

identified as normal data, 27% of the compound fault is identified as planetary wheel fault,
and 20% of the compound fault is identified as solar wheel fault, which cannot effectively
identify the compound fault data.
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In Figure 12b,c, DECN and DDCN have a good improvement in the effect of compound
fault identification compared with CNN. The accuracy rates of DECN and DDCN in
planetary wheel wear fault identification are 78% and 86%, respectively, which are lower
than those of the CNN model (92%). In the identification of the solar wheel wear fault
data, DECN outputs 60% of solar wheel wear faults with multiple labels, and the errors are
identified as normal and solar wheel wear. As shown in Figure 12d, the proposed ECCN
method not only achieves 99% and 98% recognition rates of single faults such as planetary
wheel wear and solar wheel wear but also achieves 97% recognition rates of compound
faults without the participation of compound fault data in training. It completely exceeds
CNN in the recognition of compound faults and increases by 5% compared with the better
DDCN in the comparison model. It is proven that the proposed method can not only
diagnose a single fault, but it is also possible to diagnose the compound fault that is
composed of two types of single faults through the learning of two types of single faults of
the RV reducer when the training data of the compound faults of the RV reducer is missing.

To further illustrate the multilabel output capability of ECCN for compound faults, the
CNN and ECCN models are taken as examples for visual analysis. The specific steps are to
extract once from the ten experiments and compare the predicted probability values on the
visual test dataset, as shown in Figure 11. The abscissa in Figure 11 represents the sample
points. The 0–1000 group data belong to the normal test data sample. The 1001–2000 group
data belong to the planetary gear fault sample. The 2001–3000 group data belong to the
solar gear fault sample. The 3001–4000 group data belong to the compound fault sample,
and the ordinate represents the prediction probability value of the model for various types
of faults. The red line in Figure 13b is the threshold that is described in the label output of
Section 2. When the predicted probability value of a certain type of output of the model
exceeds the threshold, it indicates that this type of fault exists.
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As shown in Figure 11, it can be seen from Figure 11a that the CNN has good recogni-
tion of the normal samples of the 0~1000 group and the planetary gear fault samples of the
1001–2000 group. The normal and planetary gear fault labels are the output by the softmax
function, which is consistent with the actual label. However, on the 3001–4000 group of
compound fault samples, part of the compound fault samples that were identified by
CNN are identified as planetary wheel wear and part of the compound fault samples are
identified as sun wheel wear, which cannot produce multilabel output, that is, it adheres
to the limitation that is mentioned in Chapter 1. From Figure 13b, it can be seen that
the predicted probability values of two faults in ECCN exceed the selected threshold on
the Group 3001–4000 compound fault data. According to Section 3 (Formula (13)), two
probability values exceed the threshold and the model outputs two labels; namely, the
sun wheel wear fault and the planetary wheel wear fault, which are consistent with the
actual fault labels. It is proven that ECCN not only identifies the compound fault that is
composed of planetary wheel wear and solar wheel wear but also outputs the label number
of its single fault component so that the fault diagnosis of the RV reducer by the network
model is closer to industrial practice.

The advantages of the ECCN method in complex fault diagnosis are analyzed. The
main advantages are as follows:

(1) On the feature normalization and label output, the traditional CNN selects the softmax
function (Formula (5)) to normalize the output features, resulting in the probability
sum of all the fault categories being 1. The occurrence of the solar and planetary gear
faults is forced to be regarded as a mutually exclusive event, and the fault features
cannot be output independently.

(2) In addition, in terms of label output, the traditional CNN uses the argmax function
(Formula (6)) to index the maximum value of the output feature, so that the network
can only output the fault feature with the strongest feature. Therefore, as shown in
Figures 4 and 13a, the CNN classifier can only output a single fault label with the
largest probability in the compound fault sample, and a fault label with a weak fault
will not be able to output. The proposed ECCN uses the squashing activation function
(Formula (11)) to independently normalize the fault characteristics and uses the L2
norm to independently output the occurrence probability of each fault, ensuring the
independence of each fault identification. Therefore, the ECCN can independently
identify and output the fault characteristics of planetary wheel wear and solar wheel
wear in compound faults and implement the multi-label output of compound faults,
as shown in Figure 13b.

(3) In terms of the training loss function, the traditional CNN uses the binary classification
cross entropy-loss function (Formula (7)) to train the model. When a certain type of
fault exists, the loss value of other types of faults is zero, resulting in a strong mutual
exclusion of the extracted features of the trained model. ECCN uses the margin loss
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function (Formula (14)) to train each fault class, which ensures that the fault features
that are extracted from the various faults are relatively independent and avoids the
problem of being unable to identify compound fault information.

4.4. Added Experiments

To verify the universality of the proposed method, the XJTU-SY rolling bearing accel-
erated life test dataset is used to verify the proposed method. The dataset of the XJTU-SY
rolling bearing accelerated life test is from Xi’an Jiaotong University. The experimental
platform is shown in Figure 14 below. The experimental platform is mainly composed of
an AC motor, motor speed controller, shaft, support bearing, hydraulic loading system,
and test bearing. The detailed parameters of the test bench and data introduction are in
Reference [32].
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Figure 14. XJTU-SY bearing accelerated life test bench.

The accelerated life test dataset of the XJTU-SY rolling bearing has 15 sets of bearing
life-cycle data. The failure modes of bearing1_1, bearing2_1, and bearing1_5 are the outer
ring fault, inner ring fault, and inner and outer ring compound fault, respectively. In this
experiment, the last set of data from Bearing1_1, Bearing2_1, and Bearing1_5 full-life data
are selected as the fault data. The real fault data are used to test the effectiveness of the
ECCN model on compound fault diagnosis. The failure picture is shown in Figure 15, and
the data of the experiment are described in Table 4. There are four state data: normal, inner
ring fault, outer-ring fault, and inner-ring and outer-ring compound fault. In addition to
the inner and outer ring compound fault, each state generates 200 training data and 200 test
data, the sample length is 4096, and the sample partition rule is the same as Section 3.1.
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Table 4. Bearing dataset description.

Data

Health Conditions

Normal Outer Race FAULT Inner Ring Fault Compound Fault of
Inner and Outer Ring

train 200 200 200 —
test 200 200 200 200

label 1 2 3 2&3

It is worth noting that the 200 compound fault data are only used for model testing
and are not involved in model training. The normal data in Table 4 are taken from the first
data in the Bearing1_5 life-cycle data. At the time of the experiment, the bearing has not
been damaged in the normal state at the beginning of the experiment, so it is selected as
the normal sample data.

The model parameters are consistent with the description in Section 3.2. The experi-
mental results are the average of 10 experimental tests. The accuracy is shown in Table 5,
and the classification effect is shown in Figure 16.

Table 5. Diagnostic results of different algorithms on bearing dataset.

Normal Outer Race
Fault

Inner Ring
Fault

Compound Fault
of Inner and
Outer Ring

Average Accurate
Rate

CNN 100% 100% 100% 0% 75%
DECN 59% 33.85% 32.7% 34.85% 40.1%
DDCN 0% 70.4% 53.6% 69.5% 48.38%
ECCN 100% 100% 100% 91.35% 97.84%
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As shown in Table 5, ECCN and CNN have 100% accuracy in the three single fault
states of normal bearing, inner ring fault, and outer ring fault. Compared with DECN
and DDCN, the highest accuracy is 59% and 70.4%, which are increased by 41% and
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29.6%, respectively. In the recognition of compound faults, ECCN has a high accuracy of
91.35%. Compared with the accuracy of 34.8% of DECN and 69.5% of DDCN, the accuracy
of the compound fault recognition is increased by 56.5% and 21.85%, respectively. The
experimental results show that ECCN not only has a good effect on the fault diagnosis of
the bearing inner ring and outer ring. Through the learning of two types of single faults, it
is also possible to identify compound faults in which the inner and outer rings fail at the
same time.

In order to show the classification effect of ECCN more clearly, this paper uses the
classification confusion matrix to display the classification results of the four methods. The
differences in the identification of the compound faults between the different methods
are compared and analyzed. As shown in Figure 16, in the CNN method, 60% of the
compound fault data of the inner and outer rings are identified as outer ring faults, and
20% of the compound fault data of the inner and outer rings are identified as inner ring
faults. Therefore, similar to the RV experiment, when the training data for composite faults
is lacking, CNN cannot effectively identify the faults.

Although DECN and DDCN have accuracy rates of 34.8% and 69.5% in the identi-
fication of compound faults, they have poor identification results for the three states of
normal bearing, inner ring fault, and outer ring fault. Among them, 32% of the normal
bearing is identified as an inner ring and normal data by the DECN method, 66% of the
outer ring fault data is identified as normal, and 33% of the inner ring fault is identified as
an inner and outer ring compound fault. The DDCN method divides the normal fault into
an outer loop fault, 19% of the outer loop fault is identified as an outer loop plus normal,
and 46% of the inner loop fault is identified as an inner and outer loop compound fault.
Compared with DDCN and DECN, the proposed method not only has a better effect on
bearing single fault identification, but also achieves 91% accuracy in bearing composite
fault identification, and has better results in both single fault and composite faults.

5. Conclusions

Aiming at the problem that the traditional neural network cannot effectively identify
the composite fault when the training data for the composite fault of the RV reducer is
insufficient, this paper proposes a new RV reducer composite fault diagnosis method. This
method combines the deep fault feature extraction ability of convolutional neural network
and the powerful fault feature classification and recognition ability of capsule network. In
the case of missing training data for composite faults, it is possible to diagnose composite
faults only through the learning of single fault data. The experimental results show that
the method can effectively identify not only the single fault of the RV reducer, but also the
composite fault of the combination of the planetary gear and the sun gear. The compound
fault identification accuracy rate of RV reducer is 97%, and in the real bearing inner and
outer ring composite fault identification accuracy rate of 91.35%. It solves the problem
that traditional convolutional neural networks cannot effectively identify composite faults
without composite fault data. Compared with CNN, DDCN, and DECN, the improved
ECCN has stronger fault diagnosis capabilities.

Author Contributions: Conceptualization, Q.X., and C.L.; Data curation, Q.X. and M.W.; Formal
analysis, Q.X. and C.L.; Funding acquisition, C.L.; Investigation, Q.X. and E.Y.; Methodology, Q.X.;
Project administration, C.L.; Software, Q.X.; Supervision, C.L.; Validation, E.Y. and M.W.; Visualiza-
tion, E.Y.; Writing—original draft, Q.X.; Writing—review & editing, Q.X. and C.L. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Major Science and Technology Projects of
China under Awards 2018YFB1306100 and in part by the Science and Technology Major Project of
Yunnan Province under Awards 202002AC080001.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Sensors 2022, 22, 6442 20 of 21

Data Availability Statement: The data that are presented in this study are available on request from
the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature
The following main symbols are used in this manuscript:

Symbol Symbol Name Meaning/Definition
xl

j Eigenvalue The j-th eigenvalue of the l-th convolution layer
wl

ij Weights The likelihood that feature xl−1
i belongs to feature xl

j
bl

j Biases The magnitude of the bias measures how easy it is for the feature
to generate positive/negative excitation

* convolution Product of eigenvalue and weight
yl

d Output features Pooled output features
k pooled window Pooled window size
Ol

j Fully connected layer eigenvalues The j-th eigenvalue of the output of the fully connected layer.
Ôj Softmax normalized features Ôj is the feature of Ol

j after softmax normalization.
C number number of output features
ui Feature vector Input feature vector.
ûj|i Prediction vector The feature vector ui is multiplied by the weight wl

ij to get ûj|i
cj|i Coupling coefficients The relationship between the input

feature vector and the predicted feature vector.
Kl Vector number Number of predicted feature vectors
dj Output vector Coupling of underlying eigenvectors
vj Normalized eigenvectors dj Eigenvector after squash normalization
pj Predicted probability The modulo length of the vector vj
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