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Abstract: Multi-sensor fusion is important in the field of autonomous driving. A basic prerequisite
for multi-sensor fusion is calibration between sensors. Such calibrations must be accurate and need
to be performed online. Traditional calibration methods have strict rules. In contrast, the latest
online calibration methods based on convolutional neural networks (CNNs) have gone beyond the
limits of the conventional methods. We propose a novel algorithm for online self-calibration between
sensors using voxels and three-dimensional (3D) convolution kernels. The proposed approach has
the following features: (1) it is intended for calibration between sensors that measure 3D space; (2) the
proposed network is capable of end-to-end learning; (3) the input 3D point cloud is converted to
voxel information; (4) it uses five networks that process voxel information, and it improves calibration
accuracy through iterative refinement of the output of the five networks and temporal filtering. We
use the KITTI and Oxford datasets to evaluate the calibration performance of the proposed method.
The proposed method achieves a rotation error of less than 0.1◦ and a translation error of less than
1 cm on both the KITTI and Oxford datasets.
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1. Introduction

Multi-sensor fusion is performed in many fields, such as autonomous driving and
robotics. A single sensor does not guarantee reliable recognition in complex and varied
scenarios [1]. Therefore, it is difficult to cope with various autonomous driving situations
using only one sensor. Conversely, fusing two or more sensors supports reliable environ-
mental perception around the vehicle. In multi-sensor fusion, one sensor compensates
for the shortcomings of the other sensor [2]. In addition, multi-sensor fusion expands the
detection range and improves the measurement density compared with using a single
sensor [3]. Studies based on multi-sensor fusion include 3D object detection, road detection,
semantic segmentation, object tracking, visual odometry, and mapping [4–9]. Moreover,
most large datasets that are built for autonomous driving research [10–13] provide data
measured by at least two different sensors. Importantly, multi-sensor fusion is greatly
affected by the calibration accuracy of the sensors used. While the vehicle is driving, the
pose or position of the sensors mounted on the vehicle may change for various reasons.
Therefore, for multi-sensor fusion, it is essential to perform the online calibration of sensors
to accurately recognize changes in sensor pose or changes in the positions of the sensors.

Extensive academic research on multi-sensor calibration has been performed [2,3].
Many traditional calibration methods [14–17] use artificial markers, including checker-
boards, as calibration targets. The target-based calibration algorithms are not suitable
for autonomous driving because they involve processes that require manual intervention.
Some of the calibration methods currently used focus on fully automatic and targetless
online self-calibration [3,18–24]. However, most online calibration methods perform cali-
bration only when certain conditions are met, and their calibration accuracy is not as high
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as the target-based offline methods [1]. The latest online calibration methods [1,2,25–27]
based on deep learning use optimization through gradient descent, large-scale datasets, and
CNNs to overcome the limitations of the previous online methods. In particular, the latest
research based on CNNs has shown suitable results. Compared with previous methods,
CNN-based online self-calibration methods do not require strict conditions and provide
excellent calibration accuracy when they are run online.

Many CNN-based LiDAR-camera calibration methods use an image for calibration. In
this case, the point cloud of the LiDAR is projected onto the image. Then, 2D convolution
kernels are used to extract the features of the inputs.

In this study, we propose a CNN-based multi-sensor online self-calibration method.
This method estimates the values of six parameters that describe rotation and translation
between sensors that are capable of measuring 3D space. The combinations of sensors that
are subject to calibration in our proposed method are: a LiDAR and stereo camera and a
LiDAR and LiDAR. One of the two sensors is set as the reference sensor and the other as
the target sensor. In the combination of LiDAR and stereo camera, the stereo camera is set
as the reference sensor.

The CNN we propose is a network that uses voxels instead of using image features.
Therefore, we convert the stereo image into 3D points called pseudo-LiDAR points to feed
the stereo image into this network. Pseudo-LiDAR points and actual LiDAR points are
expressed in voxel spaces through voxelization. Then, 3D convolution kernels are applied
to the voxels to generate features that can be used for calibration parameter regression.
In particular, the attention mechanism [28] included in our proposed network confirms
the correlation between the input information of the two sensors. The research fields that
use voxels are diverse, including shape completion, semantic segmentation, multi-view
stereoscopic vision, object detection, etc. [29–32].

The amount of data in public datasets is insufficient to perform online self-calibration.
Therefore, existing studies have assigned random deviations to the values of known param-
eters and have evaluated the performance of online self-calibration based on how accurately
the algorithm proposed in the respective study predicts this deviation. This approach is
commonly referred to as miscalibration [1,2,25]. To sample the random deviation, we
choose the rotation range and translation range as ±20◦ and ±1.5 m, respectively, as in [1].
In this study, we train five networks on a wide range of miscalibrations and apply iterative
refinement to the outputs of the five networks and temporal filtering over time to increase
the calibration accuracy. The KITTI dataset [10] and Oxford dataset [12] are used to conduct
the research of the proposed method. The KITTI dataset is used for online LiDAR-stereo
camera calibration, and the Oxford dataset is used for online LiDAR-LiDAR calibration.

The rest of this paper is organized as follows. Section 2 provides an overview of
existing calibration studies. Section 3 describes the proposed method. Section 4 presents
the experimental results for the proposed method, and Section 5 draws conclusions.

2. Related Work

This section provides a brief overview of traditional calibration methods. In addition,
we introduce how CNN-based calibration methods have been improved. Specifically,
the calibrations covered in this section are LiDAR-camera calibration and LiDAR-LiDAR
calibration.

2.1. Traditional Methods

Traditional methods of calibration that use targets mainly use artificial markers. One
example is the LiDAR-camera calibration method that uses a polygonal planar board [14].
This method first finds the vertices of the planar board in the image and in the LiDAR point
cloud. Then, the corresponding points between the vertices of the image and the vertices
of the point cloud are searched, and a linear equation is formulated. Finally, this method
uses singular value decomposition to solve the linear equation and obtain calibration
parameters. Another example is the LiDAR-camera calibration method that uses a planar
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chessboard [15]. The edge information in an image and the Perspective-n-Point algorithm
are used to find the plane of the chessboard that appears in the image. Then, distance
filtering and a random sample consensus (RANSAC) algorithm are used to obtain the
chessboard plane information from the LiDAR point cloud. After obtaining the plane
information, this method aligns the normal vectors of the planes with obtaining the rotation
parameters between LiDAR and the camera. The translation parameters between LiDAR
and camera are calculated by minimizing the distance between the plane searched from
the LiDAR points, and the rotated plane searched from the image. Similarly, the algorithm
in [16] is an automatic LiDAR-LiDAR calibration that uses planar surfaces. This method
uses three planes. The planes are obtained through a RANSAC algorithm. The calibration
of LiDAR-LiDAR is formulated as a nonlinear optimization problem by minimizing the
distance between corresponding planes. This approach adopts the Levenberg-Marquardt
algorithm for nonlinear optimization. Another LiDAR-LiDAR calibration in [17] uses two
poles plastered with retro-reflective tape to easily identify them in the point cloud. This
method first uses a threshold to find the reflected points on the pole. The searched point
cloud is expressed as a linear equation that represents a line. The points and the linear
equation are then used to solve the least squares problem. The data obtained by solving
the least squares problem are the calibration parameters.

Among the targetless online LiDAR-camera calibration methods, some methods use
edge information [18,19]. In these methods, when the LiDAR-camera calibration is correct,
the edges of the depth map of the LiDAR points are projected onto the image, and the
edges of the image are naturally aligned. As another example, there is a method that uses
the correlation between sensor data, as in [20,21]. The method in [20] uses the reflectance
information from the LiDAR and the intensity information from the camera for calibration.
According to this method, the correlation between reflectivity and intensity is maximized
when the LiDAR-camera calibration is accurate. The method in [21] uses the surface normal
of the LiDAR points and the intensity of image pixels for calibration. There is also a method
based on the hand-eye calibration framework [22], which estimates the motion of the
LiDAR and camera, respectively, and uses this information for calibration. A targetless
online LiDAR-LiDAR calibration is introduced in [23]. This method first performs a rough
calibration from an arbitrary initial pose. Then, the calibration parameters are corrected
through an iterative closest point algorithm and are further optimized using an octree-
based method. Other LiDAR-LiDAR calibration methods are presented in [3,24]. These
methods are based on the hand-eye calibration framework, and the motion of each LiDAR
is estimated. This information is used for calibration.

2.2. CNN-Based Methods

RegNet [25], the first CNN-based online LiDAR-camera self-calibration method,
adopted a three-step convolution consisting of feature extraction, feature matching, and
global regression. RegNet uses the decalibration of a given point cloud to train the proposed
CNN and also uses five networks to predict the six-degree of freedom (6-DoF) extrinsic
parameters for five different decalibration ranges.

CalibNet [5], the CNN-based online LiDAR-camera self-calibration method, proposed
a geometrically supervised deep network that was capable of automatically predicting the
6-DoF extrinsic parameters. The end-to-end training is performed by maximizing the pho-
tometric and geometric consistencies. Here, photometric consistency is obtained between
two depth maps constructed by projecting a given point cloud onto the input image with
the 6-DoF parameters predicted by the network and the ground-truth 6-DoF parameters.
Similarly, geometric consistency is calculated between two kinds of 3D points obtained by
transforming the point cloud into 3D space with the predicted 6-DoF parameters and the
ground-truth 6-DoF parameters.

LCCNet [1], which represents a significant improvement over previous CNN-based
methods, is a CNN-based online LiDAR-camera self-calibration method. This network
considers the correlation between the RGB image features and the depth image projected
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from point clouds. Additional CNN-based online LiDAR-camera self-calibration methods
are presented in [26,27]. They utilize the semantic information extracted by CNN to perform
more robust calibration even under changes in lighting and noise [26].

To the best of our knowledge, no deep learning-based LiDAR-LiDAR or LiDAR-stereo
camera online self-calibration method has yet been reported. In this paper, we propose,
for the first time, a deep learning-based method that is capable of online self-calibration
between such sensor combinations.

3. Methodology

This section describes the preprocessing of stereo images and LiDAR point clouds,
the structure of our proposed network, the loss function for network training, and the
postprocessing of the network output. These descriptions are commonly applied to the
calibration of the LiDAR-stereo camera and LiDAR-LiDAR combinations. We chose a
LiDAR as the target sensor in the LiDAR-stereo camera and LiDAR-LiDAR combinations,
and the rest of the sensors as the reference sensor.

3.1. Preprocessing

In order to perform online self-calibration with the network we designed, several
processes, including data preparation, were performed in advance. This section describes
these processes. We assume that sensors targeted for online calibration are capable of 3D
measurement. Therefore, we use point clouds that are generated by these sensors. In the
LiDAR-LiDAR combination, this premise is satisfied, but in the case of the LiDAR-stereo
camera combination, this premise is not satisfied, so we obtain a 3D point cloud from
the stereo images. The conversion of the stereo depth map to 3D points and the removal
of the 3D points, which are covered in the next two subsections, are not required for the
LiDAR-LiDAR combination.

3.1.1. Conversion of Stereo Depth Map to 3D Points

A depth map is built from stereo images through stereo matching. In this paper, we
obtain the depth map using the method in [33] that implements semi-global matching [34].
This depth map composed of disparities is converted to 3D points, which are called pseudo-
LiDAR points, as follows:

P =
[
X Y Z

]
=
[

base·(u−cu)
disp

base·(v−cv)
disp

fu ·base
disp

]
(1)

where cu, cv, and fu are the camera intrinsic parameters, u and v are pixel coordinates,
base is the baseline distance between cameras, and disp is the disparity obtained from the
stereo matching.

3.1.2. Removal of Pseudo-LiDAR Points

The pseudo-LiDAR points are too many in number compared with the points mea-
sured by a LiDAR. Therefore, we, in this paper, reduce the quantity of pseudo-LiDAR
points through a spherical projection, which is implemented using the method presented
in [35] as follows: [

p
q

]
=

[ 1
2 (1− atan(−X, Z)/π)·w(

1−
(
asin

(
−Y·r−1)+ fup

)
· f−1)·h

]
(2)

where (X, Y, Z) are 3D coordinates of a pseudo-LiDAR point, (p, q) are the angular coor-
dinates, (h, w) are the height and width of the desired projected 2D map, r is the range of
each point, and f = fup + fdown is the vertical field of view (FOV) of the sensor. We set fup
to 3◦ and fdown to −25◦. Here, the range 3◦ to −25◦ is the vertical FOV of the LiDAR used
to build the KITTI benchmarks [10]. The pseudo-LiDAR points become a 2D image via this
spherical projection. Multiple pseudo-LiDAR points can be projected onto a single pixel
in the 2D map. In this case, only the last projected pseudo-LiDAR point is left, and the
previously projected pseudo-LiDAR points are removed.
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3.1.3. Setting of Region of Interest

Because the FOVs of the sensors used are usually different, we determine the region
of interest (ROI) of each sensor and perform calibration only with data belonging to this
ROI. However, the ROI cannot be determined theoretically but can only be determined
experimentally. We determine the ROI of the sensors by looking at the distribution of data
acquired with the sensors.

We provide an example of setting the ROI using data provided by the KITTI [10] and
Oxford [12] datasets. For the KITTI dataset, which was built using a stereo camera and
LiDAR, the ROI of the stereo camera is set to [Horizon: −10 m–10 m, Vertical: −2 m–1 m,
Depth: 0 m–50 m], and the ROI of the LiDAR is set to the same values as the ROI of the
stereo camera. For the Oxford dataset, which was built using two LiDARs, the ROI of the
LiDAR is set to [Horizon: −30–30 m, Vertical: −2–1 m, Depth: −30–30 m].

3.1.4. Transformation of Point Cloud of Target Sensor

In this paper, the miscalibration method used in previous studies [1,2,25] is used to
perform the calibration of the stereo camera-LiDAR and LiDAR-LiDAR combination. In
the KITTI [10] and Oxford [12] datasets we use, the values of six extrinsic parameters
between two heterogeneous sensors and the 3D point clouds generated by them are given.
Therefore, we can transform the 3D point cloud created by one sensor into a new 3D point
cloud using the values of these six parameters. If we assign arbitrary deviations to these
parameters, we can retransform the transformed point cloud in another space. At this time,
if a calibration algorithm accurately finds the deviations that we randomly assign, we can
move the retransformed point cloud to the position before the retransformation.

In order to apply the aforementioned approach to our proposed online self-calibration
method, a 3D point P = [x, y, z] ∈ R3 measured by the target sensor is transformed by
Equation (3) as follows:

P̂′ = RTmisRTinit P̂T =

[
Rmis

0 0 0
Tmis

1

][
Rinit

0 0 0
Tinit

1

]
P̂T (3)

RTgt = RTmis
−1 (4)

Rinit =

cos(Rz) − sin(Rz) 0
sin(Rz) cos(Rz) 0

0 0 1

 cos
(

Ry
)

0 sin
(

Ry
)

0 1 0
− sin

(
Ry
)

0 cos
(

Ry
)
1 0 0

0 cos(Rx) − sin(Rx)
0 sin(Rx) cos(Rx)

 (5)

Tinit =
[
Tx Ty Tz

]T (6)

Rmis =

cos(θz) − sin(θz) 0
sin(θz) cos(θz) 0

0 0 1

 cos
(
θy
)

0 sin
(
θy
)

0 1 0
− sin

(
θy
)

0 cos
(
θy
)
1 0 0

0 cos(θx) − sin(θx)
0 sin(θx) cos(θx)

 (7)

Tmis =
[
τx τy τz

]T (8)

where P′ is the transformed point of P, and superscript T represents the transpose. P̂
and P̂′ are expressed with homogeneous coordinates. RTgt, described in Equation (4), is
the transformation matrix we want to predict with our proposed method. RTgt is used
as the ground truth when the loss for training is calculated. In Equation (5), each of the
parameters Rx, Ry, and Rz describes the angle rotated about the x-, y-, and z-axes between
the two sensors. In Equation (6), Tx, Ty, and Tz describe the relative displacement between
two sensors along the x-, y-, and z-axes. In this study, we assume that the values of the six
parameters Rx, Ry, Rz, Tx, Ty, and Tz are given. In Equations (7) and (8), the parameters
θx, θy, θz, τx, τy, and τz represent the random deviations for Rx, Ry, Rz, Tx, Ty, and Tz,
respectively. Each of these six deviations is sampled randomly with equal probability
within a predefined range of deviations described next. In Equations (5)–(8), Rinit and
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Rmis are rotation matrices and Tinit and Tmis are translation vectors. The transformation
by Equation (3) is performed only on points belonging to a predetermined ROI of the
target sensor.

We set the random sampling ranges for θx, θy, θz, τx, τy, and τz the same as in pre-
vious studies [1,25] as follows: (rotational deviation: −θ–θ, translation deviation: −τ–τ),
Rg1 = {θ: ±20◦, τ: ±1.5 m}, Rg2 = {θ: ±10◦, τ: ±1.0 m}, Rg3 = {θ: ±5◦, τ: ±0.5 m},
Rg4 = {θ: ±2◦, τ: ±0.2 m}, and Rg5 = {θ: ±1◦,τ: ±0.1 m}. Each of Rg1, Rg2, Rg3, Rg4, and
Rg5 set in this way is used for training each of the five networks named Net1, Net2, Net3,
Net4, and Net5. One deviation range is assigned to one network training. Training for
calibration starts with Net1 assigned to Rg1, and it continues with networks assigned
to progressively smaller deviation ranges. The network mentioned here is described in
Section 3.2.

3.1.5. Voxelization

We first perform a voxel partition by dividing the 3D points obtained by the sensors
into equally spaced 3D voxels, as was performed in [36]. This voxel partition requires
a space that limits the 3D points acquired by a sensor to a certain range. We call this
range a voxel space. We consider the length of a side of a voxel, which is a cube, as a
hyper-parameter, and denote it as S. In this paper, the unit of S is expressed in cm. A voxel
can contain multiple points, of which up to three are randomly chosen, and the rest are
discarded. Here, it is an experimental decision that we leave only up to three points per
voxel. Referring to the method in [37], the average coordinates along the x-, y-, and z-axes
of the points in each voxel are then calculated. We build three initial voxel maps, Fx, Fy, and
Fz, using the average coordinates for each axis. For each sensor, these initial voxel maps
become the input to our proposed network. Section 3.2 describes the network.

In this paper, we set the voxel space to be somewhat larger than the predetermined
ROI of the sensor, considering the range of deviation. For example, in the case of the
KITTI dataset, the voxel space of the stereo input is set as [horizontal: −15–15 m, vertical:
−15–15 m, depth: 0–55 m], and the voxel space of the LiDAR input is set to the same size as
the voxel space of the stereo input. In contrast, the voxel space of the 3D points generated
by the two LiDARs in the Oxford dataset is set to [width: −40–40 m, height: −15–15 m,
depth: −40–40 m]. The points outside of the voxel space are discarded.

3.2. Network Architecture

We propose a network of three parts, which are referred to as a feature extraction
network (FEN), an attention module (AM), and an inference network (IN). The overall
structure of the proposed network is shown in Figure 1. The input of this network is the Fx,
Fy, and Fz for each sensor built from voxelization, and the output is seven numbers, three
of which are translation-related parameter values, and the other four are rotation-related
quaternion values. The network is capable of end-to-end training because every step is
differentiable.

3.2.1. FEN

Starting from the initial input voxel maps Fx, Fy, and Fz, FEN extracts features for use in
predicting calibration parameters by performing 3D convolution on 20 layers. The number
of layers, the size of the kernel used, the number of kernels used in each layer, and the stride
applied in each layer are experimentally determined. The kernel size is 3× 3 × 3. There are
two types of stride, 1 and 2, which are used selectively for each layer. The number of kernels
used in each layer is indicated at the bottom of Figure 1. This number corresponds to the
quantity of the feature volume created in the layer. In the deep learning terminologies, this
quantity is called channels. Convolution is performed differently depending on the stride
applied to each layer. When stride 1 is applied, submanifold convolution [38] is performed,
and when stride 2 is applied, general convolution is performed. General convolution is
performed on all voxels with or without a value, but submanifold convolution is performed
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only when a voxel with a value corresponds to the central cell of the kernel. In addition,
batch normalization (BN) [39] and rectified linear unit (ReLU) activation functions are
sequentially applied after convolution in the FEN.
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We want the proposed network to perform robust calibration for large rotational and
translational deviations between two sensors. To this end, a large receptive field is required.
Therefore, we included seven layers with a stride of 2 in the FEN.

The final output of the FEN is 1024 feature volumes. The number of cells in the feature
volume depends on the size of the voxel, but we let V be the number of cells in the feature
volume. At this time, because each feature volume can be reconstructed as a V-dimensional
column vector, we represent 1024 feature volumes as a matrix F of dimension V× 1024. The
outputs of FENs for the reference and target sensors are denoted by Fr and Ft, respectively.

3.2.2. AM

It is not easy to match the features extracted from the FEN through convolutions be-
cause the point clouds from the LiDAR-stereo camera combination are generated differently.
Even in the LiDAR-LiDAR combination, if the FOVs of the two LiDARs are significantly
different, it is also not easy to match the features extracted from the FEN through convo-
lutions. Moreover, because the deviation range of rotation and translation is set large to
estimate calibration parameters, it becomes difficult to check the similarity between the
point cloud of the target sensor and the point cloud of the reference sensor.

Inspired by the attention mechanism proposed by Vaswani et al. [28], we solve these
problems: we design an AM that implements the attention mechanism, as shown in Figure 1.
The AM calculates an attention value for each voxel of the reference sensor input using the
following procedure.

The AM has four fully connected layers (FCs): FC1, FC2, FC3, and FC4. A feature is
input into these FCs, and a transformed feature is output. We denote the outputs of FC1,
FC2, FC3, and FC4 as matrices M1, M2, M3, and M4, respectively. Each FC has 1024 input
nodes. Here, the number 1024 is the number of feature volumes extracted from the FEN.
The FC1 and FC4 have G/2 output nodes, and the FC2 and FC3 have G output nodes. These
FCs transform 1024 features to G or G/2 features. Here, G is a hyper-parameter. If the sum
of the elements in a row of matrix F, which is the output of the FEN, is 0, the row vector
is not input to FC. We apply layer normalization (LN) [40] and the ReLU function to the
output of these FCs so that the final output becomes nonlinear. The output M2 of FC2 is a
matrix of dimension Vt × G, and the output M3 of FC3 is a matrix of dimension Vr × G.
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Here, Vr and Vt are the number of rows in which there is at least one element with a feature
value among the elements in each row of Fr and Ft, respectively. Therefore, Vr and Vt can
be different for each input. However, we fix the values of Vr and Vt because the number
of input nodes of the multi-layer perceptron (MLP) of the IN following the AM cannot be
changed every time. In order to fix the values of Vr and Vt, we input all the data to be used
in the experiments into the network and set the values when they are the largest, but we
make them a multiple of 8. This is because Vr and Vt are also hyper-parameters. If the
actual Vr and Vt are less than the predetermined Vr and Vt, the elements of the output
matrices of FCs will be filled with zeros. The output M1 of FC1 is a matrix of dimension
Vt × G/2, and the output M4 of FC4 is a matrix of dimension Vr × G/2.

• Computation of attention score by dot product

An attention score is obtained from the dot product of a row vector of M3 and a column
vector of MT

2 . This score is the same as the cosine similarity. The matrix AS is obtained
through the dot products of all row vectors of M3 and all column vectors of MT

2 are called
an attention score matrix. The dimension of the matrix AS (AS = M3·MT

2 ) is Vr × Vt.

• Generation of attention distribution by softmax

We apply the softmax function to each row vector of AS and obtain the attention
distribution. The softmax function calculates the probability of each element of the input
vector. We call this probability an attention weight, and the matrix obtained by this process
is the attention weight matrix AW of dimension Vr × Vt.

• Computation of attention value by dot product

An attention value is obtained from the dot product of a row vector of AW and a
column vector of the matrix M1. A matrix AV obtained through the dot products of all
row vectors of AW and all column vectors of M1 is called an attention value matrix. The
dimension of the matrix AV (AV = AW·M1) is Vr × G/2.

Finally, we concatenate the attention value matrix AV and the matrix M4. The resulting
matrix from this final process is denoted as AC (AC = [AV M4]) and has dimension Vr × G;
this matrix becomes the input to the IN. The reason we set the output dimension of FC1
and FC4 to G/2 instead of G is to save memory and reduce processing time.

3.2.3. IN

The IN infers rotation and translation parameters. The IN consists of an MLP and two
fully connected layers, FC5 and FC6. The MLP is composed of an input and an output layer,
as well as a single hidden layer. The input layer has Vr × G nodes, and the hidden and
output layers have 1024 nodes, respectively. Therefore, when we input AC, the output of
the AM, into the MLP, we make AC a flat vector. In addition, this MLP has no bias input,
and it uses ReLU as an activation function. Moreover, LN is performed on the weighted
sums that are input to nodes in the hidden layer and output layer, and ReLU is applied
to the normalization result to obtain the output of these nodes. The output of the MLP
becomes the input to the FC5 and FC6. The MLP plays the role of dimension reduction in
the input vector.

We do not apply a normalization or an activation function to the FC5 and FC6. FC5
produces three translation-related parameter values, which are τ

p
x , τ

p
y , and τ

p
z , and FC6

produces four rotation-related quaternion values, which are q0, q1, q3, and q4.

3.3. Loss Function

To train the proposed network, we use a loss function as follows:

L = λ1Lrot + λ2Ltrs (9)
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where Lrot is a regression loss related to rotation, Ltrs is a regression loss related to transla-
tion, and hyper-parameters λ1 and λ2, respectively, are their weights. We use the quaternion
distance to regress the rotation. The quaternion distance is defined as:

Lrot = acos(2(
qp∣∣qp
∣∣ · qgt∣∣qgt

∣∣ )2
− 1) (10)

where · represents the dot product, |·| indicates the norm, and qp and qgt indicate a
vector of the quaternion parameters predicted by the network and the ground-truth vector
of quaternion parameters, respectively. From RTgt of Equation (4), we obtain the four
quaternion values. These four quaternion values are used for rotation regression as the
ground truth.

For the regression of the translation vector, the smooth L1 loss is applied. The loss Ltrs
is defined as follows:

Ltrs =
1
3

(
smoothL1

(
τ

p
x − τ

gt
x

)
+ smoothL1

(
τ

p
y − τ

gt
y

)
+ smoothL1

(
τ

p
z − τ

gt
z

))
smoothL1(x) =

{
x2

2β if |x| < β

|x| − β
2 otherwise

(11)

where the superscripts p and gt represent prediction and ground truth, respectively, β is a
hyper-parameter and is usually taken to be 1, and |·| represents an absolute value. The
parameters τ

p
x , τ

p
y and τ

p
z are inferred by the network, and τ

gt
x , τ

gt
y , and τ

gt
z are obtained

from RTgt of Equation (4).

3.4. Postprocessing
3.4.1. Generation of a Calibration Matrix from a Network

Basically, postprocessing is performed to generate the calibration matrix RTpred that is
shown in Equation (12). The rotation matrix Rpred and translation vector Tpred in Equation (12)
are generated by the quaternion parameters q0, q1, q2, and q3, and translation parameters τ

p
x ,

τ
p
y , and τ

p
z inferred from the network we built, as shown in Equations (13) and (14).

RTpred =

[
Rpred

0 0 0
Tpred

1

]
(12)

Rpred =

1− 2
(
q2

2 + q2
3
)

2(q1q2 − q0q3) 2(q0q2 + q1q3)
2(q1q2 + q0q3) 1− 2

(
q2

1 + q2
3
)

2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q0q1 + q2q3) 1− 2

(
q2

1 + q2
2
)
 (13)

Tpred =
[
τ

p
x τ

p
y τ

p
z
]T

(14)

θ
p
x = atan2

(
Rpred(3, 2), Rpred(3, 3)

)
θ

p
y = atan2

(
−Rpred(3, 1),

√
Rpred(3, 2)2 + Rpred(3, 3)2

)
θ

p
z = atan2

(
Rpred(2, 1), Rpred(1, 1)

) (15)

Equation (15) shows how to calculate the rotation angle about each of the x-, y-, and
z-axes from the rotation matrix Rpred. In Equation (15), (r,c) indicates the row index r and
column index c of the matrix Rpred. The angle calculation described in Equation (15) is used
to convert a given rotation matrix into Euler angles.

3.4.2. Calculation of Calibration Error

To evaluate the proposed calibration system, it is necessary to calculate the error of
the predicted parameters. For this, we calculate the transformation matrix RTerror, which
contains the errors of the predicted parameters by Equation (16). RTmis and RTonline in
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Equation (16) are calculated by Equations (3) and (17), respectively. In Equation (17), each
of RT1, RT2, RT3, RT4, and RT5 is a calibration matrix predicted by each of the five networks,
Net1, Net2, Net3, Net4, and Net5. The calculation of these five matrices is described in
detail in 3.4.3. From RTerror, we calculate the error of the rotation-related parameters using
Equation (18) and the error of the translation-related parameters using Equation (19).

RTerror = RTonline·RTmis (16)

RTonline = RT5·RT4·RT3·RT2·RT1 (17)

θe
x = atan2(RTerror(3, 2), RTerror(3, 3))

θe
y = atan2

(
−RTerror(3, 1),

√
RTerror(3, 2)2 + RTerror(3, 3)2

)
θe

z = atan2(RTerror(2, 1), RTerror(1, 1))

(18)

τe
x = RTerror(1, 4)

τe
y = RTerror(2, 4)

τe
z = RTerror(3, 4)

(19)

In Equations (18) and (19), (r,c) indicates the row index r and column index c of the
matrix RTerror.

In the KITTI dataset, the rotation angle about the x-axis, the rotation angle about the y-
axis, and the rotation angle about the z-axis correspond to pitch, yaw, and roll, respectively.
In contrast, in the Oxford dataset, they correspond to roll, pitch, and yaw, respectively.

3.4.3. Iterative Refinement for Precise Calibration

The training uses all five deviation ranges, but the evaluation of the proposed method
is performed with randomly sampled deviations only in Rg1, which is the largest deviation
range. Using this sampled deviation, the transformation matrix RTmis is formed as shown
in Equations (3), (7), and (8). Then, a point cloud prepared for evaluation is initially
transformed using Equation (3). By inputting this transformed point cloud into the trained
Net1, the values of parameters that describe translation and rotation are inferred. With
these inferred values, we obtain the RTpred of Equation (12). This RTpred becomes RT1. We
multiply the initial transformed points by this RT1 to obtain new transformed points, and
we input these new transformed points into the trained Net2 to obtain RTpred from Net2.
This new RTpred becomes RT2. In this way, the input points to the current network are
multiplied by RTpred, which is the output of the current network, to obtain new transformed
points for use as the input to the next network; this process of obtaining new RTpred by
inputting them into the next network is repeated until Net5. For each point cloud prepared
for evaluation as described above, a calibration matrix (RTi, i = 1,···,5) is obtained from each
of the five networks, and the final calibration matrix RTonline is obtained by multiplying the
calibration matrices as shown in Equation (17). The iterative transformation process of the
point cloud for evaluation as described above is expressed as follows:

P̂′1 = RTmisRTinit P̂T (20)

P̂′i = RTi−1P̂′i−1, i = 2, . . . , 5 (21)

3.4.4. Temporal Filtering for Precise Calibration

Calibration performed with only a single frame can be vulnerable to various forms
of noise. According to [25], this problem can be improved by analyzing the results over
time. For this purpose, N. Schneider et al. [25] check the distribution of the results over
all evaluation frames while maintaining the value of the sampled deviation used for
the first frame. They take the median over the whole sequence, which enables the best
performance on the test set. They sample the deviations from Rg1. They repeat 100 runs
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of this experiment, keeping the sampled deviations until all test frames are passed and
resampling the deviations at the start of a new run.

It is good to analyze the results obtained over multiple frames. However, applying all
the test frames to temporal filtering has a drawback in the context of autonomous driving.
In the case of the KITTI dataset, the calibration parameter values are inferred from the
results obtained from processing about 4500 frames, which takes a long time. It is also
difficult to predict what will happen during this time. Therefore, we reduce the number of
frames to use for temporal filtering and randomly determine the start frame for filtering
among these frames. We set the bundle size of frames to 100 and performed quantitative
analysis by taking the median from 100 results obtained by applying this bundle. The value
of parameters from RTonline for each frame is obtained using Equations (14) and (15). The
basis for setting the bundle size is given in Section 4.3.3.

4. Experiments

There are several tasks, such as data preparation in training and evaluation of the
proposed calibration system. The KITTI dataset provides images captured with a stereo
camera and point clouds acquired using a LiDAR. The dataset consists of 21 sequences (00
to 20) from different scenarios. The Oxford dataset provides point clouds acquired using
two LiDARs. In addition, both datasets provide initial calibration parameters and visual
odometry information.

We used the KITTI dataset for LiDAR-stereo camera calibration. We referred to
the method proposed by Lv et al. [1] in using the 00 sequence (4541 frames) for testing
and using the rest (39,011 frames) of the sequences for training. We used the Oxford
dataset for LiDAR-LiDAR calibration. Of the many sequences in the Oxford dataset, we
used the 2019-01-10-12-32-52 sequence for training and the 2019-01-17-12-32-52 sequence
for evaluation. The two LiDARs that were used to build the Oxford dataset were not
synchronized. Therefore, we used visual odometry information to synchronize the frames.
After the synchronization, the unsynchronized frames were deleted, and our Oxford dataset
consisted of 43,130 frames for training and 35,989 frames for evaluation.

We did not apply the same hyper-parameter values to all five networks (Net1 to
Net5) because of the large difference in the range of allowable deviations for rotation and
translation in Rg1 and Rg5. Because Net5 is trained with Rg5, which has the smallest
deviation range, and is applied last in determining the calibration matrix, we trained
Net5 using different hyper-parameter values from other networks. Such hyper-parameters
included S, Vr, Vt, G, λ1, λ2, and B, which are the length of a side of a voxel, the number
of voxels with data among voxels in a voxel space of the reference sensor, the number of
voxels with data among voxels in a voxel space of the target sensor, the number of output
nodes of the FC2 and FC3 in the AM, the weight of the loss function Lrot, the weight of the
loss function Ltrs, and the batch size, respectively.

Through the experiments with the Oxford dataset, we observed that data screening
is required to enhance the calibration accuracy. The dataset was built with two LiDARs
mounted at the left and right corners in front of the roof of a platform vehicle. Figure 2
shows a point cloud for one frame in the Oxford dataset. This point cloud contains points
generated by scanning the surface of the platform vehicle by LiDARs. We confirmed that
the calibrations performed on point clouds containing these points degrade the calibration
accuracy. Therefore, to perform calibration after excluding these points, we set a point
removal area to [Horizon: −5–5 m, Vertical: −2–1 m, Depth: −5–5 m] for the target sensor
and [Horizon: −1.5–1.5 m, Vertical: −2–1 m, Depth: −2.5–1.5 m] for the reference sensor.
Experimental results with respect to this region cropping are provided in Section 4.3.1.

We trained the network for a total of 60 epochs. We initially set the learning rate to
0.0005 and halved it when the epochs reached 30, and we halved it again when the epochs
reached 40. The batch size B was determined to be within the limits allowed by the memory
of the equipment used. We used one NVIDIA GeForce RTX 2080Ti graphic card for all our
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experiments. Adam [41] was used for model optimization, and hyper-parameters β1 = 0.9
and β2 = 0.999 were used.
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4.1. Evaluation Using the KITTI Dataset

Figure 3 shows a visual representation of the results for performing calibration on
the KITTI dataset using the proposed five networks. In this experiment, we transform a
point cloud using the calibration matrix inferred from the proposed network and using
the ground-truth parameters given in the dataset. We want to show how consistent these
two transformation results are. Figure 3a,b show the transformation of a point cloud by
randomly sampled deviations from Rg1 and the calibrated parameters given in the KITTI
dataset, respectively. The left side of Figure 3c shows the transformation of the point
cloud by RT1 predicted by the trained Net1. This result looks suitable, but as shown to
the right of Figure 3c, it can be seen that the points measured on a thin column were
projected to positions that deviated from the column. The effect of iterative refinement
appears here. Calibration does not end at Net1 but continues to Net5. Figure 3d shows the
transformation of the point cloud by RTonline obtained after performing calibration up to
Net5. By comparing the result of Figure 3d with the result shown in Figure 3c, we can see
that the calibration accuracy is improved: suitable alignment even with the thin column.

Table 1 presents the average performance of calibrations performed without temporal
filtering on 4541 frames for testing on the KITTI dataset. From the results shown in Table 1,
we can see the effect of iterative refinement. From Net1 to Net5, the improvements are
progressive. Our method achieves an average rotation error of [Roll: 0.024◦, Pitch: 0.018◦,
Yaw: 0.060◦] and an average translation error of [X: 0.472 cm, Y: 0.272 cm, Z: 0.448 cm].

Table 1. Quantitative results of calibration performed on the KITTI dataset without temporal filtering.
See footnotes 1,2 for hyper-parameter settings.

Refinement Stage
Rotation Error (◦) Translation Error (cm)

Roll Pitch Yaw X Y Z

After Net1 1 0.182 0.110 0.386 2.393 1.205 1.781
After Net2 1 0.112 0.068 0.176 1.513 1.356 1.663
After Net3 1 0.071 0.046 0.134 1.119 0.709 1.027
After Net4 1 0.039 0.024 0.088 0.750 0.428 0.735
After Net5 2 0.024 0.018 0.060 0.472 0.272 0.448

1 S = 5, (Vr, Vt) = (96, 160), G = 1024, (λ1, λ2) = (1, 2), B = 8. 2 S = 2.5, (Vr, Vt) = (384, 416), G = 128, (λ1, λ2) = (0.5, 5),
B = 4.
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Figure 4 shows two examples of error distribution for individual components by
means of boxplots. From these experiments, we confirmed that temporal filtering provides
suitable calibration results regardless of the amount of arbitrary deviation. The dots shown
in Figure 4a,b are both obtained by transforming the same point cloud of the target sensor
by randomly sampled deviations from Rg1, but the sampled deviations are different. As
can be seen from the boxplots in Figure 4e–h, the distribution of calibration errors was
similar despite the large difference in sampled deviations.

Table 2 shows the calibration results for our method and for the existing CNN-based
online calibration methods. From these results, it can be seen that our method achieves the
best performance. In addition, when these results are compared with the results shown in
Table 1, it can be concluded that our method achieves significant performance improvement
through temporal filtering. CalibNet [2] did not specify a frame bundle.

Table 2. Comparison of calibration performance between our method and other CNN-based methods.

Method Range Bundle Size of Frame
Rotation Error (◦) Translation Error (cm)

Roll Pitch Yaw X Y Z

RegNet [25] Rg1 4541 0.24 0.25 0.36 7 7 4
CalibNet [2] (±10◦, ±0.2 m) - 0.18 0.9 0.15 4.2 1.6 7.22
LCCNet [1] Rg1 4541 0.020 0.012 0.019 0.262 0.271 0.357

Ours Rg1 4541 0.002 0.011 0.004 0.183 0.068 0.183
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the training result. When Net1 was trained, the hyper-parameters were set as S = 5, (Vr, Vt) 
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Figure 4. Calibration results and error distribution when temporal filtering was applied. (a) Trans-
formation by randomly sampled deviation from Rg1. (b) Transformation by randomly sampled
deviation from Rg1. (c) Calibration results from random deviations shown in (a). (d) Calibration re-
sults from random deviations shown in (b). (e) Rotation error for the results shown in (c). (f) Rotation
error for the results shown in (d). (g) Translation error for the results shown in (c). (h) Translation
error for the results shown in (d).

Figure 5 graphically shows the changes in the losses calculated by Equations (10) and (11)
for training the proposed networks on the KITTI dataset. In this figure, the green graph
shows the results of training with randomly sampled deviations from Rg1, and the pink
graph shows the results of training with randomly sampled deviations from Rg5. The
horizontal and vertical axes of these graphs represent epochs and loss, respectively. From
these graphs, we can observe that the loss reduction decreases from approximately the 30th
epoch. This was consistently observed, no matter what deviation range the network was
trained on or what hyper-parameters were used. There were similar trends in loss reduction
for rotation and translation. Given this situation, we halved the initial learning rate after
the 30th epoch of training. Training was performed at a reduced learning rate for 10 epochs
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after the 30th epoch. After the 40th epoch, we halved the learning rate again. Training
continued until the 60th epoch, and the result that produced the smallest training error
among the results obtained from the 45th to the 60th epoch was selected as the training
result. When Net1 was trained, the hyper-parameters were set as S = 5, (Vr, Vt) = (96, 160),
G = 1024, (λ1, λ2) = (1, 2), and B = 8. When Net5 was trained, the hyper-parameters were
set as S = 2.5, (Vr, Vt) = (384, 416), G = 128, (λ1, λ2) = (0.5, 5), and B = 4. In Figure 5, the
training results before the 10th epoch are not shown because the loss was too large.
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Figure 5. Changes in loss calculated during the training of Net1 and Net5 on the KITTI dataset.
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4.2. Evaluation Using the Oxford Dataset

Figures 6 and 7 show the results of performing calibration on the Oxford dataset using
the proposed five networks. In these figures, the green dots represent the points obtained by
the right LiDAR, which is considered to be the target sensor, and the red dots represent the
points obtained by the left LiDAR. Figure 6a,b show the results of the transformation of a
point cloud from the target sensor by randomly sampled deviations from Rg1 and calibrated
parameters given in the Oxford dataset, respectively. Figure 6c shows the result of the
transformation of the point cloud by RT1 inferred from the trained Net1. Figure 6d shows
the result of the transformation of the point cloud by RTonline obtained after performing
calibration up to Net5. Similar to the results of the calibration performed using the KITTI
dataset, the results of Net1 look suitable, but they are not suitable when compared with the
results shown in Figure 6d. The photo on the right side of Figure 6c shows that the green
and red dots indicated by an arrow are misaligned. In contrast, the photo on the right side
of Figure 6d shows that the green and red dots indicated by an arrow are well aligned. We
show through this comparison that calibration accuracy can be improved by the iterative
refinement of five networks even without temporal filtering.
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(c) Transformation by RT1 inferred from Net1. (d) Transformation by RTonline obtained from iterative
refinement by five networks.
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Figure 7. Calibration results and error distribution when temporal filtering was applied to the Oxford
dataset. (a) Transformation by randomly sampled deviations from Rg1. (b) Transformation by
randomly sampled deviations from Rg1. (c) Calibration results from random deviations shown in (a).
(d) Calibration results from random deviations shown in (b). (e) Rotation error for the results shown
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(h) Translation error for the results shown in (d).

Table 3 presents the average performance of calibrations performed without temporal
filtering on 35,989 frames for testing in the Oxford dataset. Our method achieves an
average rotation error of [Roll: 0.056◦, Pitch: 0.029◦, Yaw: 0.082◦] and an average translation
error of [X: 0.520 cm, Y: 0.628 cm, Z: 0.350 cm]. In this experiment, we applied the same
hyper-parameters to all five networks. They are S = 5, (Vr, Vt) = (224, 288), G = 1024,
(λ1, λ2) = (1, 2), and B = 8.
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Table 3. Quantitative results of calibration performed on the Oxford dataset without temporal filtering.

Refinement Stage
Rotation Error (◦) Translation Error (cm)

Roll Pitch Yaw X Y Z

After Net1 0.302 0.223 0.370 3.052 4.440 3.603
After Net2 0.249 0.262 0.266 1.048 2.155 2.240
After Net3 0.136 0.068 0.099 1.469 1.191 1.348
After Net4 0.072 0.036 0.073 0.632 0.809 0.985
After Net5 0.056 0.029 0.082 0.520 0.628 0.350

Figure 7 shows two examples of the error distribution of individual components
by means of boxplots, as shown in Figure 4. From these experiments, we can see that
temporal filtering provides suitable calibration results regardless of the amount of arbitrary
deviation, even for LiDAR-LiDAR calibration. The green dots shown in Figure 7a,b are
both obtained by transforming the same point cloud of the target sensor with randomly
sampled deviations from Rg1, but the sampled deviations are different. As shown in
Figure 7e–g, the distribution of calibration errors is similar despite the large difference in
sampled deviations. In these experiments, the size of the frame bundle used in the temporal
filtering was 100.

Table 4 shows the calibration performance of the proposed method with temporal
filtering. Our method achieves a rotation error of less than 0.1◦ and a translation error of
less than 1 cm. By comparing Tables 3 and 4, it can be seen that temporal filtering achieves
a significant improvement in performance.

Table 4. Quantitative results of calibration on Oxford dataset with temporal filtering.

Method Range Bundle Size of Frame
Rotation Error (◦) Translation Error (cm)

Roll Pitch Yaw X Y Z

Ours Rg1 100 0.035 0.017 0.060 0.277 0.305 0.247

Figure 8 graphically shows the changes in the losses calculated by Equations (10) and (11)
in training the proposed networks with the Oxford dataset. Compared with the results
shown in Figure 5, we observed that the results from this experiment were very similar
to the experimental results achieved with the KITTI dataset. Therefore, we decided to
apply the same training strategy to the KITTI and Oxford datasets. However, the settings
of the hyper-parameter values that were applied to the network were different. When
Net1 was trained, the hyper-parameters were set as S = 5, (Vr, Vt) = (224, 288), G = 1024,
(λ1, λ2) = (1, 2), and B = 8. When Net5 was trained, the hyper-parameters were set as S = 5,
(Vr, Vt) = (224, 288), G = 1024, (λ1, λ2) = (0.5, 5), and B = 4.
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4.3. Ablation Studies
4.3.1. Performance According to the Cropped Area of the Oxford Dataset

At the beginning of Section 4, we mentioned the need to eliminate some points in
the Oxford dataset that degraded calibration performance. To support this observation,
we presented in Table 5 the results of experiments with and without the removal of those
points. However, although there is a difference in the calibration performance according to
the size of the removed area, it is difficult to theoretically determine the size of the area to
be cropped. Table 5 shows the results of the experiments by setting the area to be cut in two
ways. Through these experiments, we found that the calibration performed after removing
points that caused the performance degradation generally produced better results than the
calibration performed without removing those points. These experiments were performed
with the trained Net5, and the hyper-parameters were as follows. S = 5, V = (224, 288),
G = 1024, λ = (1, 2), and B = 8.

Table 5. Comparison of calibration performance according to the cropped area on the Oxford dataset.

Size of Area to be Cropped
[Horizon, Vertical, Depth]

Rotation Error (◦) Translation Error (cm)

Roll Pitch Yaw X Y Z

N/A 0.038 0.030 0.070 1.922 0.868 0.476
[−5~5 m, −2–1 m, −5~5 m] 0.033 0.027 0.062 0.538 0.668 0.564

[−10~10 m, −2–1 m, −10~10 m] 0.033 0.025 0.054 0.490 1.109 0.496

4.3.2. Performance According to the Length of a Voxel Side, S

We conducted experiments to check how the calibration performance changes accord-
ing to S. Tables 6 and 7 show the results of these experiments. Table 6 shows the results
for the KITTI dataset, and Table 7 shows the results for the Oxford dataset. We performed
an evaluation according to S with a combination of Rg1 and Net1 and a combination of
Rg5 and Net5. These experiments showed that the calibration performance improved as
S became smaller. However, as S became smaller, the computational cost increased, and
in some cases, the performance deteriorated. We tried to experiment with fixed values
of hyper-parameters other than S, but naturally, as S decreased, the hyper-parameters Vr
and Vt increased rapidly. This was a burden on the memory, and thus it was difficult
to keep the batch size B at the same value. Therefore, when S was 2.5, B was 4 in the
experiment performed on the KITTI dataset, and B was 2 in the experiment performed on
the Oxford dataset. However, for S greater than 2.5, B was fixed at 8. In addition, there were
cases where the performance deteriorated when S was very small, such as 2.5, which was
considered to be the result of a small receptive field in the FEN. Even in the experiments
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performed on the Oxford dataset, when S was 2.5 in Net1, the training loss diverged near
the 5th epoch, so the experiment could no longer be performed. For training on the KITTI
dataset, S was set to 2.5 in Net5, and S was set to 5 in Net1 to Net4. However, for training
on the Oxford dataset, S was set to 5 for both Net1 and Net5.

Table 6. Comparison of calibration performance according to S on the KITTI dataset.

Hyper-Parameter Setting
Rotation Error (◦) Translation Error (cm)

Roll Pitch Yaw X Y Z

For the Combination of Net1 and Rg1

S = 10, V = (32, 48), G = 1024, λ = (1, 2), B = 8 0.228 0.166 0.421 3.103 1.681 2.155
S = 7.5, V = (48, 72), G = 1024, λ = (1, 2), B = 8 0.199 0.199 0.429 2.881 1.613 2.514
S = 5, V = (96, 160), G = 1024, λ = (1, 2), B = 8 0.182 0.110 0.386 2.393 1.205 1.781
S = 2.5, V = (384, 416), G = 128, λ = (1, 2), B = 4 0.295 0.206 0.595 4.489 2.288 2.840

For the Combination of Net5 and Rg5

S = 10, V = (32, 48), G = 1024, λ = (1, 2), B = 8 0.344 0.019 0.063 0.778 0.429 0.887
S = 7.5, V = (48, 72), G = 1024, λ = (1, 2), B = 8 0.030 0.020 0.059 0.646 0.487 0.776
S = 5, V = (96, 160), G = 1024, λ = (1, 2), B = 8 0.028 0.017 0.070 0.610 0.363 0.702
S = 2.5, V = (384, 416), G = 128, λ = (1, 2), B = 4 0.023 0.016 0.045 0.450 0.312 0.537

Table 7. Comparison of calibration performance according to S on the Oxford dataset.

Hyper-Parameter Setting
Rotation Error (◦) Translation Error (cm)

Roll Pitch Yaw X Y Z

For the Combination of Net1 and Rg1

S = 10, V = (76, 96), G = 1024, λ = (1, 2), B = 8 0.382 0.328 0.436 2.606 8.114 2.881
S = 7.5, V = (96, 160), G = 1024, λ = (1, 2), B = 8 0.415 0.263 0.433 3.542 7.574 4.151
S = 5, V = (224, 288), G = 1024, λ = (1, 2), B = 8 0.302 0.223 0.370 3.052 4.440 3.603
S = 2.5, V = (608, 608), G = 128, λ = (1, 2), B = 2 - - - - - -

For the Combination of Net5 and Rg5

S = 10, V = (76, 96), G = 1024, λ = (1, 2), B = 8 0.046 0.031 0.085 0.626 1.431 0.610
S = 7.5, V = (96, 160), G = 1024, λ = (1, 2), B = 8 0.031 0.228 0.535 0.448 1.357 0.457
S = 5, V = (224, 288), G = 1024, λ = (1, 2), B = 8 0.033 0.027 0.062 0.538 0.668 0.564
S = 2.5, V = (608, 608), G = 128, λ = (1, 2), B = 2 0.036 0.025 0.057 0.552 0.699 0.539

4.3.3. Performance According to the Bundle Size of Frames

We conducted experiments to observe how the calibration performance changes
according to the bundle size of the frame for temporal filtering. Tables 8 and 9 show the
results of these experiments. Table 8 shows the results for the KITTI dataset, and Table 9
shows the results for the Oxford dataset. We performed the experiments as presented in
Section 3.4.3. Because 100 runs had to be performed, the position of the starting frame for
each run was predetermined. For each run, we took the median of the values of each of
the six parameters associated with rotation and translation inferred from the frames in the
bundle, and we calculated the absolute difference between this median and the deviation
randomly sampled from Rg1. The error of each parameter shown in Tables 8 and 9 was
obtained by adding up the error of the corresponding parameters calculated for each run
and dividing the sum by the number of runs. Through these experiments, we found
that temporal filtering using many frames improves the overall calibration performance.
However, if we look carefully at the results presented in the two tables, the effect is not
shown for all parameters. Considering this observation and the processing time, the bundle
size of the frame was set to 100.
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Table 8. Comparison of calibration performance according to the bundle size of frames for temporal
filtering on the KITTI dataset.

Bundle Size of Frames
Rotation Error (◦) Translation Error (cm)

Roll Pitch Yaw X Y Z

1 0.024 0.017 0.057 0.414 0.257 0.395
10 0.009 0.013 0.018 0.210 0.102 0.245
25 0.006 0.011 0.013 0.176 0.080 0.197
50 0.004 0.011 0.008 0.170 0.070 0.190
100 0.003 0.011 0.006 0.175 0.069 0.195

Table 9. Comparison of calibration performance according to the bundle size of frame for temporal
filtering on the Oxford dataset.

Bundle Size of Frames
Rotation Error (◦) Translation Error (cm)

Roll Pitch Yaw X Y Z

1 0.055 0.028 0.080 0.536 0.532 0.330
10 0.049 0.024 0.066 0.363 0.335 0.305
25 0.044 0.022 0.066 0.334 0.303 0.272
50 0.039 0.019 0.065 0.290 0.286 0.269
100 0.035 0.017 0.060 0.277 0.305 0.247

5. Conclusions

In this paper, we realized a novel approach for online multi-sensor calibration im-
plemented using a voxel-based CNN and 3D convolutional kernels. Our method aims to
calibrate between sensors that can measure 3D space. In particular, the voxelization that
converts the input 3D point cloud into voxel and the AM introduced to find the correlation
of features between the reference and target sensors contributed greatly to the completeness
of the proposed method. We demonstrated through experiments that the proposed method
can perform both LiDAR-stereo camera calibration and LiDAR-LiDAR calibration. In
the calibration of the LiDAR-stereo camera combination, the proposed method showed
experimental results that surpassed all existing CNN-based calibration methods for the
LiDAR-camera combination. We demonstrated the effects of iterative refinement on the
five networks and the effects of temporal filtering through experiments. The proposed
method achieved a rotation error of less than 0.1◦ and a translation error of less than 1 cm
on both the KITTI and Oxford datasets.
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