Advantages in Using Colour Calibration for Orthophoto Reconstruction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Data
2.2. UAV Image Acquisition and Orthoimage Reconstruction
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bouguettaya, A.; Zarzour, H.; Kechida, A.; Taberkit, A.M. Deep learning techniques to classify agricultural crops through UAV imagery: A review. Neural. Comput. Appl. 2022, 1, 26. [Google Scholar] [CrossRef]
- Tsouros, D.C.; Bibi, S.; Sarigiannidis, P.G. A review on UAV-based applications for precision agriculture. Information 2019, 10, 349. [Google Scholar] [CrossRef]
- Pallottino, F.; Pane, C.; Figorilli, S.; Pentangelo, A.; Antonucci, F.; Costa, C. Greenhouse application of light-drone imaging technology for assessing weeds severity occurring on baby-leaf red lettuce beds approaching fresh-cutting. Span. J. Agric. Res. 2020, 18, e0207. [Google Scholar] [CrossRef]
- Aslan, M.F.; Durdu, A.; Sabanci, K.; Ropelewska, E.; Gültekin, S.S. A Comprehensive Survey of the Recent Studies with UAV for Precision Agriculture in Open Fields and Greenhouses. Appl. Sci. 2022, 12, 1047. [Google Scholar] [CrossRef]
- Ayamga, M.; Akaba, S.; Nyaaba, A.A. Multifaceted applicability of drones: A review. Technol. Forecast. Soc. Chang. 2021, 167, 120677. [Google Scholar] [CrossRef]
- Fanigliulo, R.; Antonucci, F.; Figorilli, S.; Pochi, D.; Pallottino, F.; Fornaciari, L.; Grilli, R.; Costa, C. Light drone-based application to assess soil tillage quality parameters. Sensors 2020, 20, 728. [Google Scholar] [CrossRef] [PubMed]
- Ortenzi, L.; Violino, S.; Pallottino, F.; Figorilli, S.; Vasta, S.; Tocci, F.; Antonucci, F.; Imperi, G.; Costa, C. Early Estimation of Olive Production from Light Drone Orthophoto, through Canopy Radius. Drones 2021, 5, 118. [Google Scholar] [CrossRef]
- Daponte, P.; De Vito, L.; Glielmo, L.; Iannelli, L.; Liuzza, D.; Picariello, F.; Silano, G. A review on the use of drones for precision agriculture. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; Volume 275, p. 012022. [Google Scholar]
- Ortenzi, L.; Figorilli, S.; Costa, C.; Pallottino, F.; Violino, S.; Pagano, M.; Imperi, G.; Manganiello, R.; Lanza, B.; Antonucci, F. A Machine Vision Rapid Method to Determine the Ripeness Degree of Olive Lots. Sensors 2021, 21, 2940. [Google Scholar] [CrossRef] [PubMed]
- Pallottino, F.; Figorilli, S.; Cecchini, C.; Costa, C. Light drones for basic in-field phenotyping and precision farming applications: RGB tools based on image analysis. In Methods in Molecular Biology; Tripodi, P., Ed.; Springer: New York, NY, USA, 2019; pp. 269–278. ISBN 978-1-0716-1200-2. [Google Scholar]
- Gagliolo, S.; Federici, B.; Ferrando, I.; Sguerso, D. MAGO: A new approach for orthophotos production based on adaptive mesh reconstruction. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.-ISPRS Arch. 2019, 42, 533–538. [Google Scholar] [CrossRef]
- Jin, L.; Ying-cheng, L.; De-long, L.; Chang-sheng, T.; Wen-hao, Z. The orthorectified technology for UAV aerial remote sensing image based on the Programmable GPU. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2014; Volume 17, p. 012201. [Google Scholar]
- Wierzbicki, D.; Kedzierski, M.; Fryskowsk, A. Assesment of the influence of uav image quality on the orthophoto production. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.-ISPRS Arch. 2015, 40. [Google Scholar] [CrossRef] [Green Version]
- Burdziakowski, P.; Bobkowska, K. UAV Photogrammetry under Poor Lighting Conditions—Accuracy Considerations. Sensors 2021, 21, 3531. [Google Scholar] [CrossRef] [PubMed]
- Wierzbicki, D.; Fryskowska, A.; Kedzierski, M.; Wojtkowska, M.; Delis, P. Method of radiometric quality assessment of NIR images acquired with a custom sensor mounted on an unmanned aerial vehicle. J. Appl. Remote Sens. 2018, 12, 015008. [Google Scholar] [CrossRef]
- Vereecken, N.J.; Schiestl, F.P. On the roles of colour and scent in a specialized floral mimicry system. Ann. Bot. 2009, 104, 1077–1084. [Google Scholar] [CrossRef] [PubMed]
- Menesatti, P.; Angelini, C.; Pallottino, F.; Antonucci, F.; Aguzzi, J.; Costa, C. RGB color calibration for quantitative image analysis: The “3D Thin-Plate Spline” warping approach. Sensors 2012, 12, 7063–7079. [Google Scholar] [CrossRef] [PubMed]
- Oborne, M. Mission Planner. Available online: http://planner.ardupilot.com (accessed on 6 September 2021).
- Saif, W.; Alshibani, A. Smartphone-Based Photogrammetry Assessment in Comparison with a Compact Camera for Construction Management Applications. Appl. Sci. 2022, 12, 1053. [Google Scholar] [CrossRef]
- Cadrin, S.X. Advances in morphometric identification of fishery stock. Rev. Fish Biol. Fisher 2000, 10, 91–112. [Google Scholar] [CrossRef]
- Rohlf, F.J. TpsSuper, Superimposition and Image Averaging, version 1.15; Department of Anthropology, Stonybrook University: Stony Brook, NY, USA, 2013. [Google Scholar]
- Aguzzi, J.; López-Romero, D.; Marini, S.; Costa, C.; Berry, A.; Chumbinho, R.; Ciuffardi, T.; Fanelli, E.; Pieretti, N.; Del Río, J.; et al. Multiparametric monitoring of fish activity rhythms in an Atlantic coastal cabled observatory. J. Mar. Syst. 2020, 212, 103424. [Google Scholar] [CrossRef]
- Aguzzi, J.; Flexas, M.M.; Flögel, S.; Lo Iacono, C.; Tangherlini, M.; Costa, C.; Marini, S.; Bahamon, N.; Martini, S.; Fanelli, E.; et al. Exo-ocean exploration with deep-sea sensor and platform technologies. Astrobiology 2020, 20, 897–915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Days | Zone 1 | Zone 2 | Zone 3 | Zone 4 | Zone 5 | Zone 6 |
---|---|---|---|---|---|---|
Day 1 (partly cloudy) | 10.03 | 12.00 | 12.15 | 13.08 | 15.04 | 16.29 |
Day 2 (clear) | 15.07 | 16.08 | 13.09 | 12.10 | 9.59 | 11.11 |
Day 3 (cloudy) | 12.39 | 13.19 | 12.22 | 15.47 | 15.36 | 10.51 |
Details | Items | Specifications |
---|---|---|
UAV | Weight | 297 g |
Dimensions | 143 mm × 143 mm × 55 mm | |
Max speed | 50 km/h | |
Satellite positioning systems | GPS/GLONASS | |
Digital camera | Camera focal length | 4.5 mm |
Sensor dimensions (WxH) | 6.17 mm × 4.56 mm | |
Sensor resolution | 12 megapixels | |
Image sensor Type | CMOS | |
Capture formats | MP4 (MPEG-4 AVC/H.264) | |
Still image formats | JPEG | |
Video recorder resolutions | 1920 × 1080 (1080 p) | |
Frame rate | 30 frames per second | |
Still image resolutions | 3968 × 2976 | |
GIMBAL | Control range inclination | from −85° to 0° |
Stabilisation | Mechanical two axes (inclination, roll) | |
Obstacle detection distance | 0.2–5 m | |
Operating environment | Surfaces with diffuse reflectivity (>20%) and dimensions greater than 20 × 20 cm (walls, trees, people, etc.) | |
Remote Control | Operating frequency | 5.8 GHz |
Max operating distance | 1.6 km | |
Battery | Supported batteryConfigurations | 3S |
Rechargeable battery | Rechargeable | |
Technology | lithium polymer | |
Voltage provided | 11.4 V | |
Capacity | 1480 mAh | |
Run rime (up to) | 16 min | |
Recharge rime | 52 min |
Parameters | Calibrated | Non-Calibrated |
---|---|---|
% Camera stations/Nimg | 99.97 ± 0.05 a | 92.50 ± 14.43 b |
Tie points | 4,188,281 ± 62,345 a | 3,880,425 ± 63,0471.1 a |
Projections | 11,465,475 ± 304,727 a | 10,650,366 ± 1,584,657 a |
Reprojection error | 2.02 ± 0.70 a | 2.37 ± 1.22 b |
Control points RMSE Total | 1.95 ± 2.28 a | 2.43 ± 2.93 a |
Check points RMSE total | 12.42 ± 25.56 a | 15.49 ± 26.45 a |
RMS SD-RGB | 6.0 ± 2.0 a | 8.7 ± 3.1 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tocci, F.; Figorilli, S.; Vasta, S.; Violino, S.; Pallottino, F.; Ortenzi, L.; Costa, C. Advantages in Using Colour Calibration for Orthophoto Reconstruction. Sensors 2022, 22, 6490. https://doi.org/10.3390/s22176490
Tocci F, Figorilli S, Vasta S, Violino S, Pallottino F, Ortenzi L, Costa C. Advantages in Using Colour Calibration for Orthophoto Reconstruction. Sensors. 2022; 22(17):6490. https://doi.org/10.3390/s22176490
Chicago/Turabian StyleTocci, Francesco, Simone Figorilli, Simone Vasta, Simona Violino, Federico Pallottino, Luciano Ortenzi, and Corrado Costa. 2022. "Advantages in Using Colour Calibration for Orthophoto Reconstruction" Sensors 22, no. 17: 6490. https://doi.org/10.3390/s22176490
APA StyleTocci, F., Figorilli, S., Vasta, S., Violino, S., Pallottino, F., Ortenzi, L., & Costa, C. (2022). Advantages in Using Colour Calibration for Orthophoto Reconstruction. Sensors, 22(17), 6490. https://doi.org/10.3390/s22176490