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Abstract: A real-time hybrid simulation (RTHS) is a promising technique to investigate a complicated
or large-scale structure by dividing it into numerical and physical substructures and conducting
cyber-physical tests on it. The control system design of an RTHS is a challenging topic due to the
additional feedback between the physical and numerical substructures, and the complexity of the
physical control plant. This paper proposes a novel RTHS control strategy by combining the theories
of adaptive control and robust control, where a reformed plant which is highly simplified compared
to the physical plant can be used to design the control system without compromising the control
performance. The adaptation and robustness features of the control system are realized by the
bounded-gain forgetting least-squares estimator and the sliding mode controller, respectively. The
control strategy is validated by investigating an RTHS benchmark problem of a nonlinear three-story
steel frame The proposed control strategy could simplify the control system design and does not
require a precise physical plant; thus, it is an efficient and practical option for an RTHS.

Keywords: sliding mode control; bounded-gain forgetting; least-squares estimator; robustness;
adaptation; real-time hybrid simulation; benchmark

1. Introduction

Full-scale structural tests are inefficient and expensive, and they are limited by the
capacity of the testing equipment (actuator or shake table). A real-time hybrid simulation
(RTHS) provides a new option to conduct structural tests, where the large part of the
structure that is well understood is extracted as the numerical substructure and modeled on a
computer, while the rest of structure that is normally a small part with complicated dynamic
properties is treated as the physical substructure and manufactured for testing [1–3]. An
RTHS is much more efficient than full-scale tests and has been widely used for a structural
analysis [4–8].

A loading device, such as a servo-hydraulic actuator or a shake table, works as the
transfer system to simulate the boundary conditions between the numerical and physical
substructures. The key of an RTHS is to design a controller/control system to drive
the physical plant which includes the transfer system and physical substructure to track
designated motions, where time delays/lags, sensor noises, modeling uncertainties and
disturbances should be well handled [9]. Compared to a normal control problem where
the designated motions are not influenced by the control performance, the control system
design for an RTHS is more challenging because there is an additional feedback loop
between the physical and numerical substructures that could accumulate errors in the
designated motions, and the physical plant is normally very complicated. In the recent
decades, the research community has paid more attention to a model-based control design
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that could compensate the time delays/lags and reject noises and uncertainties [10–13].
Nevertheless, to the best of the authors’ knowledge, most of the past studies assumed that
the model of the physical plant can be obtained, and even if uncertainties were considered,
the model parameters were varying in known boundaries. We believe that such information
might not be available in practice because the motivation of the RTHS is to conduct dynamic
tests on the part of a structure that is not well understood. More focus should be placed on
developing RTHS control systems for the situation where the knowledge of the physical
plant is very limited.

In this paper, a control strategy taking advantage of both adaptive control and robust
control is proposed, which allows us to use a reformed plant instead of the physical
plant to design the RTHS control system. The adaption and robustness properties are
realized by the bounded-gain forgetting least-squares (BLS) estimator and the sliding mode
controller, respectively. At first, the methodologies of the BLS estimator and the sliding
mode controller are presented, and the control strategy is demonstrated by a nonlinear
illustrative example. Next, the proposed control strategy is applied to a well-defined virtual
RTHS benchmark problem [14], where a small portion of the first floor of a three-story
steel-frame structure is extracted as the physical substructure, and the remaining portion of
the structure is treated as the numerical substructure. Different physical plants are created
by adding a damper or creating damage in the physical substructure. A single control
system is designed for these conditions, based on a unique reformed plant. The simulation
results show that high RTHS global tracking performances are achieved for all the three
reference structures, which validates the effectiveness of the proposed control strategy for
the RTHS.

2. Adaptive and Robust Control Strategy

The n-th order uncertain linear or nonlinear control plant is

x(n) = −αf
(

x, ẋ, · · · , x(n−1)
)
+ bu (1)

where
α = [α1, α2, · · · , αm], f

(
x, ẋ, · · · , x(n−1)

)
= [ f1, f2, · · · , fm]

T, (2)

u is the command input, α and b are unknown parameters (constant or slowly time vary-
ing), f1, f2, · · · , fm are linear or nonlinear functions where the derivative orders are equal
to or less than n − 1, the state variable x(n−1) which has the superscript (n − 1) means
the (n− 1)-th-order derivative of the first state x. The control target is to design a con-
trol system to generate the input command u that can drive the system’s state vector

x =
[

x, ẋ, · · · , x(n−1)
]T

to follow a designated trajectory xd =
[

xd, ẋd, · · · , x(n−1)
d

]T
, regard-

less of model uncertainties and measurement noises.
The control strategy proposed in this paper contains two layers: an adaptation layer

and a robustness layer. In the adaptation layer, unknown parameters α and b are estimated
online based on the plant’s past input and output data, by using the BLS estimator. The
estimations are denoted as α̂ and b̂. Then, in the robustness layer, a sliding mode controller
is designed assuming that there are bounded errors between the estimations and true values
of the model parameters. It is important to remark that for the control plant that could be
well modeled with bounded and slowly time-varying parameters, either of the adaptation
and robustness layers would be sufficient to achieve a high control performance. However,
the control strategy we proposed requires both layers to deal with more intractable control
plants as we will discuss later in detail. Both the BLS estimator and the sliding mode
controller have been proposed and discussed in our previous work [15–17]. Here, we
will briefly present how the BLS estimator and the sliding mode controller work and then
describe the control strategy that could fully take advantage of them. At the end of this
section, an illustrative example is conducted for demonstration purpose.
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2.1. Adaptation Layer

To estimate the model parameters, the control plant is rewritten as the following form:

y = WΨ (3)

where y and W are calculated from the input signal u and measurements; Ψ contains all
the model parameters in sequence or expressions of them. The most simple configuration
is given by

y = x(n), W = [−f, u], Ψ = [α, b]T, (4)

where the full states from x to x(n) need to be observable. In most cases, only limited
states (normally low-order states) could be directly measured, e.g., x, and sensor noises
are contained. Therefore, Equation (3) could be constructed by using some tricks, such as
applying both sides of Equation (1) through a low-pass filter to get rid of high-order states
and measurement noises. This process will be demonstrated in Section 3.3.

The estimation, predicted output, estimation error and prediction error are denoted as Ψ̂, ŷ,
Ψ̃ and e1, respectively. In addition, the following expressions are satisfied:

ŷ = WΨ̂, (5)

Ψ̃ = Ψ̂−Ψ, (6)

e1 = ŷ− y = WΨ̃. (7)

The typical least-squares method for parameter estimations is to minimize

Jp0(t) =
∫ t

0
‖ e1(q) ‖2dq (8)

where the function ‖ · ‖ returns the l2-norm of a vector or matrix. This method considers all
the past prediction errors and thus has a strong capability to estimate constant parameters
with respect to disturbances and measurement, which will be well smoothed out during
the estimation process [18]. On the other hand, it shows poor performance in tracking
time-varying parameters because past data are generated by past parameters. To overcome
this deficiency, the following error criteria

Jp(t) =
∫ t

0
Γ(q, t) ‖ e1(q) ‖2dq (9)

are adopted instead of Equation (8). In Equation (9),

Γ(q, t) = e−
∫ t

q θ(r)dr (10)

is the weighting coefficient which puts more attention on the recent data and decreases the
influence of the remote data; θ(r) > 0 is the time-varying forgetting factor that needs to be
tuned based on the estimation errors.

The optimum estimation Ψ̂(t) should satisfy:

Ψ̂(t) = P(t)
∫ t

0
Γ(q, t)WT(q)y(q)dq, (11)

where estimation gain P(t) is introduced here, given by

P(t) =
[∫ t

0
Γ(q, t)WT(q)W(q)dq

]−1
. (12)
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The first-order derivatives of Ψ̂(t) and P(t) could be deduced as follows:

˙̂Ψ(t) = −P(t)WT(t)e1(t), (13)

Ṗ(t) = θ(t)P(t)− P(t)WT(t)W(t)P(t). (14)

The derivations of Equations (13) and (14) are based on the following formulas:

Γ̇(0, t) =
d
dt

[
e−
∫ t

0 θ(r)dr
]
= −θ(t)Γ(0, t), (15)

d
dt

[
P(t)P(t)−1

]
= Ṗ(t)P(t)−1 + P(t)Ṗ(t)−1 = 0, (16)

and if

F(t) =
∫ t

0
Γ(q, t)∆(q)dq = Γ(0, t)

∫ t

0

∆(q)
Γ(0, q)

dq, (17)

then
Ḟ(t) = −θ(t)F(t) + ∆(t). (18)

According to Equation (12), P(0) = +∞, making it impossible to initiate the estimator
in simulation. Therefore, Equation (12) is modified as

P(t) =
[

Γ(0, t) P(0)−1 +
∫ t

0
Γ(q, t)WT(q)W(q)dq

]−1
, (19)

where P(0) is defined manually (should be a positive definite matrix with relatively high
eigenvalues). Because Γ(0, t) monotonically decreases and

lim
t→+∞

Γ(0, t) = 0, (20)

Equation (19) is approaching Equation (12) as time increases; thus, the error caused by P(0)
is gradually eliminated. The first-order derivatives of Ψ̂(t) and P(t) remain the same as
Equations (13) and (14) with the adoption of Equation (19).

The forgetting factor is tuned using

θ(t) = θ0

(
1− ‖ P(t) ‖

k0

)
(21)

where θ0 > 0, k0 ≥‖ P(0) ‖. Equations (13), (14) and (21) together form the BLS estimator.
Larger values of θ0 and k0 indicate “faster” forgetting, which could increase the estimator’s
capability in tracking time-varying parameters. Nevertheless, higher weights on the small
range of recent data points would enlarge the negative effects caused by noise, disturbance,
modeling errors and uncertainties, and thus create more oscillations in estimations. There-
fore, the selections of θ0 and k0 involve a trade-off between the capabilities of tracking
time-varying parameters and rejecting noise and disturbance.

2.2. Robustness Layer

The estimated values of the plant’s parameters: α̂ and b̂ are obtained from Ψ̂ and then
are treated as the nominal values of plant’s parameters. The errors between nominal and
true values are assumed to be bounded:

|α− α̂| ≤ ᾱ, |b− b̂| ≤ b̄, (22)

where ᾱ and b̄ are estimation error boundaries. Additionally, the sign of b is known and
constant, and the signs of b and b̂ are identical during the estimation, i.e.,

bb̂ > 0, |b| > 0, |b̂| > 0. (23)
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This assumption is reasonable because the input gain b is normally constant or varying
within a small range.

Sliding mode controllers have been widely adopted for the tracking control of systems
which have bounded model uncertainties like Equation (22) [19,20]. The methodologies
of the sliding mode controller are presented below. The compact error combining tracking
errors of full states is defined as

E =

(
d
dt

+ λ

)n−1
e = e(n−1) +

n−1

∑
i=1

(n− 1)!
i!(n− 1− i)!

λie(i−1), (24)

where λ is a positive constant, e = x− xd is the first state tracking error. For instance, n = 3,
E = ë + 2λė + λ2e. Equation (24) indicates that e could be regarded as scalar obtained by
applying the low-pass filter 1/(s + λ) on E for n− 1 times, where s is the Laplace variable.
It can be proven [18] that if there exists a small positive value ξ that satisfies

|E(t)| ≤ ξ, ∀t > 0, (25)

then we have

|e(i)(t)| ≤ 2iλi

λn−1 ξ, ∀t > 0, i = 0, 1, ..., n− 1. (26)

Thus, the tracking of the states x, ẋ, ..., x(n−1) is equivalent to stabilizing the single scalar E.
It can be obtained that

Ė = −α f + bu− h, (27)

where

h = x(n)d −
n−1

∑
i=1

(n− 1)!
i!(n− 1− i)!

λie(i). (28)

E = 0 is regarded as the sliding surface, which is the perfect condition where there are
no tracking errors. A sliding mode controller is trying to ensure that the distance from E to
the sliding surface always tends to decrease, i.e.,

Ė ≤ 0 for E ≥ 0,

Ė > 0 for E < 0,
(29)

despite the presence of model uncertainties. Equation (29) can be reformed as the following
inequality:

ĖE ≤ −η|E| (30)

where η is a positive constant. Equation (30) can be also formed based on Barbalat’s
lemma [18], by choosing an energy-type Lyapunov function

V =
1
2

E2 (31)

and making
V̇ ≤ −η|E| < 0 (32)

to guarantee the boundedness of E.
The input command is designed as

u = û + uc, (33)

where
û = b̂−1(α̂ f + h) (34)
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is the nominal command to achieve Ė = 0, assuming that the nominal model parameters
α̂ and b̂ are used in Equation (27), and uc is the correction input that is aimed to reject the
divergences caused by parameter uncertainties. The ideal form of uc is

uc = −b̂−1k sgn(E) (35)

where k is the correction gain that needs to be tuned, and

sgn(E) =





−1, E < 0,

0, E = 0,

1, E > 0.

(36)

However, the adoption of Equations (30) and (35) would create undesirable chatter-
ings/oscillations around the sliding surface, which might excite unmodeled high-frequency
dynamics of the control plant or even make the system unstable [15,18]. To avoid such a
scenario, the boundary layer Φ > 0 is used to smooth out the command input. The compact
error E is driven back into the boundary layer Φ rather than the strict sliding surface E = 0;
therefore, the following relationships are established

Ė ≤ Φ̇ for E ≥ Φ,

Ė > −Φ̇ for E < −Φ,
(37)

which can be rewritten as

ĖE ≤
(
Φ̇− η

)
|E| for |E| ≥ Φ. (38)

The correction input is modified as

uc = −b̂−1k sat(E/Φ) (39)

where

sat(E/Φ) =

{
E/Φ, |E| < Φ,

sgn(E), |E| ≥ Φ.
(40)

Taking Equations (33), (34) and (39) into Equation (27) yields

Ė + bb̂−1k sat(E/Φ) = (α̂− α)f +
(

b− b̂
)

û. (41)

Based on Equations (22) and (23), the following inequalities are obtained:

ρ2 ≤ b−1b̂ ≤ ρ1, ρ−1
1 ≤ bb̂−1 ≤ ρ−1

2 (42)

where

ρ1 =
b̂

b̂− sgn(b̂)b̄
> 1, 0 < ρ2 =

b̂
b̂ + sgn(b̂)b̄

< 1. (43)

Two situations: (1). |E| ≥ Φ and (2). |E| < Φ are discussed below.

(1). |E| ≥ Φ
Equations (38) and (41) lead to

k|E| ≥ b−1b̂(α̂− α)fE + (1− b−1b̂)b̂ûE + b−1b̂(η − Φ̇)|E|. (44)

Because
b−1b̂(α̂− α)fE ≤ ρ1ᾱ|f||E|, (45)

(1− b−1b̂)b̂ûE ≤ (1− ρ2)|b̂û||E|, (46)
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b−1b̂(η − Φ̇)|E| ≤
{

ρ1(η − Φ̇)|E|, η ≥ Φ̇,

ρ2(η − Φ̇)|E|, η < Φ̇,
(47)

k can be set as

k =

{
ρ1ᾱ|f|+ (1− ρ2)|b̂û|+ ρ1(η − Φ̇), η ≥ Φ̇,

ρ1ᾱ|f|+ (1− ρ2)|b̂û|+ ρ2(η − Φ̇), η < Φ̇.
(48)

(2). |E| < Φ
Equation (41) yields a first-order low-pass filter on the compact error E:

Ė +
bb̂−1k

Φ
E = (α̂− α)f +

(
b− b̂

)
û. (49)

The filter’s input (right side of the above equation) can be interpreted as the perturbation
due to parameter uncertainties. Because all the parameters are bounded, the compact error
E will be stabilized in a finite time. The filter’s cut-off frequency is

fc =
bb̂−1k

Φ
≤ k

ρ2Φ
= λ1, (50)

where λ1 is the frequency limit we set to make the filter work properly. Higher value of
cut-off frequency results in lower filter gain, which is beneficial to stabilize E, while it also
might excite unmodeled high-frequency dynamics. There, the frequency limit λ1 is set as
high as possible within the bandwidth of the plant model. Equation (50) results in

k = λ1ρ2Φ. (51)

Equations (48) and (51) together are used to tune Φ and k online (initial values: Φ(0) = 0,
k(0) = 0), which works as a first-order exponentially stable filter, leading to the global
boundedness of Φ and k. With Φ and k being determined, the input command u is obtained
according to Equations (33), (34) and (39). The establishment of the sliding mode controller
is complete.

2.3. Control Strategy

The layers of adaption and robustness presented above make it is possible to design
the control system based on a reformed control plant instead of the original control plant.
The reformed control plant could be totally different and much more simpler compared
to the original control plant, where their differences are compensated by the control sys-
tem. In this way, the efforts to determine the control plant for a complicated system as
precise as possible could be saved, and the design process of the control system could be
significantly simplified.

In the classic sliding mode control where no estimator is implemented, the plant’s
parameters need to be bounded in known ranges; thus, the control plant should be carefully
modeled. The proposed control strategy does not require that, but on the other hand, it
results in an issue that the estimation error boundaries ᾱ and b̄ cannot be determined prior
to deploying the control system. To address this issue, ᾱ and b̄ can be set as relatively large
values or updated online based on the estimations α̂ and b̂, e.g., by using

ᾱ = 0.9|α̂|, b̄ = 0.9|b̂|. (52)

This approach is conservative and can cause a high value of correction gain k which would
make the controller very aggressive if no boundary layer is adopted. Fortunately, large
ᾱ and b̄ also results in large boundary layer to increase the probability that the low-pass
filter on E works, and the filter’s cut-off frequency fc will not change much according to
Equation (50). Therefore, the control system would still work properly. The proposed
control strategy is demonstrated by the following illustrative example.
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2.4. An Illustrative Example

A forced Van der Pol oscillator is considered in this illustrative example:

ẍ = −αv1x− αv2(x2 − 1)ẋ + bvu. (53)

The true values of parameters are

αv1(t) = 40 + 4 sin
(

2π

3
t +

π

4

)
, (54)

αv2(t) = 2 + 0.2 sin
(

4π

3
t− π

4

)
, (55)

bv(t) = 1 + 0.1 sin
(π

2
t +

π

6

)
, (56)

which are unknown to us. In the following, we will implement control systems based on
three different control plants. The first one is the original plant given by Equation (53); the
second and third ones are

ẍ = −αr11x− αr12 ẋ + br1u, (57)

and
ẍ = −αr2x + br2u, (58)

respectively, which are referred to as reformed plant 1 and reformed plant 2. The reformed
plant 1 replaces the nonlinear item αv2(x2 − 1)ẋ in Equation (53) with a linear item αr12 ẋ,
and the reformed plant 2 takes a further step to remove that nonlinear item.

The control systems adopt same parameters, which are

θ0 = 200, k0 = 4000, P(0) = diag(k0, ..., k0) (59)

for the BLS estimator, and
λ = λ1 = 100, η = 0.1 (60)

for the sliding mode controller. The initial estimations of the original plant’s parameters
are set as

α̂v1(0) = 40, α̂v2(0) = 2, b̂v(0) = 1, (61)

which are close to the true values, assuming that we have a basic understanding of the
original plant. However, there is no such information for the reformed plants; therefore,
the initial estimations of the reformed plants’ parameters are simply set as

α̂r11(0) = α̂r12(0) = b̂r1(0) = 1, (62)

α̂r2(0) = b̂r2(0) = 1. (63)

The designated displacement trajectory xd for this example is a randomly generated band-
limited white noise with cut-off frequency: 3 Hz, power spectral density: 400 mm2, sam-
pling frequency: 1024 Hz and time duration: 8 s. The designated velocity trajectory ẋd is
obtained by taking derivative operation on xd.

The displacement and velocity tracking results of the three control plants are shown
in Figure 1. All three control plants could result in a good tracking performance without
obvious differences among them.
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Figure 1. Tracking results for the forced Van der Pol oscillator.

To quantitatively compare three control plants, displacement and velocity relative
tracking errors (abbreviated to dis. err. and vel. err.):

ex(t) =
x(t)− xd(t)
max[xd(t)]

× 100%, eẋ(t) =
ẋ(t)− ẋd(t)
max[ẋd(t)]

× 100% (64)

are calculated. The peak dis. and vel. err. of three control plants are listed in Table 1. It can
be inferred from Table 1 that the peak errors of reformed plants are kept at a low level (less
than 1%) and are close to those of the original plant. Additionally, the reformed plant 2
even achieves better displacement tracking performance than the original plant. Therefore,
both reformed plants can be used for the design of control systems.

Table 1. Peak dis. and vel. err. of three control plants.

Original Plant Reformed Plant 1 Reformed Plant 2

Peak dis. err. (%) 0.617 0.673 0.584
Peak vel. err. (%) 0.723 0.881 0.948

The true values and estimations of the original plant’s parameters are shown in
Figure 2. Although there are oscillations existing in the estimations, the variations of
parameters are generally well tracked by the BLS estimator. For the reformed plants, the
parameter estimations are shown in Figures 3 and 4, which are varying in large ranges:

α̂r11 ∈ [−115.79, 190.32], α̂r12 ∈ [−7.90, 15.86], b̂r1 ∈ [0.42, 1.60], (65)

and
α̂r2 ∈ [−207.30, 226.9], b̂v2 ∈ [0.18, 1.81]. (66)

The model errors of the reformed plants are essentially compensated by the large oscil-
lations of their parameters. It is important to remark that the parameter ranges of the
reformed plant 2 is larger than those of the reformed plant 1. The reason behind this
observation is that the reformed plant 2 is more simple than the reformed plant 1; thus,
higher parameter variations of the reformed plant 2 are required to compensate the plant
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errors. The numerical example conducted in this section proves that the proposed control
strategy is feasible.

0 1 2 3 4 5 6 7 8
32

40

48

,
v
1

0 1 2 3 4 5 6 7 8
1.4

2

2.6

,
v
2

0 1 2 3 4 5 6 7 8
Time (s)

0.8

1

1.2

b v

True value
Estimation

Figure 2. True values and estimations of the original plant’s parameters.
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1

Figure 3. Estimations of the reformed plant 1’s parameters.
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−240

0

240

,̂
r2

0 1 2 3 4 5 6 7 8
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0

1

2
b̂ r

2

Figure 4. Estimations of the reformed plant 2’s parameters.

3. Application to Real-Time Hybride Simulation

Figure 5 is the block diagram of a general RTHS. The entire structure of interest is
divided into the numerical substructure modeled on a computer and the physical substruc-
ture manufactured for testing. The measured force from the physical substructure is fed
into the numerical substructure to calculate the designated motions (e.g., displacement,
velocity or acceleration) at the interface/boundary between the numerical and physical
substructures. This loop is referred to as the outer loop. The control system generates the
command signal based on the designated and measured motions it received and sends the
command signal to the transfer system (normally the servo-hydraulic actuator), which then
applies dynamic loads to the physical substructure to make it move along the designated
motions. This loop is referred to as the inner loop.
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The physical plant in an RTHS is very complicated, because it includes the dynamics
of the transfer system, physical substructure and control–structure interaction (CSI) [21,22]
between them, with the existence of parametric/non-parametric modeling errors, measure-
ment noises, time delays/lags, etc. Additionally, the RTHS performance is evaluated not by
simply checking the tracking performance of the control system in the inner loop, but by
comparing the results of the RTHS with those of the reference model of the entire structure
(reference structure). A small tracking error in the inner loop has a considerable effect to
deviate the designated motions in the outer loop, which might eventually significantly
deteriorate the RTHS performance. Therefore, the performance requirement of the RTHS
control system is much more stringent than that of the normal control system which only
has one loop.

A virtual RTHS benchmark problem on the seismic analysis of a linear three-story steel
frame [14] has been proposed for the community to enable researchers to evaluate their
RTHS control systems. Figure 6 depicts the RTHS reference structure and its partitioning
scheme, where a nonlinear MR damper is added into the structure in this paper to further
increase the complexity of the physical plant. Note that in the default benchmark problem
definition, there is no damper, and the whole structure is linear. In the following sections,
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simply checking the tracking performance of the control system in the inner loop, but by
comparing the results of the RTHS with those of the reference model of the entire structure
(reference structure). A small tracking error in the inner loop has a considerable effect to
deviate the designated motions in the outer loop, which might eventually significantly
deteriorate the RTHS performance. Therefore, the performance requirement of the RTHS
control system is much more stringent than that of the normal control system which only
has one loop.

A virtual RTHS benchmark problem on the seismic analysis of a linear three-story steel
frame [14] has been proposed for the community to enable researchers to evaluate their
RTHS control systems. Figure 6 depicts the RTHS reference structure and its partitioning
scheme, where a nonlinear MR damper is added into the structure in this paper to further
increase the complexity of the physical plant. Note that in the default benchmark problem
definition, there is no damper, and the whole structure is linear. In the following sections,
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we will present the control system design based on the control strategy we proposed and
evaluate the performance of the control system.
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3.1. Reference Structures

The modeling of the reference structure where no damper is installed has been given
in the definition paper of the RTHS benchmark problem [14], which is omitted here. The
MR damper we add is assumed to be governed by a force–velocity model [23]:

FMR = kd Antan−1(n0 ẋMR) + kdCn ẋMR (67)

where
An = q1 + (q2|v|+ q3|v|)1/3, (68)

Cn = r1 + (r2|v|+ r3|v|)1/3, (69)

FMR (unit: kN) and ẋMR (unit: m/s) are the force and velocity, respectively, v (Unit: V) is
the input voltage of the damper, n0, q1, q2, q3, r1, r2 and r3 are constant model parameters
whose values are listed in Table 2 and kd is the scale coefficient we add to adjust the damper
force. In this paper, we set kd = 6.5× 10−3 to let the damper contribute around 20% of the
first floor’s force. Figure 7 plots the force–displacement and force–velocity responses of
the MR damper under sinusoidal displacement input: 5 sin 2.5πt (mm), when the input
voltage is 0.0, 0.5 and 1.5 V.

Table 2. Parametric values of the MR damper model.

q1 q2 q3 r1 r2 r3 n0

2.2 2.16× 105 7.38× 104 92 1.58× 106 2.40× 105 100

To establish the model of the reference structure, which is installed with the MR
damper, the damper force FMR obtained from Equation (67) is added into the first floor’s
force. In the benchmark problem definition, three earthquakes, El Centro 1940, Kobe 2005
and Morgan Hill 1984, and a linear chirp signal (0∼10 Hz, 90 s) are selected as the ground
acceleration inputs of the structure, with their amplitudes being scaled down to 40%.
Because a fixed specimen is used as the physical substructure in the RTHS, four different
partitioning cases are created by changing the floor mass (three floors have identical mass)
and damping ratio (three modes have identical damping ratio) of the structure. The four
partitioning cases are listed in Table 3. The predictive stability indicator (PSI) can be used to
indicate the sensitivity of the partitioning case [24,25]. Based on the PSIs of the four cases,
it has been confirmed that Case 4 is the most sensitive case among them and needs to be
carefully dealt with in the RTHS [14].
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FMR (unit: kN) and ẋMR (unit: m/s) are the force and velocity, respectively, v (Unit: V) is
the input voltage of the damper, n0, q1, q2, q3, r1, r2 and r3 are constant model parameters
whose values are listed in Table 2 and kd is the scale coefficient we add to adjust the damper
force. In this paper, we set kd = 6.5× 10−3 to let the damper contribute around 20% of the
first floor’s force. Figure 7 plots the force–displacement and force–velocity responses of
the MR damper under sinusoidal displacement input: 5 sin 2.5πt (mm), when the input
voltage is 0.0, 0.5 and 1.5 V.

Table 2. Parametric values of the MR damper model.

q1 q2 q3 r1 r2 r3 n0

2.2 2.16× 105 7.38× 104 92 1.58× 106 2.40× 105 100

To establish the model of the reference structure, which is installed with the MR
damper, the damper force FMR obtained from Equation (67) is added into the first floor’s
force. In the benchmark problem definition, three earthquakes, El Centro 1940, Kobe 2005
and Morgan Hill 1984, and a linear chirp signal (0∼10 Hz, 90 s) are selected as the ground
acceleration inputs of the structure, with their amplitudes being scaled down to 40%.
Because a fixed specimen is used as the physical substructure in the RTHS, four different
partitioning cases are created by changing the floor mass (three floors have identical mass)
and damping ratio (three modes have identical damping ratio) of the structure. The four
partitioning cases are listed in Table 3. The predictive stability indicator (PSI) can be used to
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indicate the sensitivity of the partitioning case [24,25]. Based on the PSIs of the four cases,
it has been confirmed that Case 4 is the most sensitive case among them and needs to be
carefully dealt with in the RTHS [14].
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Figure 7. Force–displacement and force–velocity responses of the MR damper under sinusoidal
displacement input: 5 sin 2.5πt (mm).

Table 3. Four RTHS partitioning cases.

Partitioning Case Floor Mass (kg) Damping Ratio (%)

Case 1 1000 5
Case 2 1100 4
Case 3 1300 3
Case 4 1000 3

In this paper, we consider three different reference structures, as explained in Table 4,
where Intact w/o d is the default reference structure in the benchmark problem definition.
Figure 8 compares the third-floor displacement responses of Intact w/o d and Intact w d
under the El Centro earthquake for Case 4. It can be seen that the structural response is
significantly reduced when the MR damper is installed. Figure 9 compares the third-floor
displacement responses of Intact w/ d and Damaged w d under the El Centro earthquake
for Case 4. The response of the intact structure is sharply increased compared to that of the
damaged structure after the damage occurs.
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Figure 8. Third-floor displacement responses of Intact w/o d and Intact w/ d (El Centro earthquake,
Case 4).
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Figure 9. Third-floor displacement responses of Intact w/ d and Damaged w/ d (El Centro earth-
quake, Case 4).

Table 4. Three reference structures.

Label Description

Intact w/o d The physical substructure is intact, and no damper is installed.

Intact w/ d The physical substructure is intact, and an MR damper is installed.

Damaged w/ d An MR damper is installed. The physical substructure is damaged at 14 s.
When damage occurs, the stiffness and damping of the physical substructure
drop to 10%, and the MR damper stops working.

3.2. Physical Plant and Reformed Plant

Figure 10 is the block diagram of the physical plant for Intact w/ d, where yGc is the
command input sending to the transfer system; Fm and xm are the measurements with
sensor noises of the the physical substructure’s force F and displacement x; me, ce and ke
are the physical substructure’s mass, damping coefficient and stiffness; a1β0, a2, a3, β1 and
β2 are parameters associated with the dynamics of the servo-hydraulic actuator. For Intact
w/o d, the block of the MR damper model is disabled at the beginning of the simulation.
For Damaged w/ d, the block of the MR damper model is disabled and ce and ke are
decreased to 10% at 14 s to simulate the sudden damage.
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3.2. Physical Plant and Reformed Plant

Figure 10 is the block diagram of the physical plant for Intact w/ d, where yGc is the
command input sending to the transfer system; Fm and xm are the measurements with
sensor noises of the the physical substructure’s force F and displacement x; me, ce and ke
are the physical substructure’s mass, damping coefficient and stiffness; a1β0, a2, a3, β1 and
β2 are parameters associated with the dynamics of the servo-hydraulic actuator. For Intact
w/o d, the block of the MR damper model is disabled at the beginning of the simulation.
For Damaged w/ d, the block of the MR damper model is disabled and ce and ke are
decreased to 10% at 14 s to simulate the sudden damage.
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Figure 10. Block diagram of the physical plant for Intact w/ d.

For Intact w/o d, the physical plant is linear, and the transfer function from yGc to x is
given by [14]:

Gp(s) =
B0

A5s5 + A4s4 + A3s3 + A2s2 + A1s + A0
(70)

where
B0 = a1β0, A0 = kea3β2 + a1β0,

A1 = kea3β1 + (ke + cea3 + a2)β2,

A2 = kea3 + (ke + cea3 + a2)β1 + (ce + mea3)β2,

A3 = ke + cea3 + a2 + (ce + mea3)β1 + meβ2,

A4 = ce + mea3 + meβ1, A5 = me.

(71)

Equation (70) is defined as the physical plant of Intact w/o d. The nominal values and
the associated uncertainties (standard deviations) of the plant’s parameters are listed in
Table 5 [14].
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where
B0 = a1β0, A0 = kea3β2 + a1β0,

A1 = kea3β1 + (ke + cea3 + a2)β2,

A2 = kea3 + (ke + cea3 + a2)β1 + (ce + mea3)β2,

A3 = ke + cea3 + a2 + (ce + mea3)β1 + meβ2,

A4 = ce + mea3 + meβ1, A5 = me.

(71)

Equation (70) is defined as the physical plant of Intact w/o d. The nominal values and
the associated uncertainties (standard deviations) of the plant’s parameters are listed in
Table 5 [14].

Table 5. Nominal values and standard deviations of the physical plant’s parameters.

Parameter Nominal Value Standard Deviation Unit

a1β0 2.13× 1013 — kg/s5

a2 4.23× 106 — kg/s2

a3 3.3 1.3 s−1

β1 425 3.3 s−1

β2 1× 105 3.31× 103 s−2

me 29.1 — kg
ce 114.6 — kg/s
ke 1.19× 106 5× 104 kg/s2

In our previous work [17], a reformed plant:

Gpr(s) =
1

s2 + α2s + α1
× d1(1 + d2s)

1 + d3s
. (72)

was developed to fit Equation (70). In the reformed plant, d1, d2 and d3 are constants, while
α1 and α1 are assumed to bounded, i.e.,

|α1 − α̂1| = ᾱ1, |α2 − α̂2| = ᾱ2 (73)

to consider uncertainties, where α̂1 and α̂2 are nominal values of α1 and α1, and ᾱ1 and ᾱ2
are their boundaries. The nominal values and boundaries of these parameters are listed in
Table 6.

Table 6. Nominal values and boundaries of the reformed plant’s parameters.

Parameter Nominal Value Boundary Unit

α1 54,290 5429 s−2

α2 221.64 79.79 s−1

d1 53,354 — s−2

d2 1.06× 10−4 — s
d3 2.11× 10−2 — s

Figure 11 compares the frequency responses of the physical and reformed plants for
Intact w/o d. It can be seen from Figure 11 that the reformed plant is capable to encompass
the dynamic behaviors of the physical plant over a wide frequency range. However, it
is important to remark that the good fitting shown in Figure 11 is only for Intact w/o
d. The physical plants of Intact w/ d and Damage w/ d are highly nonlinear, and they
have much different dynamic properties compared to that of Intact w/o d, as shown in
Figures 8 and 9. Additionally, they can hardly be expressed by explicit equations for the
design of model-based control systems. In this paper, we will not form new reformed
plants for physical plants of Intact w/ d and Damage w/ d. Instead, we will develop a
unique control system which works for Intact w/o d, Intact w/ d and Damage w/ d.
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Figure 11. Frequency responses of physical and reformed plants (left: nominal models; right: models
with uncertainties).

3.3. Control System Design

The adjust command u is defined as

u =
d1(1 + d2s)

1 + d3s
yGc. (74)

Combining Equations (72) and (74) yields the adjust plant:

ẍ = −α1x− α2 ẋ + u, (75)

which is a second-order linear system. The control system design in this section is based on
the adjust plant. The parameters α1 and α2 are estimated online by the BLS estimator, and
the nominal values of them listed in Table 6 are adopted as the initial estimations: α̂1(0)
and α̂2(t). To make the control system robust to different reference structures, α1(t) and
α2(t) are assumed to be varying in relatively large boundaries:

ᾱ1 = α̂1(0), ᾱ2 = α̂2(0) (76)

instead of the boundaries listed in Table 6. Note that it has been verified by the authors
that if the boundaries listed in Table 6 are used for α1(t) and α2(t), the control system still
works well, while larger boundaries are preferred which could achieve a higher control
performance.

3.3.1. BLS Estimator

Equation (75) cannot be directly adopted for the BLS estimator, because only the
first state x is measurable, and the measurement xm contains noise. To eliminate the
states x = [x, ẋ]T and reject the noise effect, Equation (74) is multiplied by a second-order
low-pass filter:

1
s2 + z2s + z1

(77)
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on both sides. Then, the linear estimation equation y = WΨ of the BLS estimator
is obtained:

xm −
1

s2 + z2s + z1
u

︸ ︷︷ ︸
y

=

[
− 1

s2 + z2s + z1
xm, − s

s2 + z2s + z1
xm

]

︸ ︷︷ ︸
W

×
[

α1 − z1
α2 − z2

]

︸ ︷︷ ︸
Ψ

(78)

where the state x is replaced by the measurement xm. With the estimation Ψ̂(t), α̂1(t) and
α̂2(t) are calculated by using

[α̂1(t), α̂2(t)] = Ψ̂(t)T + [z1, z2]. (79)

Adding a low-pass filter in a control loop may introduce an instability problem; thus,
the filter should be carefully designed. The low-pass filter’s parameters are selected as
z1 = 1600 s−2 and z2 = 10 s−1 to put our focus on the main frequency range 0∼10 Hz of the
system response, as shown in Figure 12. The BLS estimator’s parameters are set as θ0 = 10
and k0 = 1× 106.
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Figure 12. Frequency response of the low-pass filter: z1 = 1600 s−2, z2 = 10 s−1.

3.3.2. Time-Varying Kalman Filter

The estimations α̂1(t) and α̂2(t) are used to deploy a time-varying Kalman filter to
obtain the state estimations x̂ = [x̂, ˙̂x]T based on the measurement xm. The state-space
representation of Equation (75) is

ẋ = A(t)x + Bu

xm = Cx + w
(80)

where

A(t) =
[

0 1
−α̂1(t) −α̂2(t)

]
, B =

[
0
1

]
, C = [1 0], (81)

and w is the white noise with covariance of 2.56× 10−10 m2, which is given in the benchmark
problem definition. A Simulink block Kalman filter is adopted to calculate the filter gain
L(t) online and estimate the states based on the following law

˙̂x = A(t)x̂ + Bu + L(t)(xm − Cx̂). (82)

Because A(t) and L(t) are updated with α̂1(t) and α̂2(t), Equation (82) represents a time-
varying Kalman filter.

It is important to remark that the parameter estimations of the plant are obtained first,
and then they are used in the time-varying Kalman filter to estimate the plant’s states. This
process is achievable because the plant is linear; thus, we could design a low-pass filter as
Equation (76) to make the BLS estimator work solely based on the measurement xm. For a
complex nonlinear plant, the BLS estimator normally requires full states without noises,
which will lead to a contradiction because the BLS estimator should be executed before the
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full states are estimated by the states filter. This problem deserves more studies, and it is
out of scope of this paper.

3.3.3. Sliding Mode Controller

The measured force Fm is treated as one of the inputs of the numerical substructure
(the other input is the ground acceleration) to calculate the designated motions xd, ẋd and
ẍd of the physical substructure. Note that although the measurement Fm also contains
sensor noise, the negative effect of noise can be well eliminated because the numerical
substructure works like a low-pass filter. The simulation time step is τ = 1/4096 s; thus, a
phase-lead compensator

eτs ≈ 1 + 2τs
1 + τs

(83)

is implemented to compensate the one-time-step delay in xd, ẋd and ẍd.
The compact error is

E = ˙̂x− ẋd + λ(x̂− xd). (84)

Because there is no parameter uncertainty on the input gain of the adjust plant, the control
law can be deduced as

u = û + uc, (85)

where
û = α̂1 x̂ + α̂2 ˙̂x + ẍd + λ

(
ẋd − ˙̂x

)
, uc = −k sat(E/Φ), (86)

and adaptation laws of the correction gain k and the boundary layer Φ are

k = λ1Φ = ᾱ1|x̂|+ ᾱ2| ˙̂x|+ η − Φ̇, k(0) = Φ(0) = 0. (87)

The parameters of the sliding mode controller are set as η = 0.1, λ = λ1 = 30 Hz = 188 s−1.
The control system design is complete. The implementation of the control system is

shown in Figure 13.
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ẍg xd, ẋd
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Figure 13. Block diagram of the control system in RTHS.

3.4. Results and Discussions

In the execution of the virtual RTHS (pure simulation), the physical plant that uses the
nominal parametric values listed in Table 5 is defined as the nominal plant, and the physical
plant that uses uncertain parametric values (randomly generated according to the standard
deviations) is defined as the perturbed plant. The third-floor displacement responses of
Intact w/o d, Intact w/ d and Damaged w/ d, where the El Centro earthquake, partitioning
Case 4 and an identical perturbed plant are used, are shown in Figures 14–16. It can be
seen from these figures that high RTHS tracking performances are achieved. The peak
relative displacement tracking errors for the three reference structures are 0.62, 3.60 and
2.67%, respectively. For Intact w/o d, the physical plant is linear and is well represented
by the reformed plant; thus, the tracking error is kept at a much lower level compared
to Intact w/ d. For Intact w/ d, the tracking error is oscillating irregularly during the
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3.4. Results and Discussion

In the execution of the virtual RTHS (pure simulation), the physical plant that uses the
nominal parametric values listed in Table 5 is defined as the nominal plant, and the physical
plant that uses uncertain parametric values (randomly generated according to the standard
deviations) is defined as the perturbed plant. The third-floor displacement responses of
Intact w/o d, Intact w/ d and Damaged w/ d, where the El Centro earthquake, partitioning
Case 4 and an identical perturbed plant are used, are shown in Figures 14–16. It can be
seen from these figures that high RTHS tracking performances are achieved. The peak
relative displacement tracking errors for the three reference structures are 0.62, 3.60 and
2.67%, respectively. For Intact w/o d, the physical plant is linear and is well represented
by the reformed plant; thus, the tracking error is kept at a much lower level compared
to Intact w/ d. For Intact w/ d, the tracking error is oscillating irregularly during the
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entire simulation. The reason is that the BLS estimator and the sliding mode controller
are trying to instantaneously compensate the unmodeled nonlinear behaviors of the plant.
For Damaged w/ d, the plant is restored to be linear after 14 s due to the failure of the
MR damper. The control system takes around two seconds to adapt the sudden plant
change caused by the damage and then works efficiently to decrease the tracking error to a
low level.
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Figure 14. Third-floor displacement responses of Intact w/o d (El Centro earthquake, Case 4,
perturbed plant).
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Figure 15. Third-floor displacement responses of Intact w/ d (El Centro earthquake, Case 4,
perturbed plant).
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Figure 16. Third-floor displacement responses of Damaged w/ d (El Centro earthquake, Case 4,
perturbed plant).

The parameter estimations for the different reference structures are shown in Figure 17.
There are no ground accelerations in the first five seconds; thus, the BLS estimator is
actually not activated during that time due to the insufficiency of the data. After 5 s,
the BLS estimator starts to work and adapt to the parameter variations. The estimated
parameters for Intact w/o d are converged to constants because the physical plant is linear.
The estimated parameters for Intact w/o d are time varying to compensate for the nonlinear
dynamics created by the additional MR damper. For Damaged w/ d, the estimated
parameters change dramatically during the two seconds (14∼16 s) after the damage occurs
and then converge to constants. The observations from Figure 14 to Figure 17 demonstrate
that the unique control system is robust and adaptive to three different reference structures.
Furthermore, the sudden change in the plant of Damaged w/ d can be reflected in the
parameter estimations, which provides a potential way to monitor the structural condition
of the plant during the execution of the RTHS.
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Figure 17. Parameter estimations for Intact w/o d, Intact w/ d and Damaged w/d (El Centro
earthquake, Case 4, perturbed plant).

Nine evaluation criteria J1 ∼ J9 need to be calculated according to the benchmark
problem definition. J1, J2 and J3 are used to evaluate the control performance in the inner
loop. J1 is the tracking time delay, and J2 and J3 are the normalized root mean square error



Sensors 2022, 22, 6569 21 of 24

and peak error for the displacement tracking. J4 ∼ J9 are a set of relative errors between
the structural responses of the RTHS and those of the reference structures to evaluate the
RTHS global tracking performance. The detailed descriptions and expressions of J1 ∼ J9
can be found in the definition document [14].

Tables 7–10 list the evaluation criteria of Damaged w/ d under the El Centro earth-
quake. For each partitioning case, the nominal plant and five perturbed plants are con-
sidered. All the tracking delays (J1) remain at zero, and J2 and J3 are no greater than
0.61%. Therefore, the control system achieves an excellent inner-loop tracking performance.
J4 ∼ J9 are slightly higher than J2 and J3, while they are still kept at a low level (1.79∼4.06%),
indicating a good RTHS global performance. It can be seen that the evaluation criteria
for Case 4 are higher than those for the other partitioning cases, which agrees with the
conclusion that Case 4 is the most sensitive partitioning case. The evaluation criteria of
Damaged w/ d under the Kobe and Morgan earthquakes and the Chirp excitation for
Case 4 are listed in Appendix A. The evaluation criteria of Intact w/o d and Intact w/ d
also have low values (less than 5%), which are not listed in this paper for readability.

Table 7. Evaluation criteria (Damaged w/ d, El Centro earthquake, Case 1).

Control J1 J2 J3 J4 J5 J6 J7 J8 J9
Plant (msec) (%) (%) (%) (%) (%) (%) (%) (%)

Nominal 0 0.45 0.62 2.77 2.67 2.87 2.86 2.74 2.62
Pert. 1 0 0.45 0.62 2.93 2.86 3.03 3.02 2.92 2.79
Pert. 2 0 0.44 0.62 2.88 2.94 2.97 2.95 2.98 2.84
Pert. 3 0 0.45 0.62 2.71 2.78 2.79 2.78 2.82 2.69
Pert. 4 0 0.45 0.62 2.54 2.47 2.63 2.62 2.54 2.43
Pert. 5 0 0.45 0.62 2.91 2.79 3.00 2.99 2.86 2.73

Table 8. Evaluation criteria (Damaged w/ d, El Centro earthquake, Case 2).

Control J1 J2 J3 J4 J5 J6 J7 J8 J9
Plant (msec) (%) (%) (%) (%) (%) (%) (%) (%)

Nominal 0 0.43 0.61 2.95 3.21 3.01 3.00 3.19 3.07
Pert. 1 0 0.43 0.61 2.95 3.27 2.97 2.96 3.22 3.10
Pert. 2 0 0.44 0.61 2.61 2.83 2.66 2.66 2.82 2.72
Pert. 3 0 0.44 0.61 2.58 2.82 2.63 2.62 2.80 2.70
Pert. 4 0 0.44 0.61 2.83 3.03 2.90 2.89 3.02 2.91
Pert. 5 0 0.44 0.61 2.51 2.50 2.61 2.61 2.57 2.48

Table 9. Evaluation criteria (Damaged w/ d, El Centro earthquake, Case 3).

Control J1 J2 J3 J4 J5 J6 J7 J8 J9
Plant (msec) (%) (%) (%) (%) (%) (%) (%) (%)

Nominal 0 0.40 0.57 2.38 2.18 2.33 2.34 1.97 1.89
Pert. 1 0 0.40 0.57 2.44 2.25 2.40 2.40 2.04 1.92
Pert. 2 0 0.40 0.57 2.34 2.14 2.29 2.29 1.93 1.85
Pert. 3 0 0.40 0.56 2.24 1.96 2.20 2.20 1.79 1.81
Pert. 4 0 0.41 0.57 2.28 2.07 2.21 2.21 1.86 1.79
Pert. 5 0 0.40 0.57 2.43 2.25 2.39 2.40 2.04 1.92

Table 10. Evaluation criteria (Damaged w/ d, El Centro earthquake, Case 4).

Control J1 J2 J3 J4 J5 J6 J7 J8 J9
Plant (msec) (%) (%) (%) (%) (%) (%) (%) (%)

Nominal 0 0.46 0.56 3.62 3.74 3.75 3.74 3.94 3.86
Pert. 1 0 0.45 0.55 3.78 3.86 3.91 3.90 4.06 4.04
Pert. 2 0 0.45 0.55 3.61 3.74 3.73 3.71 3.91 3.89
Pert. 3 0 0.46 0.59 3.40 3.56 3.54 3.53 3.68 3.53
Pert. 4 0 0.46 0.56 3.42 3.61 3.54 3.53 3.79 3.70
Pert. 5 0 0.46 0.57 3.58 3.71 3.71 3.70 3.91 3.80
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4. Conclusions

The control system design for the RTHS is more challenging compared to a normal
control problem because there is an additional outer loop in the RTHS, and the physical
control plant might be complicated, nonlinear and normally hard to obtain or cannot be
explicitly expressed. In this paper, a control strategy is proposed for the RTHS, where the
control system is designed based on a reformed plant which is highly simplified compared
to the physical plant. The control system is featured with adaption and robustness, fulfilled
by the BLS estimator and the sliding mode controller, respectively. The reformed plant
can be linear with low orders and only needs to capture the basic dynamic properties of
the physical plant. The unmodeled plant dynamics are compensated online by the BLS
estimator and the sliding mode controller during the execution of the RTHS.

An RTHS benchmark problem is studied to demonstrate the effectiveness of the
proposed control strategy. Three reference structures are considered in this paper: (1) Intact
w/o d, where the structure is intact and no damper is installed, (2) Intact w/ d, where
the structure is intact and a nonlinear MR damper is installed, and (3) Damaged w/d, the
MR damper is installed, and the structure is damaged at 14 s. These reference structures
result in much different physical plants, while a single control system is designed for these
reference structures based on a unique reformed plant. The simulation results show that
the control system achieves high RTHS global tracking performances for all three reference
structures. Therefore, the proposed control strategy for the RTHS is validated. The control
strategy could simplify the design process of the control system based on a reformed plant
and avoid the effort to determine the physical plant as precisely as possible, making it very
efficient and practical for the RTHS.
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Appendix A

Table A1. Evaluation criteria (Damaged w/ d, Kobe earthquake, Case 4).

Control J1 J2 J3 J4 J5 J6 J7 J8 J9
Plant (msec) (%) (%) (%) (%) (%) (%) (%) (%)

Nominal 0 0.49 0.58 3.61 2.22 3.51 3.50 1.94 1.88
Pert. 1 0 0.50 0.58 3.26 2.25 3.22 3.23 1.99 1.92
Pert. 2 0 0.50 0.58 3.43 2.20 3.35 3.34 1.92 1.85
Pert. 3 0 0.50 0.58 3.36 2.18 3.28 3.27 1.90 1.84
Pert. 4 0 0.49 0.58 3.98 2.16 3.81 3.78 1.87 1.79
Pert. 5 0 0.50 0.58 3.52 2.40 3.45 3.45 2.16 2.06

Table A2. Evaluation criteria (Damaged w/ d, Morgan earthquake, Case 4).

Control J1 J2 J3 J4 J5 J6 J7 J8 J9
Plant (msec) (%) (%) (%) (%) (%) (%) (%) (%)

Nominal 0 0.51 0.59 3.42 2.14 3.16 3.15 1.82 1.73
Pert. 1 0 0.51 0.59 3.43 2.36 3.20 3.19 1.98 1.98
Pert. 2 0 0.51 0.59 3.41 2.12 3.16 3.15 1.81 1.73
Pert. 3 0 0.51 0.59 3.62 2.27 3.35 3.35 1.92 1.99
Pert. 4 0 0.50 0.59 3.72 2.10 3.46 3.43 1.84 1.84
Pert. 5 0 0.51 0.59 3.28 2.08 3.03 3.02 1.80 1.72

Table A3. Evaluation criteria (Damaged w/ d, Chirp excitation, Case 4).

Control J1 J2 J3 J4 J5 J6 J7 J8 J9
Plant (msec) (%) (%) (%) (%) (%) (%) (%) (%)

Nominal 0 0.59 0.59 4.06 4.86 3.76 3.82 4.32 4.45
Pert. 1 0 0.59 0.59 3.98 4.81 3.69 3.76 4.29 4.42
Pert. 2 0 0.59 0.59 4.18 5.04 3.88 3.94 4.50 4.60
Pert. 3 0 0.59 0.59 3.69 4.38 3.39 3.45 3.93 4.07
Pert. 4 0 0.59 0.59 4.58 5.54 4.27 4.32 4.94 4.96
Pert. 5 0 0.59 0.59 4.62 5.52 4.32 4.37 4.94 4.97
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