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Abstract: A brain-computer interface (BCI) translates a user’s thoughts such as motor imagery
(MI) into the control of external devices. However, some people, who are defined as BCI illiteracy,
cannot control BCI effectively. The main characteristics of BCI illiterate subjects are low classification
rates and poor repeatability. To address the problem of MI-BCI illiteracy, we propose a distribution
adaptation method based on multi-kernel learning to make the distribution of features between
the source domain and target domain become even closer to each other, while the divisibility of
categories is maximized. Inspired by the kernel trick, we adopted a multiple-kernel-based extreme
learning machine to train the labeled source-domain data to find a new high-dimensional subspace
that maximizes data divisibility, and then use multiple-kernel-based maximum mean discrepancy to
conduct distribution adaptation to eliminate the difference in feature distribution between domains in
the new subspace. In light of the high dimension of features of MI-BCI illiteracy, random forest, which
can effectively handle high-dimensional features without additional cross-validation, was employed
as a classifier. The proposed method was validated on an open dataset. The experimental results show
that that the method we proposed suits MI-BCI illiteracy and can reduce the inter-domain differences,
resulting in a reduction in the performance degradation of both cross-subjects and cross-sessions.

Keywords: BCI illiteracy; multiple kernels learning; maximum mean discrepancy; extreme learning
machine; random forest

1. Introduction

A brain–computer interface (BCI) based on electroencephalography (EEG) enables
a user to control external devices by decoding brain activities that reflect the user’s
thoughts [1]. For example, a user’s motor imagery (MI) can be translated into exter-
nal device control by an MI-BCI. Some subjects cannot effectively control BCI equipment,
meaning that they achieve a classification accuracy of less than 70%; such subjects are
referred to as BCI illiterate [2,3]. Poor repeatability is obvious with MI-BCI, which can
elicit SMR underpinned by neurophysiological processes [4,5]. As shown in Figure 1, the
power spectral density (PSD) of Subject 46 was quite different in each of the two sessions.
However, it is generally assumed that the training samples and test samples followed the
same statistical distribution when a BCI system is based on machine learning. Domain
adaptation (DA), as it pertains to transfer learning, has proven to be an effective method
to handle inter-domain shift [6]. To make the distribution of features between the source
domain and target domain become even closer to each other, we need to adapt both the
marginal distribution and the conditional distribution. Furthermore, MI-BCI illiterate
subjects do not display typical brain events such as event-related desynchronization (ERD)
and event-related synchronization (ERS) [7]. Their divisibility of features was low, as is
shown in Figure 2. Therefore, when studying the shared model of the source domain and
target domain, the maximum divisibility of features and the impact of a low classification
rate should be taken into consideration alongside the inter-domain shift.
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Figure 1. The power spectral density (PSD) of Subject 46 performing motor imagery at different
times: the charts are the power spectra (blue represents negative, and red represents positive). The
EEG signals were provided by an open dataset with BCI illiterate subjects [8] and they were recorded
in two different sessions on different days. (a) and (b) are the PSD diagrams of Subject 46 in session 1
and session 2, respectively. The classification accuracies of Subject 46 were 53% and 58% in the two
sessions, respectively, so the subject was classified as BCI illiterate.

Figure 2. The feature distribution comparison of Subject 46. The features were extracted by a common
spatial pattern (CSP). (a) The distribution of features for session 1; (b) The distribution comparison of
features for Sessions 1 and 2.

The goal of feature-based marginal distribution adaptation (MDA) methods is to
have a common feature space in which the marginal distribution of the source domain
and the target domain are as close as possible. Certain achievements have been made in
the adaptation of marginal distribution in many fields including EEG signal processing
with these methods. Liu et al. [9] applied transfer component analysis (TCA) in EEG-
based cross-subject mental fatigue recognition. Zhang et al. [10] reduced distribution
differences through an inter-domain scatter matrix based on cross-subject mental workload
classification. Chai et al. [11] proposed the use of subspace alignment (SA) to transform
features into a domain-invariant subspace to solve the adaptation problem of EEG-based
emotion recognition. He et al. [12] applied correlation alignment (CORAL) to minimize
the spatial offset when solving the problem of different set domain adaptation for BCIs.
Hua et al. [13] applied geodesic flow kernel (GFK) in EEG-based cross-subject emotion
recognition. With the development of transfer learning, new progress has also been made
in MDA. Wei et al. [14] applied the linear weighting method to the four frequently adopted
DA methods (TCA, manifold alignment, CORAL, and SA) to determine coefficients through
repeated iterations using the principle of neighborhood consistency. Ma et al. [15] identified
the center particle position between the two domains and aligned the center position of
the source domain and the target domain by translation. A common problem of these
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approaches is that although they reduce the marginal distribution differences between the
source domain and the target domain in the new subspace, the data categories remain
indistinguishable, as displayed in Figure 3a. Considering the difficulties in classifying
the features extracted by the MI-BCI illiterate subjects, the above works were probably
not optimal for BCI illiteracy. We need to find a new subspace in which the divisibility of
categories is maximized and the difference between domains is minimized, as displayed in
Figure 3b.

Figure 3. The distribution adaptation. (a) Purely for marginal distribution adaptation; (b) With the
features being mapped into the new space, the inter-class maximal divisibility was achieved and the
distribution difference between the source domain and target domain was reduced.

Inspired by the kernel trick that data can be mapped to high-dimensional space to
increase data divisibility, the kernel method provides a powerful prediction framework
for learning nonlinear prediction models. Therefore, we attempted to map features to the
Reproducing Kernel Hilbert Space (RKHS) to find latent features of the subjects, especially
BCI illiterate subjects, in this multi-dimensional nonlinear space to improve the class
divisibility. Meanwhile, to address the problem that a single kernel has relatively more
limitations for wide feature distribution, instead, we applied the linear combination of
a series of basic kernels. The combined kernel function could still satisfy the Mercer
condition, that is, the function satisfies the symmetry and positive definiteness [16,17].
Multiple kernel based maximum mean discrepancy (MK-MMD) put forward in [18] maps
both the source domain and target domain data to multiple-kernel-based RKHS and then
minimizes the center distance to reduce the marginal distribution difference. Following
this idea, we adopted multiple kernel learning (MKL) combined with MK-MMD to build a
DA framework. DA combined with MKL was then addressed using the classifier-based
DA method in many studies [19–23]. The method involved adding the objective function
that minimized the distance between domains in the mapped feature space to the risk
function with a kernel-based classifier and applied a weight parameter λ to balance the
data distribution differences between the two domains and structural risk functions. This
method demonstrated improved classification and generalization capabilities. However,
Chen et al. [24] pointed out that the results of minimizing the risk function with the above
methods depend on the parameter λ, which may sometimes sacrifice domain similarity
to achieve a high classification accuracy for the source only. Zhang et al. [25] put forward
a marginal distribution adaptive framework for kernel-based learning machines. This
framework first maps the original features to RKHS to improve the divisibility of categories
and then transfers the original data to the target domain through linear operators in the
result space to make the processed data become close to the covariance of the target data.
Inspired by this method, we proposed a distribution adaptation framework based on
multiple kernel. Specifically, we used the source domain data to train the multiple-kernel
extreme learning machine (MK-ELM) [26] and found that the multiple-kernel induced
RKHS, which can maximize the divisibility of source domain feature categories. We then
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applied MK-MMD to align the source domain and the target domain under this result
space. Features after transformation can retain the information of the original data as much
as possible [27–29]. Therefore, the proposed method can achieve the maximal divisibility
of categories and minimal shift between domains.

It is necessary to retain as much information as possible for MI-BCI illiteracy during
feature extraction, so the dimension of features will be relatively high. In light of this point,
we applied random forest (RF) as the classifier, which can be used without dimensionality
reduction and cross validation. RF has been widely used in the field of BCI and has achieved
good results [30–32].

Considering MI-BCI illiteracy and referring to the existing technology, we proposed a
framework combined distribution adaptation with RF based on multiple kernel learning
(MK-DA-RF). We then verified this framework using an open dataset containing BCI
illiterate subjects [8]. The main contributions of this study are as follows.

• The source domain data were applied to train kernel-based ELM to find a subspace
that could achieve the best classification effect, that is, the separability of features was
the best in this new subspace;

• To overcome the limitations of a single kernel, a linear connection framework using
multiple basic kernels was proposed;

• MK-MMD was applied to align the distribution of the mapped source and target
domain data in this subspace.

The rest of this paper is organized as follows. Section 2 introduces the related work
and methods used in this study. The experimental results and discussion are provided in
Sections 3 and 4, respectively. Section 5 presents the conclusions of the study.

2. Methodology

Our proposed distribution adaptation and classification framework based on multi-
kernel learning is displayed in Figure 4. The extracted features of the EEG-based BCI system
used for the training classifier were defined as source domain features, and the features
used for testing were defined as target domain features. The source domain features were
used to train the multiple-kernel ELM and the weights were then determined. Next, the
kernel function that allows for the maximal inter-class divisibility after the data are mapped
to the new RKHS is obtained. Then, the features of the source domain and the target
domain were aligned based on MK-MMD under the new RKHS. Then, we applied the
adapted training features to train the RF to obtain a suitable classifier.

Figure 4. The joint distribution adaptation framework.



Sensors 2022, 22, 6572 5 of 21

In this study,
{

XS, TS} is the labeled source domain data, where XS ∈ RD×NS is the
source domain data with D as the data dimension, NS is the number of data points in
the source domain, and TS ∈ R1×NS is the corresponding label;

{
XT} is defined as the

unlabeled target domain data, where XT ∈ RD×NT is the source domain data with NT as
the number of data points in the source domain without available labels; and Class C is
contained in both the source domain and target domain.

2.1. Distribution Alignment Based on Multiple Kernel

The goal of DA is to have equal probability densities of distributions in the new
subspace between the source and target domains, in other words, P

(
ϕ
(
XS)) ≈ (ϕ

(
XT)).

2.1.1. Multiple Kernel Expression

To overcome the limitations of a single kernel, a linear connection framework using
multiple basic kernels is proposed. The mathematical expression is defined as follows:

ϕ(·, γ) =
m

∑
p=1

√
γp ϕp(·), p = 1, 2, . . . , k (1a)

K(·, ·; γ) =
m

∑
p=1

γpkp(·, ·), p = 1, 2, . . . , k (1b)

where ϕp(·) refers to the basic mapping function; kp(·, ·) is the corresponding kernel
function; and γp is the coefficient.

2.1.2. Multiple-Kernel Extreme Learning Machine

Assume that there are N training samples, in other words, {X, T} = {xi, ti}, i =
1, 2, . . . , N. According to the research by Huang et al. [33], the output of kernel based
ELM for binary classification is:

y = sign(h(x)β) (2)

where β refers to connection weight, and h(x) refers to the feature mapping function.
The learning objective of ELM is to minimize the learning error and weight coefficient,

which can be expressed as:

Minimize : LPELM =
1
2

β2 + C
1
2

N

∑
i=1
||ξi ||2

Subject to :h(xi)β = ti − ξi,i = 1, 2, . . . , N (3)

where ξi is the training error and C is a parameter set by the user and provides a tradeoff
between the output weights and training error.

Based on the Karush–Kuhn–Tucker (KKT) theory and Bartlett’s theory [34], the La-
grangian function can be written as follows:

LDELM =
1
2
||β ||2 + C

1
2

N

∑
i=1
||ξi ||2 −

N

∑
i=1

αi(h(xi)β− ti + ξi) (4)

According to the solution method of the KKT and Mercer’s theorem, we set the
derivative of (4) with regard to the parameters, which can be expressed as:

∂LDELM

∂β j
= 0→ β j =

N

∑
i=1

αi,jh(xi)
T → β = HTα (5a)

∂LDELM

∂ξi
= 0→ αi = Cξi , i = 1, 2, . . . . . . , N (5b)
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∂LDELM

∂αi
= 0→ h(xi)β− tT

i + ξT
i = 0 , i = 1, 2, . . . . . . , N (5c)

Subsequently, by substituting Equation (5a,b) into Equation (5c), it can thus be inferred that(
I
C
+ HHT

)
α = T (6)

By substituting Equation (6) in Equation (5a),

β = HT(
I
C
+ HHT)

−1
T, (7)

Combining (2) with (7), the relationship between the input and output of kernel-based
ELM can be expressed as:

f (x) =

K(x, x1)
...

K(x, xN)

( I
C
+ ΩELM)

−1
T (8)

where:
ΩELM = HHT : ΩELMi,j = K

(
xi, xj

)
= h(xi) · h

(
xj
)

On this basis, the single-kernel linear combination is replaced by a multiple-kernel
linear combination. The target function of MK-ELM is gained combined with (1) [26]. It
can be expressed as:

min
γ

min
β,ξ

1
2
||β ||2F +

C
2

n

∑
i=1
||ξi ||2

s.t.βT ϕ(xi; γ) = ti − ξi, ∀i
m

∑
p=1

γ
q
p = 1, γp ≥ 0, ∀p (9)

Herein, q = 2, β̃ =
[

β̃1, β̃2, . . . , β̃m

]
, and β̃p =

√
γpβp, p = 1, 2, . . . , m. The

Lagrangian function is:

L
(

β̃, ξ, γ
)
=

1
2

m

∑
p=1

||β̃p||2F
γp

+
C
2

n

∑
i=1
||ξi ||2 −

T

∑
t=1

n

∑
i=1

αit

(
m

∑
p=1

β̃p
T ϕp(xi) − tti + ξti

)
+ τ(

m

∑
p=1

γ2
p − 1) (10)

According to the KKT theory, it can be concluded that:

||β̃p||F = γp

√√√√ T

∑
s,t=1

n

∑
i,j=1

αitαjsKp
(

xi, xj
)

(11)

By taking the derivative of (10) with respect to γp, we obtain:

−1
2
||β̃p||2F

γ2
p

+ qτγ
q − 1
p = 0, p = 1, . . . m (12)

Combining (11) with ∑m
p=1 γ

q
p = 1, we obtain:

γp =
||β̃p||2/(1+q)

F

(∑m
p=1 ||β̃p||2q/(1+q)

F )
1/q , ∀p (13)
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By gradual iteration coefficient, γnew is updated and the optimal coefficient is obtained.

2.1.3. Multiple Kernel Maximum Mean Discrepancy

It is assumed that P(XS) 6= P(XT); however, there is a mapping ϕ so that
P(ϕ(XS)) = P(ϕ(XT)). The MMD put forward in the research by Pan et al. [27] is of-
ten used as an indicator for calculating the distribution distance in the RKHS:

DistK(Xs, XT) = ‖
1

nS

nS

∑
i=1

ϕ(xSi) −
1

nT

nT

∑
i=1

ϕ(xTi) ‖2
H (14)

In combination with (1), the multiple basic mapping functions can be regarded as
one mapping function after linear combination (i.e., the mapping function is defined as
ϕ = ϕ(·,γ) = ∑m

p=1
√

γp ϕp(·)) and a single kernel based MMD can form MK-MMD in this
way.

If X = {XS, XT} ∈ RD×(nS+nT), then the kernel mapping is ϕ(X) = {ϕ(x1), ϕ(x2), . . . ,
ϕ(xnS+nT )} and the kernel matrix is K = ϕ(X)T ϕ(X). According to the Kernel PCA the-
ory [27,35], the transformed features can be expressed as Z = WT ϕ(x)T ϕ(x) = WTK,
where W is the kernel-PCA transformation matrix. By definition, this vector can retain the
maximal mapped feature space information, and (14) is then written as:

DistK(Xs, XT) = ‖
1

nS

nS

∑
i=1

WTKi −
1

nT

nS+nT

∑
j=nS +1

WTKj ‖2
H = tr

(
WTKLKW

)
(15)

where

Lij =


1

n2
s

xi, xj ∈ Xs
1

n2
T

xi, xj ∈ XT

− 1
nSnT

otherwise

The maximal mean difference is to be minimized in infinite-dimensional RKHS space.
Combining kernel-based PCA, the problem for domain adaptation then reduces to:

min
W

tr
(

WTKLKW
)
+ µ · tr

(
WTW

)
s.t. WTKHKW = Im (16)

where tr
(
WTW

)
is a regular term that controls the model complexity; µ is a trade-off

parameter; I ∈ Rm×m is the identity matrix; H = InS+nT − 1
nS+nT

11T is the centering matrix,

where 1 ∈ RnS +nT is the column vector with all ones; and InS+nT ∈ R(nS+nT)×(nS+nT) is the
identity matrix. Defining A as a symmetric matrix, the Lagrangian of (16) is

L = tr
(

WT(µI + KLK)W
)
− tr

((
WTKHKW − I

)
A
)

, (17)

Setting the derivative of (17) with regard to W to zero, we have

(µI + KLK)W = KHKWA (18)

Take the former m eigenvector of (µI + KLK) −1KHK as W. The transformed feature
is then expressed as:

Z = WT ϕ(x)T ϕ(x) = WTK (19)

The process of marginal distribution adaption is presented in Algorithm 1.
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Algorithm 1. Marginal Distribution Adaptation:

1: Input: labeled source samples {Xs, Ts} and unlabeled target samples {XT}; several basic
kernel functions

{
Kp
}m

p=1, q, and C
2: Output: ZS, ZT
3: Initialize: γ = γ0 and t = 0
4: repeat
5: Compute K

(
·, ·; γ0) by solving (1)

6: Update ||β̃p||2F by solving (11)
7: Update γt+1 by (13)
8: until max

{∣∣γt+1 − γt
∣∣ } ≤ ε

9: Compute K(·, ·; γ) with the obtained γ by solving (1)
10: Compute the eigenvector of (µI + KLK)−1KHK
11: Take the former m eigenvector as W
12: Compute ZS and ZT with (19).

2.2. Random Forest

Random forest [36] is a type of ensemble learning, which is to combine several base
classifiers to obtain a strong classifier with significantly superior classification performance.
The principle of random forest is to obtain the final classification result by voting. The
generation process of random forest is shown in Figure 5.

Figure 5. The generation process of random forest. (a) The generation of the forest. (b) The imple-
mentation of decisions.

Suppose that there is a training set T consisting of N samples (i.e., T = {ti},
i = 1, 2, . . . , N) and the corresponding feature vector F with M dimensions (i.e.,
F =

{
fj

}
, j = 1, 2, . . . , M). We applied a random forest with k decision trees, and

the training steps are as follows:

• Resample randomly from the training set based on bootstrap to form a training subset Tk;
• Randomly extract m features from F of Tk without replacement (m = log2 M is set in

this paper) to generate a complete decision tree Sk without pruning;
• Repeat the above two steps k times to generate k decision trees, and then combine all

of the decision trees to form a random forest;
• Take the test sample as the input of the random forest, and then vote on the result of

each decision tree based on majority voting algorithm to obtain the classification result.
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3. Results

We validated our method by an open-access dataset, namely the BMI dataset (http:
//gigadb.org/dataset/view/id/100542/ (accessed on 16 May 2021)). The research was
provided by Lee et al. [8].

3.1. Experiment Materials and Preprocessing

The BCI system analyzed was based on Brain Amp, which utilizes 62 Ag/AgCI
electrodes [8]. The EEG signals were collected at a frequency of 1000 Hz, and electrodes
were placed in accordance with the international 10/20 system standard. Fifty-four subjects
participated in this experiment, and none had a history of mental illness or psychoactive
drugs that would affect the results of the study.

MI-BCI was tested with a dichotomous experiment in which subjects imagine their
left and right hands in accordance with the directions of arrows, as shown in Figure 6. The
EEG signals were recorded in two different sessions on different days. For all blocks of a
session, black fixation was displayed on the screen for 3 s before each trial task began. The
subjects then imagined they were performing the hand-grabbing action (grasping) in the
direction specified by the visual cue. After the task, the screen display was blank for 6 s to
allow the subjects to rest. There were 200 trials in one experiment per subject, half on the
left and half on the right.

Figure 6. The experimental design for binary class MI. The experimental description was provided
by Lee et al. [8].

To retain the EEG information of the subjects as much as possible, as shown in Figure 7,
20-channel EEG data of the motor cortex region were selected: {FC5, FC3, FC1, FC2, FC4,
FC6, C5, C3, C1, Cz, C2, C4, C6, CP5, CP3, CP1, CPz, CP2, CP4, CP6}. The EEG signals were
downsampled to 100 Hz, and the 5th order Butterworth digital filter was utilized to obtain
8–30 Hz signals. Then, the range of 500–3500 s after the task started was selected. A common
spatial pattern (CSP) was applied to maximize the difference between the two types of tasks.
The first five dimensions of the feature vector were selected, and after that, the log-variance
feature was calculated. Therefore, the CSP feature of a single trial was 1 × 10.

Figure 7. The electrode position.

http://gigadb.org/dataset/view/id/100542/
http://gigadb.org/dataset/view/id/100542/


Sensors 2022, 22, 6572 10 of 21

3.2. Model Generation

We verified the effect of the proposed domain adaption framework that combined
MK-ELM and MK-MMD (denoted as MK-DA) on the aforementioned open dataset. First,
the following three base kernel functions were chosen to form multiple-kernel ELM:

• Polynomial kernel function

K(x, y) = (x · y + a)d, d = 1, 2, . . . , N. (20a)

• Gaussian kernel function

K(x, y) = exp(
−x − y2

2σ2 ), (20b)

• Translation-invariant of wavelet kernel function

K(x, y) = ∏ h(
x− y

wa
)h(x) = cos(wbx)exp(− x2

wc
) (20c)

The relaxation coefficient C of the classifier was selected from C ∈ {0.001, 0.01, 0.1, 1,
10, 50, 100}. The optimal parameters pa and pd of the poly-kernel function were selected
from pa ∈ {0.001, 0.01, 0.1, 1, 10, 50, 100}, and pd ∈ {2, 3, 4}, respectively. The optimal
parameter of the Gaussian kernel function was determined from σ ∈ {0.001, 0.01, 0.1, 1, 10,
50, 100}. The optimal parameters wa, wb, and wc of the wavelet kernel function were
searched from w ∈ {0.001, 0.01, 0.1, 1, 10, 50, 100}, respectively.

Then, random forest was used as the classifier. The number of decision trees was
selected from k ∈ {10, 20, 50}.

3.3. Experimental Results
3.3.1. Methods for Comparison

This study primarily addressed the domain shift problem of BCI illiteracy by applying
an open dataset containing BCI illiterate subjects [8] for validation. The classic method
in which CSP was applied to extract features and linear discriminant analysis (LDA) was
applied to classify, which was used as the reference framework.

The performance of the proposed DA method was compared with the performance
of the DA methods that are widely used and known to achieve good results. At the same
time, RF was employed as the classifier, which was the proposed method in this paper.
To ensure fairness in the comparison, we gave the same parameter to all parts using the
same operation, and the other parameters were given the optimal value according to the
suggestions in the literature. The comparison DA methods were as follows:

• SA: We set the parameters referring to the research by Xiao et al. [37]. Considering the
poor classification effect of BCI illiteracy, we set the subspace dimension of principal
component analysis (PCA) to all to avoid information loss;

• GFK: We referred to the research by Wei et al. [38]. We determined the optimal
dimension of the subspace by adopting the subspace disagreement measure (SDM)
after the source domain and target domain data were determined;

• CORAL: Referring to the research by He et al. [12], we conducted a distributed com-
putation on the feature covariance matrix of each domain and then minimized the
distance between the covariance matrices of different domains;

• TCA: We referred to the research by Jayaram et al. [39]. In this experiment, when
carrying out a multiple-kernel linear combination, the weight of the Gaussian kernel
was generally the largest. Therefore, we chose the Gaussian kernel function and set its
parameters to be the same as those of the Gaussian kernel function in MK-ELM;

• MKL: Referring to the research by Sun et al. [19] and Dai et al. [20], we combined
Gaussian-kernel-based support vector machine (SVM) with MKL and applied the
classifier-based DA method to optimize the target function of SVM, while minimizing
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the inter-domain offset based on MKL. MKL uses the three kernels above-mentioned
and applied the second-order Newton method recommended by Sun et al. [18] to
obtain the combination coefficients. The balance parameter was λ = 0.5. Note that the
combined coefficients obtained by this method can be different from those obtained
by the method proposed in this paper.

Then, the performance of the proposed classifier was compared with the performance
of classifiers that are widely used in MI-BCI. The comparison classifiers were as follows:

• LDA: The reference method proposed by Lee et al. [8].
• SVM: We referred to the research by Lotte et al. [40]. We chose the Gaussian kernel

function and set its parameters to be the same as those of the Gaussian kernel function
in MK-ELM;

• KNN: We referred to the research by Lotte et al. [40]. We set the number k = 5.
• EEGnet: We referred to the research by Lawhern et al. [41]. We set the number of

channels as 20.
• FBCNet: We referred to the research by Mane et al. [42]. We set C as 20.

3.3.2. Performance of the Domain Adaption and Classification Framework

We set the threshold value as 0.05, so p ≤ 0.05 indicates the statistical significance.
During the experiment, according to the classification results obtained from the literature
and the definition of BCI illiteracy, the subjects were divided into the following two groups:

• BCI (the classification result was greater than 70% in both sessions), denoted as BNI;
• BCI illiteracy (the classification result was less than 70% in both sessions), denoted

as BI.

We performed experiments from two perspectives (i.e., cross-subject experiment and
cross-session experiment). For preciseness, the Kruskal-Wallis test was adopted to display
the statistical significance of the differences between methods.

1. Results of Cross-Subject Experiments

To ensure the simplicity of the comparison factors, both the source and target domains
in this part were of the same session. Based on NBI and BI grouping, we randomly selected
one subject as the source domain and another subject in the same session as the target
domain in the following two ways. The first method was random sampling limited to NBI,
and the second method was random sampling limited to BI. We used the proposed method
DA and the control method to align the marginal distribution and employed RF as the
classifier. Then, we applied different classifiers to the features adapted by MK-DA for the
classification and comparison. The experiment was repeated 30 times, and the average
accuracy was taken as the result. The results including the average classification accuracies
(mean), standard deviation (Std), and confidence interval under 95% signification level (CI)
are shown in Tables 1 and 2.

Table 1. A comparison of the different distribution adaptation methods for the source and target data
from different subjects.

Tasks Results LDA ** MK-ELM * SA-RF * GFK-RF ** CORAL-RF * TCA-RF * MKL * MK-DA-RF

Random-NBI
Mean 75.81 77.07 75.05 75.12 77.0 77.68 75.22 78.46

Std 8.25 9.32 11.98 12.31 10.73 11.14 9.14 9.5
CI 2.95 3.33 4.28 4.40 3.84 3.98 3.27 3.40

Random-BI
Mean 58.60 59.78 59.11 58.47 59.86 61.86 60.36 62.32

Std 7.47 8.74 7.64 6.64 7.17 5.04 8.67 8.01
CI 2.67 3.13 2.73 2.37 2.56 1.08 3.10 2.87

Note: * indicates p < 0.05, ** indicates p < 0.01, and there is no * when p > 0.05. The best results are indicated in
bold text; SA-RF indicates the DA method is SA and the classifier is RF, Other interpretations are the same.
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Table 2. A comparison of the different classifiers in the cross-subject experiments.

Tasks Results LDA * SVM ** KNN ** EEGnet ** FBCNet ** RF

Random-NBI
Mean 78.29 77.81 78.26 64.60 78.23 78.46

Std 8.48 7.40 8.63 9.77 7.60 9.50
CI 3.03 2.65 3.09 3.49 2.72 3.40

Random-BI
Mean 62.15 61.67 62.13 61.72 62.09 62.32

Std 7.49 6.62 6.91 8.36 4.80 6.95
CI 2.68 2.37 2.47 2.99 1.72 2.49

Note: * indicates p < 0.05, ** indicates p < 0.01, and there is no * when p > 0.05. The best results are indicated with
bold text.

2. Results of the Cross-Session Experiments

The experiments of the two sessions of each subject were taken as the source domain
and the target domain, respectively. The results were divided into the BI group and the NBI
group, and the average value of each group was taken as the result of that group. Then,
the data of the source domain and the target domain were switched. The experimental
verification was conducted in the same way as the cross-subject experiments, and the
results including the average classification accuracies (mean), standard deviation (Std), and
confidence interval under 95% signification level (CI) are shown in Tables 3 and 4.

Table 3. A comparison of the different distribution adaptation methods for the source and target data
from different sessions.

Group Task Results LDA ** MK-ELM ** SA-RF * GFK-RF ** CORAL-RF * TCA-RF * MKL * MK-DA-RF

NBI
S1-S2 Mean 79.02 82.06 83.21 78.98 82.98 84.83 83.75 85.69
S2-S1 Mean 80.77 81.85 80.85 80.85 82.83 84.54 84.44 85.81

BI
S1-S2 Mean 58.90 62.85 60.08 60.08 61.37 64.18 63.75 64.80
S2-S1 Mean 56.77 60.68 58.65 58.65 59.15 61.73 61.50 63.07

ALL

S1-S2
Mean 67.84 71.39 68.48 68.48 70.97 73.36 72.64 74.08

Std 15.04 14.37 15.09 14.90 14.87 15.64 14.80 14.43
CI 4.12 3.79 4.06 4.11 4.15 3.93 4.02 3.90

S2-S1
Mean 67.44 70.09 68.52 68.52 69.68 71.87 71.69 73.18

Std 15.43 14.22 15.21 15.40 15.57 14.72 15.05 14.64
CI 4.01 3.83 4.03 3.97 3.97 4.17 3.95 3.85

Note: * indicates p < 0.05, ** indicates p < 0.01, and there is no * when p > 0.05. The best results are indicated with
bold text; SA-RF indicates the DA method is SA and the classifier is RF, Other interpretations are the same.

Table 4. A comparison of the different classifiers in the cross-session experiments.

Tasks Results LDA * SVM * KNN ** EEGnet ** FBCNet ** RF

S1-S2
Mean 73.84 72.18 72.61 66.56 73.84 74.08

Std 14.50 14.19 15.13 14.49 14.10 14.43
CI 3.87 3.78 4.04 3.86 3.76 3.85

S2-S1
Mean 72.60 72.12 72.22 65.84 72.36 73.18

Std 14.23 14.62 15.20 15.43 14.91 14.64
CI 3.87 3.90 4.06 4.12 3.98 3.91

Note: * indicates p < 0.05, ** indicates p < 0.01, and there is no * when p > 0.05. The best results are indicated with
bold text.

4. Discussion

Based on the above experimental results, the rationality of the proposed method is
discussed from two perspectives: cross-subject experiment and cross-session experiment.

• Cross-Subject Experiments

We randomly selected one subject as the subject of the training field and another
subject in the same session as the target domain based on two methods, namely, the first
subject was selected from those whose target domain was specified as the NBI group,
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and the second subject was selected from those whose target domain was specified as
the BI group. When applying the proposed MK-ELM for classification, compared with
LDA as the reference method, the average classification accuracies were improved, among
which the biggest gain was 1.26% and 1.18%, respectively, which proved that the MK-ELM
adopted in this paper increased the data divisibility in the new RKHS. Then, the competitive
marginal distribution method was applied to the feature distribution adaptation. As can
be seen from Figure 8, the classification accuracies of MK-DA-RF improved by 2.65% and
3.72%, respectively, compared with LDA as the reference method and by 0.78% and 0.46%
compared with TCA-RF, which was the best-performing control method.

Figure 8. The results of the different distribution adaptation methods in the cross-subject experiments.

• Cross-Session Experiments

The two sessions of the same subject were chosen as the source domain and target
domain, respectively. From the results of the average classification accuracy of all subjects,
the classification accuracies of the proposed MK-DA-RF improved by 6.24% and 5.74%,
respectively, compared with LDA as the reference method and by 0.72% and 1.31% com-
pared with TCA-RF, which was the best-performing control method. Then, we averaged
the subjects according to the NBI and BI groups. The results of group NBI and group
BI are displayed in Figures 9 and 10, respectively. It can be seen that the classification
accuracy of MK-ELM gained an average increase of 3.93% in the two tasks compared with
the reference method for the BI group, but an average increase of 2.06% for the NBI group.
Since the subjects in the BI group could not effectively control the BCI, the extracted features
were difficult to distinguish. The divisibility was increased after features were mapped to
multiple-kernel-based RHKS by MK-ELM, which was consistent with the experimental
phenomenon from the results. Then, under the adjustment of DA, the combined method of
MK-ELM and MK-MMD proposed in this study significantly improved the classification
accuracy. In particular, in the BI group, the average classification accuracies of MK-DA-RF
were 5.9% and 6.3% higher than those of the reference method and 0.62% and 1.34% higher
than those of TCA-RF, which was the best-performing control method.
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Figure 9. The results of the different distribution adaptation methods for the NBI group.

Figure 10. The results of the different distribution adaptation methods for the BI group.

The feature distribution of the same subject before and after MDA was observed,
and the first two dimensions of the feature value were taken as the X-axis and Y-axis,
respectively, to check the feature distribution. Figure 11 shows the original feature distri-
bution of Subject 19 and the feature distribution obtained with the method proposed in
this study. Specifically, Figure 11a,b is the feature space distribution of class 1 (left-hand
motor imagery) and class 2 (right-hand motor imagery), respectively. It can be seen that
the class divisibility of the feature distribution was increased with MK-DA. Figure 11c,d
refers to the feature distribution before and after MK-DA was employed. It can be seen
that the feature space of the source domain and the target domain were further closer by
the method proposed in this paper.
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Figure 11. The feature space distribution of Subject 22. With the reference method, Subject 22 had a
classification accuracy of 68% from session 1 to session 2. With the improved method, the classification
accuracy was 83%. (a) The original feature space distribution of class 1 (left-hand imagery) and class
2 (right-hand imagery) in session 1; (b) The feature space distribution of class 1 and class 2 obtained
after marginal distribution adaptation session 1; (c) The original feature space distribution in session
1 (source domain) and session 2 (target domain) for all categories; (d) The feature space distribution
obtained after marginal distribution adaptation in session 1 (source domain) and session 2 (target
domain) for all categories.

• Performance of Random Forest

In this section, we analyzed the performance of different classifiers separately in two
experiments. The performance evaluation metrics were calculated referring to the research
by Giannakakis et al. [43].

In the cross-subject experiment, as shown in Figure 12, RF achieved relatively better
results in all experiments. The classification accuracies of the proposed RF improved by
0.17% and 0.17%, respectively, compared with LDA, which was the best-performing control
method. The results of the performance evaluation metrics are shown in Table 5. The confu-
sion matrices and receiver operating characteristic curves are shown in Figures 13 and 14.
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Figure 12. The results of different classifiers in the cross-subject experiment.

Table 5. The performance matrices of RF in the cross-subject experiments.

Task Kappa Recall F1-Score Precision AUC

S1-S2 0.703 0.816 0.791 0.768 0.762
S2-S1 0.451 0.613 0.626 0.619 0.640

Figure 13. The confusion matrices of RF in the cross-subject experiment. (a) Random-
NBI; (b) Random-BI.

Figure 14. Receiver operating characteristic curve of RF in the cross-subject experiment. (a) Random-
NBI; (b) Random-BI.
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In the cross-session experiment, the results of all subjects are displayed in Figure 15. It
can be seen that the classification accuracy of RF gained an average increase of 0.24% and
0.58%, respectively, in the two tasks compared with the control method with the best perfor-
mance. The results of the performance evaluation metrics are shown in Table 6. The confu-
sion matrices and receiver operating characteristic curve are shown in Figures 16 and 17.

Figure 15. The results of the different classifiers in the cross-session experiment.

Table 6. The performance matrices of RF in the cross-session experiments.

Task Kappa Recall F1-Score Precision AUC

S1-S2 0.631 0.743 0.741 0.739 0.736
S2-S1 0.623 0.760 0.738 0.717 0.732

Figure 16. The confusion matrices of RF in the cross-session experiment. (a) S1-S2; (b) S2-S1.
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Figure 17. The receiver operating characteristic curve of RF in the cross-session experiment. (a) S1-S2;
(b) S2-S1.

In particular, in all experiments, the performance of EEGnet was worse than that of the
LDA without domain adaptation, so we believe that it is related to the fact that 20 channels
were used, but the training data were so small that the model overfitted.

• Computational Complexity

Let lS and lT denote the number of training samples and testing samples, respec-
tively, and each sample xi ∈ Rd. Suppose we grow k trees for RF. The computational
complexity of each step is shown in Table 7, which is based on Liu et al. [26], Pan
et al. [27], and Biau [36], where tγ is the maximum number of iterations and m is
the number of base kernels. Therefore, the computational complexity of MK-DA is
tγ ∗O(1) + m ∗ l2

S ∗O(d) + O(d · (lS + lT)
2). Then, the computational complexity of the

proposed framework is tγ ∗O(1) + m ∗ l2
S ∗O(d) +O(d · (lS + lT)

2) +O(k · (d · lS · log lS)).

Table 7. The computational complexity of each step.

Step Computational Complexity

MK-ELM tγ ∗O(1) + m ∗ l2
S ∗O(d)

TCA O(d · (lS + lT)
2)

RF O(k · (d · lS · log lS))

• Limitations

However, there are also problems with the proposed method. First, after the features
were adapted, the classification accuracies applying RF in both types of experiments were
higher than the LDA after domain adaption, that is, the average classification accuracy
of RF was 0.17% higher than that of LDA in the cross-subject experiment, and was 0.41%
higher than that of the LDA in the cross-session experiment. However, the computational
complexity of RF was significantly higher than that of the LDA. Therefore, it is necessary to
combine classification accuracy with the computational complexity in selecting the suitable
classifier. Second, parameters involved in the proposed framework (i.e., the relaxation
coefficient C of ELM, the initial parameters of the kernels) were all selected from among a
limited number of values, but the choice of the parameters would affect the classification
results. Therefore, optimization methods will be suggested to solve this problem in our
subsequent studies.
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5. Conclusions

The method proposed in this paper aimed to address the inter-domain differences of
EEG-based motor imagery BCI, especially for BCI illiteracy. It was found that BCI illiterate
subjects could not effectively control the BCI due to two major problems: difficulties in
classifying and poor repeatability. We proposed a domain adaption method that combines
MK-ELM and MK-MMD. To demonstrate the effectiveness of the method, we performed
experiments from two perspectives (i.e., cross-subject experiment and cross-session experi-
ment). The MK-ELM achieved relatively better results than the LDA in all experiments.
Meanwhile, it can be seen from the results of MK-DA that the MK-DA with each classifier
achieved relatively better results in all combination forms. The average accuracies of all
experiments of MK-DA combined with LDA was 3% higher than that of LDA in the cross-
subject experiments, and was 5.6% higher in the cross-session experiments. Therefore, the
divisibility was increased after the features were mapped to multiple-kernel-based RHKS
by MK-ELM, and the domain shift decreased by MK-MMD, which was consistent with the
experimental phenomenon from the results. At the same time, RF that could effectively
handle high-dimensional features was employed as a classifier. It can be seen from the
results of MK-DA-RF in the cross-subject experiments that the average classification ac-
curacy of all the experiments could reach 70.4%, which was 2.7% higher than that of the
reference method “CSP + LDA” and 0.3% higher than that of the best-performing control
method. In the cross-session experiments, the average classification accuracy of the pro-
posed method for all experiments could reach 73.6%, 6.1% higher than that of the reference
method, and 0.4% more than that of the best-performing control method. Particularly for
the BCI illiterate subjects, the average classification accuracy of all the experiments with
target subjects showed that BCI illiteracy could reach 63.4% with the proposed method,
which was 5.3% higher than the reference method without domain adaption. Therefore, the
method proposed in this paper could achieve a significant effect in the BCI illiteracy group.
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