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Abstract: Intelligent reconfigurable surfaces (IRSs) have gained much attention due to their passive
behavior that can be a successor to relays in many applications. However, traditional relay systems
might still be a perfect choice when reliability and throughput are the main concerns in a communica-
tion system. In this work, we use an IRS along with a decode-and-forward relay to provide a possible
solution to address one of the main challenges of future wireless networks which is providing relia-
bility. We investigate a robust transceiver design against the residual self-interference (RSI), which
maximizes the throughput rate under self-interference channel uncertainty-bound constraints. The
yielded problem turns out to be a non-convex optimization problem, where the non-convex objective
is optimized over the cone of semidefinite matrices. We propose a novel mathematical method to
find a lower bound on the performance of the IRS that can be used as a benchmark. Eventually, we
show an important result in which, for the worst-case scenario, IRS can be helpful only if the number
of IRS elements are at least as large as the size of the interference channel. Moreover, a novel method
based on majorization theory and singular value decomposition (SVD) is proposed to find the best
response of the transmitters and relay against worst-case RSI. Furthermore, we propose a multi-level
water-filling algorithm to obtain a locally optimal solution iteratively. We show that our algorithm
performs better that the state of the art in terms of time complexity as well as robustness. For instance,
our numerical results show that the acheivable rate can be increased twofold and almost sixfold,
respectively, for the case of small and large antenna array at transceivers.

Keywords: IRS; robust design; worst case; decode-and-forward; MIMO

1. Introduction

Reliability and throughput are two of the most crucial requirements for the next gener-
ation of wireless networks. Optimally relaying the signal from a source to a destination
can help enhance reliability and capacity of networks and is currently an active research
area [1].

Another emerging candidate for relaying signals is reconfigurable intelligent surfaces
(IRSs) [2]. An IRS is a device equipped with multiple passive reconfigurable reflectors that
can reflect the colliding waves with an adjustable phase. One of the biggest advantages
of IRSs is that they work in a real-time manner without consuming a noticeable amount
of power [3]. However, the characteristics of the IRS (e.g., the lack of signal amplification
and decode-and-forward processes) can potentially limit its functionality. As a result, in
cases where reliability and throughput are of greater importance than power consumption,
conventional relays might still be a better option than IRSs. For instance, authors in [4]
show that a simple full-duplex relay can outperform an IRS in terms of throughput under
certain conditions.

In this paper, we investigate the IRS-assisted MIMO full-duplex (FD) relay system
that suffers channel uncertainties. It is also considered that the relays have practical issues
such as self-interference (SI) as well as antenna and power limits. The combination of IRS
and DF relay can potentially be advantageous. This is due to the fact that both the IRS and
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the relay have their own limitations that can possibly be compensated for by exploiting
each other. The objective of this paper is to maximize the achievable rate of the system by
jointly optimizing the impact of the IRS as well as the covariance matrices of the source
and the relay.

1.1. Related works

IRSs can be utilized in various ways to help the direct links enhance the performance of
the system. In [5], authors utilized an IRS to maximize the weighted sum rate MISO system.
Authors in [6] proposed a method to minimize the power consumption in a MISO system
equipped with an IRS, and authors in [7] investigate the problem of energy efficiency in an
IRS-assisted MISO downlink system. The problem of rate maximization in a MIMO system
has been presented in [8], where the authors propose an iterative algorithm to find the best
IRS pattern assuming the perfect channel state information (CSI) is given. Recently, the
authors in [9] utilized IRS in a relay-aided network to minimize the power consumption
and successfully showed that the combination of IRS and relay outperforms other scenarios.
While the performance of IRS communication systems has been extensively studied, there
is not much research that considers robust design when the perfect CSI is not available [10].

Recently, with the emergence of artificial intelligence, IRSs have shown a great poten-
tial to improve the existing protocols and technologies [11]. Authors in [12] investigate the
benefit of employing an IRS equipped with a multi-task learning system on the transmit
power and achievable throughput of aerial–terrestrial communications. In [13], authors
use a reinforcement-learning-based approach to optimize the IRS reflection coefficients for
buffer-aided relay selection.

One of the earliest studies of the robust transmission designs of IRS-assisted systems
was undertaken in [14], where a bounded CSI error model is applied to a problem of
power minimization in a MISO transmission system. There, by virtue of semidefinite
programming (SDP), the authors turn the original problem into a sequence of convex
sub-problems. The robust power minimization subject to the outage probability constraints
under statistical cascaded channel error model is considered in [15], where the aim is to
optimize the system under worst-case rate constraint. Authors in [16] have proposed
a robust algorithm for mean squared error (MSE) minimization for a single user MISO
system equipped with an IRS. Their method provides a closed form solution for each
iteration. However, it can be used only for the case of a single user system and cannot be
extended to more general cases where there are multiple users. Recently, a robust algorithm
based on a penalty dual decomposition (PDD) technique is proposed in [10] for sum-rate
maximization where they assumed that the channel estimation error follows a complex
normal distribution.

Exploiting a relay to improve the communication throughput rate is a classic alter-
native for IRS in communication systems. However, utilizing a relay in a network raises
some important questions to be answered. For instance, how should the relay process
the received signal before dispatching it to the destination? Now, the relay can receive a
signal from the source, process it and transmit it towards the destination in a successive
manner. This type of relaying technique is known as half-duplex relaying. Alternatively,
while receiving a signal at a certain time instant, the relay can simultaneously transmit the
previously received signals. This technique is known as full-duplex relaying [17].

As a consequence of transmitting and receiving at a common resource unit, the relay is
confronted with SI. Note that full-duplex relaying potentially increases the total throughput
rate of the communication compared to the half-duplex counterpart only if the SI is handled
properly at the relay input. By physically isolating the transmitter and receiver front ends
of the relay, a significant portion of SI can be reduced [18]. Moreover, analog and/or digital
signal processing at the relay input can be utilized to cancel a portion of SI [19–22]. This
can be realized if the estimate of the SI can be obtained at the relay. These SI cancellation
procedures can effectively mitigate the destructive impact of SI up to a certain level. Hence,
the remaining portion, the so-called residual self-interference (RSI), is still present at the
relay input. The distribution of the RSI is investigated in [23,24]. This RSI is mainly due
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to the channel estimation uncertainties and transmitter noise. Therefore, the quality of
channel estimation plays an important role for limiting RSI if the conventional modulation
techniques are utilized.

The authors in [25] employ a superimposed signaling procedure (asymmetric modula-
tion constellation) in the basic point-to-point FD communication for cancelling the SI and
further retrieving the desired information contents without requiring channel estimates.
They show that for the same average energy per transmission block, the bit error rate of
their proposed method is better than that of conventional ones. The RSI evidently degrades
the performance of the communication quality. To this end, the authors in [26] study the
degrees-of-freedom (DoF), i.e., the slope of the rate curve at asymptotically high SNR and
its relation to the performance of an FD cellular network in the presence of RSI. Moreover,
the authors in [27,28] investigate the joint rate-energy and delivery time optimization of
FD communication, respectively, when RSI is still present. Furthermore, the authors in [29]
study the sum rate capacity of the FD channel with and without such degradation. In the
presence of RSI, the authors in [30] study the capacity of a Gaussian two-hop FD relay.

Robust transceiver design against the worst-case RSI channel helps find the threshold
for switching between HD and FD operating modes. This setup is commonly known as a
hybrid relay system [31]. The authors in [32] investigate a robust design for multi-user full-
duplex relaying with multi-antenna DF relay. In that work, the sources and destinations
are equipped with single antennas. Moreover, the authors in [33] investigate a robust
transceiver design for FD multi-user MIMO systems for maximizing the weighted sum-rate
of the network. The robust design against worst-case RSI is investigated by authors in [34].

1.2. Contribution

Motivated by the above, in this work, we consider a DF multi-hop system with multiple
antennas at the source, relay and destination along with an IRS to provide additional links.
Then we try to maximize the throughput rate for the worst-case RSI scenario. To the best
of our knowledge, this is the first time that the throughput rate maximization against the
worst-case RSI is evaluated for IRS-assisted DF full-duplex relay in MIMO systems. First,
we simplify the problem by finding an analytical lower bound for the performance of the
IRS. Then, the optimization of maximum achievable rate of the DF full-duplex relaying
is cast as a non-convex optimization problem. Thereafter, we propose a low complexity
method to find the solution using majorization theory. We propose an efficient algorithm
to solve this problem in polynomial time. Finally, the transmit signal covariances at the
source and the relay are designed efficiently to improve robustness against worst-case RSI
channel in a given uncertainty bound. Notice that once the covariances are known, one can
easily find the precoders using conventional methods such as singular-value decomposition
(SVD), etc. To the best of our knowledge, this is the first work that uses the IRS for RSI
cancellation in MIMO full-duplex DF relay systems.

1.3. Organization

The rest of the paper is organized as follows. Section 2 outlines the system model
and introduces its characteristics. The three different tasks for employing the IRS are
also given in this section. In Section 3, the optimization problem belonging to the FD
scenario is formulated, and its proper solution is presented. In addition, analytical bounds
for the performance of the IRS are given and their corresponding proofs are provided.
Section 4 provides the optimization problem for the HD scenario along with the solution.
In Section 5, the effectiveness of the proposed algorithm is evaluated and verified by
performing numerical simulations over various aspects. Finally, the paper is concluded in
Section 6, and technical proofs of the theorems are given in the Appendices A–E.

2. System Model

We consider the communication from a source equipped with Nt antennas to a destina-
tion with Nr antennas. The reliable communication from the transmitter to the destination
is assumed to be only feasible by means of a relay with Kt transmitter and Kr receiver
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antennas at the output and input front ends, respectively. This means that the direct link
from the transmitter to the destination and the link from the transmitter to the IRS and to
the destination has a negligible impact on the throughput. This assumption is realistic for
the scenarios where the path loss is high due to the high frequency ranges such as mmWave
and Terahertz or due to far distances [35], as well as cases were there are objects that block
the direct link between the source and the destination. An IRS consisting of M elements
is established to either cancel the RSI or help enhance one of the transmitter–relay/relay–
destination links. The overall system model can be found in Figure 1.

1
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So
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1

Kr

1

Kt

Relay

1

Nr

D
es

ti
na

ti
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H1 H2

HSI HID

Hr

HRIHIR

IRS

Figure 1. System model of an IRS assisted full-duplex relay. In our model both source and destination
are equipped with Nt and Nr antennas, respectively. In addition, the relay is equipped with Kt

transmitting and Kt receiving antennas, and the IRS has M passive elements.

In this paper, it is assumed that signal delivery over the transmitter–IRS–receiver link is
not available. This is mainly due to the power attenuation and the power radiation pattern
effects [36]. As the IRS is a passive device, it has some power attenuation in practice, which
makes the reflected waves weaker than the received ones. In addition, due to the power
radiation pattern, based on the angle of arrival and departure, both received and reflected
waves are subject to attenuation, respectively. In our system, as the IRS is established in
the vicinity of the relay and is faced towards it, both aforementioned effects cause the
source–IRS–destination link to be extremely weaker than the source–relay–destination link.

Next, we present the achievable throughput rates for the HD and FD relaying. We
start with the HD relay in which κ = 0. In the second case, IRS can be exploited to enhance
the quality of the channel between the source and the relay. In such a case, the received
signals at the relay and destination can be expressed as

yr = (H1 + HIRΘHSI)xs + κHrxr + nt, (1)

yd = H2xr + nd, (2)

where HSI ∈ CNt M is the channel from the source to the IRS. Finally, IRS can be used to
help the channel from the relay to the destination. In this case, the received signals are
going to be

yr = H1xs + κHrxr + nt, (3)

yd = (H2 + HIDΘHRI)xr + nd, (4)

where HID ∈ CM×Nr is the channel from the source to the IRS.
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In what follows, we find the achievable rate for three aforementioned cases and
compare them to see under what conditions each of them should be applied. Notation and
definitions are summarized in Table 1.

Table 1. Simulation parameters.

Notation Definition Notation Definition

Nt Number of antennas at the source Θ IRS phase profile

Nr Number of antennas at the destination xs, xr Source and relay transmit signals

Kt
Number of antennas at the relay’s
transmitter nr, nd

Additive noise at the relay and
destination

Kr
Number of antennas at the relay’s
receiver yr, yd

Received signals at the relay and
destination, respectively

M Number of IRS elements κ FD/HD mode indicator

Hr, Ĥr, H̄r

Self-interference actual channel,
estimated channel and channel error,
respectively

RFD
sr , RFD

rd , RFD Source–relay, relay–destination and the
overall throughput in FD mode

H1, Ĥ1, H̄1
Source–Relay actual channel, estimated
channel and channel error, respectively RHD

sr , RHD
rd , RHD Source–relay, relay–destination and the

overall throughput in HD mode

H2, Ĥ2, H̄2

Relay–Destination actual channel,
estimated channel and channel error,
respectively

Qs, Qr Source and relay covarriance matrices

HSI , ĤSI , H̄SI
Source–IRS actual channel, estimated
channel and channel error, respectively Htot1 Htot1 = (H̄r + HRIΘHIR)

HIR, ĤIR, H̄IR

IRS–Destination actual channel,
estimated channel and channel error,
respectively

Ĥtot2 , H̄tot2

Ĥtot2 =
(
Ĥ1 + HRIΘĤIR

)
H̄tot2 = (H̄1 + H̄RIΘH̄IR)

HRI , ĤRI , H̄RI
Relay–IRS actual channel, estimated
channel and channel error, respectively Ĥtot3 , H̄tot3

Ĥtot3 =
(
Ĥ2 + HRIΘĤIR

)
H̄tot3 = (H̄2 + H̄RIΘH̄IR)

HIR, ĤIR, H̄IR
IRS–Relay actual channel, estimated
channel and channel error, respectively λi(X) i’th largest eigenvalue of matrix X

γsi γsi = λi(Qs) σ2
1i

σ2
1i
= λi(H1HH

1 )

γri γri = λi(Qr) σ2
ri

σ2
ri
= λi(H̄tot1 H̄H

tot1
)

Tr The RSI channel uncertainty bound σ2
2i

σ2
2i
= λi(H2HH

2 )

Tx
Channel estimation error bound
x ∈ {1, 2, SI, IR, RI, ID} T′ The remaining RSI channel uncertainty

after considering the impact of the IRS

3. Achievable Rate (Full-Duplex Relay)
3.1. Overview

Suppose that the relay employs a DF strategy. In the full-duplex scenario, both source–
relay and relay–destination links are active at the same time. As a result, the signals from
the relay transmitter interfere with the receiving signal at the relay receiver. We assume
that an estimate of the SI channel Hr is available at the relay denoted by Ĥr. Hence, the RSI
represented by H̄r is given as

H̄r = Hr − Ĥr. (5)

In the rest of the paper, we try to find an approach to deal with this RSI.
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3.2. Mathematical Preliminaries

Considering a FD DF relay, the following rates are achievable [37],

RFD = min(RFD
sr , RFD

rd ), (6)

in which, depending on how the IRS is applied to the system, the three following sets of
rates are possible. First,

RFD
sr = log2

∣∣σ2
t IKr + Ĥ1QsĤH

1 + H̄1QsH̄H
1 + Htot1 QrHH

tot1

∣∣
∣∣σ2

t IKr + H̄1QsH̄H
1 + Htot1 QrHH

tot1

∣∣ , (7)

RFD
rd = log2

∣∣σ2
d IN + Ĥ2QrĤH

2 + H̄2QrH̄H
2

∣∣
∣∣σ2

d IN + H̄2QrH̄H
2

∣∣ , (8)

where Htot1 = (H̄r + HRIΘHIR) when the IRS is used to cancel the self interference.
Second,

RFD
sr = log2

∣∣σ2
t IKr + Ĥtot2 QsĤH

tot2
+H̄tot2 QsH̄H

tot2
+ H̄rQrH̄H

r
∣∣

∣∣σ2
t IKr+H̄tot2 QsH̄H

tot2
+ H̄rQrH̄H

r
∣∣ , (9)

RFD
rd = log2

∣∣σ2
d IN + Ĥ2QrĤH

2 + H̄2QrH̄H
2

∣∣
∣∣σ2

d IN + H̄2QrH̄H
2

∣∣ , (10)

where Ĥtot2 =
(
Ĥ1 + ĤRIΘĤIR

)
and H̄tot2 = (H̄1 + H̄RIΘH̄IR) if the IRS is established to

help the source–relay channel and finally

RFD
sr = log2

∣∣σ2
t IKr + Ĥ1QsĤH

1 + H̄1QsH̄H
1 + H̄rQrH̄H

r
∣∣

∣∣σ2
t IKr + H̄1QsH̄H

1 + H̄rQrH̄H
r
∣∣ , (11)

RFD
rd = log2

∣∣σ2
d IN + Ĥtot3 QrĤH

tot3
+ H̄tot3 QrH̄H

tot3

∣∣
∣∣σ2

d IN + H̄tot3 QrH̄H
tot3

∣∣ , (12)

where Ĥtot3 =
(
Ĥ2 + ĤRIΘĤIR

)
and H̄tot3 = (H̄2 + H̄RIΘH̄IR) if the IRS is utilized to

enhance the rate of the relay–destination channel. Notice that assuming that the RSI remains
uncanceled, a robust transceiver against the worst-case RSI channel is required which is
formulated as an optimization problem as follows

max
Qs ,Qr ,Θ

min
H̄r

min
(

RFD
sr , RFD

rd

)
(13)

subject to Tr(Qs) ≤ Ps, (13a)

Tr(Qr) ≤ Pr, (13b)

Tr(H̄xH̄H
x ) ≤ Tx,

x ∈ {1, 2, r, RI, IR, ID, SI} (13c)

|θm| ≤ 1, ∀m (13d)

in which the throughput rate with respect to the worst-case RSI channel is maximized. Two
constraints, Ps and Pr, represent the transmit power budgets at the source and the relay,
respectively. In constraint (13c), Tx represents the RSI or the channel estimation error bound
corresponding to Hx. Notice that Tr(H̄xH̄H

x ) represents the sum of the squared singular
values of Hx. It should be noted that using a bounded matrix norm is the most common
way for modeling the uncertainty of a matrix [38,39]. In practice, Tx can be found using
stochastic methods when the distribution of the channel error is known. Otherwise, one
may find it using a sample average approximation method. Finally, constraints (13d) are
due to the unit modulus limitation of the IRS elements.
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The problem (13) is non-convex and hard to solve. As a result, for each of the above-
mentioned scenarios, we propose a simplified version of the optimization problem and try
to solve it instead. Note that as we are interested in finding the throughput corresponding
to the worst-case RSI, any simplification in the optimization problem should be in favor of
the RSI and interference. First, we analyse the performance of the system when the IRS
is helping the relay cancel the RSI. Consequently, we show that the problem (13) can be
simplified to the following optimization problem

max
Qs ,Qr

min
Htot

min
(

RFD
sr , RFD

rd

)
(14)

subject to Tr(Qs) ≤ Ps,

Tr(Qr) ≤ Pr,

Tr(HtotHH
tot) ≤ T′(Tr, Θ).

Tr(H̄xH̄H
x ) ≤ Tx, x ∈ {1, 2} (14a)

where

T′(Tr, Θ) = min
Θ

max
H̄r

||H̄r + HRIΘHIR||2F (15)

subject to Tr(H̄rH̄H
r ) ≤ Tr, (15a)

||Vec(Θ)||22 ≤ 1, (15b)

and where Vec(·) denotes the vector of all non-zero elements of its input matrix. We can
equivalently write T′ as

T′(Tr, Θ) = min
Θ

max
H̄r

||Vec(H̄r) + (HIR ∗HT
RI)Vec(Θ)||22 (16)

subject to Tr(H̄rH̄H
r ) ≤ Tr, (16a)

||Vec(Θ)||22 ≤ 1, (16b)

where ∗ denotes a column-wise Khatri–Rao product defined as below

A ∗ B = [A1 ⊗ B1|A2 ⊗ B2| · · · |An ⊗ Bn], (17)

and where Ai is the i’th column of A, and⊗ denotes the Kronecker product. See Appendix A
for proof.

One can show that T′ ≤ (
√

Tr− σmin(HIR ∗HT
RI))

2. As mentioned before, problem (14)
is a simplification of problem (13). This means every achievable rate which is inside the
feasible set of (14) is also inside the feasible set of (13) (Notice that the reverse is not
necessarily true, i.e., every achievable rate which is a feasible solution of (13) is not
necessarily a feasible solution for (14) as well. However, as we look for achievable rates,
we can still use this method). The reason is that in problem (13), the minimization over
RSI happens only one time, and the worst-case RSI simultaneously tries to cancel the
effect of the best configuration of IRS and the best covariance matrices. In (14), first, the
RSI does its worst damage on the performance of the best IRS configuration and after
that performs another optimization to bring the worst power allocation against the best
covariance matrices (This will be clearer later on when the geometrical representation
of the problem is given). In what follows, we provide our proposed ways to deal with
optimization problems (14) and (15), respectively.

Theorem 1. For the optimization problem (14), one can show that T′(T, Θ) ≤ (
√

Tr−σmin(HIR ∗
HT

RI))
2.
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Proof. We begin the proof with an intuitive example and then extend it to the more general
case. Assume that Kt = 1, Kr = 2 and M = 3. Then we have

T′ = max
Θ

min
h̄r

||h̄r + HIRdiag(HT
RI)Vec(Θ)||22 (18)

subject to h̄2
11 + h̄2

21 ≤ Tr, (18a)

θ2
1 ≤ 1, θ2

2 ≤ 1, θ2
3 ≤ 1. (18b)

In addition, consider the following optimization problem

T′′ = max
Θ

min
h̄r

||h̄r + HIRdiag(HT
RI)Vec(Θ)||22 (19)

subject to h̄2
11 + h̄2

21 ≤ Tr, (19a)

θ2
1 + θ2

2 + θ2
3 ≤ 1, (19b)

Here, notice that HIRdiag(HT
RI) is a linear map from a three-dimensional into a two-

dimensional space. One simple example of such a mapping can be found in Figure 2. Here,
an example of mapping from a three-dimensional to a two-dimensional space is shown.
The left shape shows the feasible set for the IRS with three elements in a real valued space.
The cube belongs to the case of T′, i.e., constraints −1 ≤ θm ≤ 1, ∀m, while the sphere
shows the constraint θ2

1 + θ2
2 + θ2

3 ≤ 1 which belongs to T′′. On the right, the feasible sets
belonging to the two aforementioned regions after performing mapping f are presented
as an example. It can be seen that the mapping of the first set of constraints (the hexagon)
covers the whole area of that of the second one (the ellipse). One important key is, as
mapping is a linear function, we have A ⊂ B −→ f (A) ⊂ f (B), where A and B are two
arbitrary sets and f is the mapping.

In general, as the number of IRS elements or the dimensions of h̄r increase, the
mapping of the hypercube becomes more and more complicated and finding the optimal
distance becomes more difficult. However, there is an upper bound for this distance.
As shown in Figure 3, if instead of the cube, we limit the feasible set of IRS elements to
the sphere inside the cube, i.e., replacing (18b) with (19b), the solution to the problem
becomes GE ≥ GF. It turns out that finding GE is very simple as by the definition we
have σmin(HIRdiag(HT

RI)) = OE, and also we know that
√

Tr = GO. Therefore, we can
conclude GE =

√
Tr − σmin(HIRdiag(HT

RI)). Finally, we use one last upper bound to
make the original problem even easier to solve. Note that if instead of the ellipse, we
consider the circle inscribed in it, we will have maxh̄r

minΘ ||h̄r + (HIR ∗ HT
RI)θ||2 =√

Tr − σmin(HIR ∗HT
RI), ∀h̄r. As a result, we have

||h̄toth̄H
tot||2 ≤ T′, ∀h̄r, (20)

where T′ =
(√

Tr − σmin(HIR ∗HT
RI)
)2. It is worth mentioning that the geometrical repre-

sentation for the optimization problem (13) is different because there, considering that the
RSI wants to bring the worst representation against the IRS configuration and covariance
matrices simultaneously, the RSI cannot freely span the whole circle. This is due to the fact
that some regions in the circle might not be a good choice when it comes to RSI design
against covariance matrices. However, if the best representation of RSI against the covari-
ance matrices also provides the best RSI against the IRS configuration, the solution to (14)
and (13) will be the same. Eventually, instead of optimization problem (13), one can solve
optimization problem (14). The solution to the new problem is guaranteed to be achievable
by the original problem as well.

Notice that one can readily extend this interpretation into the complex domain, as
the constraint (19b) will still be a subset of constraints (18b). It remains to show one
can generalize the geometrical proof for arbitrary large dimensions. This means that
the channel dimensions and the number of IRS elements can be any natural numbers.
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Interestingly, it is enough to show that the geometrical proof based on `2 norms and
Euclidean distance exists for higher dimensions. This proof is given in Appendix A where
it is shown ||H̄r + HRIΘHIR||2F = ||Vec(H̄r) + (HIR ∗HT

RI)Vec(Θ)||22.

X

Y

Z

O

X′

Y′O f

Figure 2. An example of mapping from three-dimensional to two-dimensional space.

O
E

F

G

Figure 3. Geometrical representation of optimization problem (18).

becomes GE ≥ GF. It turns out that finding GE is very simple as by the definition we
have σmin(HIRdiag(HT

RI)) = OE, and also we know that
√

Tr = GO. Therefore, we can
conclude GE =

√
Tr − σmin(HIRdiag(HT

RI)). Finally, we use one last upper bound to
make the original problem even easier to solve. Note that, if instead of the ellipse, we
consider the circle inscribed in it, we will have maxh̄r

minΘ ||h̄r + (HIR ∗ HT
RI)θ||2 =√

Tr − σmin(HIR ∗ HT
RI), ∀h̄r. As a result, we have

||h̄toth̄H
tot||2 ≤ T′, ∀h̄r, (20)

where T′ =
(√

Tr − σmin(HIR ∗ HT
RI)
)2. It is worth mentioning that the geometrical repre- 228

sentation for the optimization problem (13) is different, because there, considering that the 229

RSI wants to bring the worst representation against the IRS configuration and covariance 230

matrices simultaneously, the RSI cannot freely span the whole circle. This is due to the fact 231

that some regions in the circle might not be a good choice when it comes to RSI design 232

against covariance matrices. However, if the best representation of RSI against the covari- 233

ance matrices also provides the best RSI against the IRS configuration, the solution to (14) 234

and (13) will be the same. Eventually, instead of optimization problem (13) one can solve 235

optimization problem (14). The solution to the new problem is guaranteed to be achievable 236

by the original problem as well. 237

Notice that one can readily extend this interpretation into the complex domain, as 238

the constraint (19c) will still be a subset of constraints (18c). It remains to show one can 239

generalize the geometrical proof for arbitrary large dimensions. This means that the channel 240

dimensions and the number of IRS elements can be any natural numbers. Interestingly, it 241

is enough to show that the geometrical proof based on ℓ2 norms and Euclidean distance 242

exists for higher dimensions. This proof is given in Appendix I where it is shown ||H̄r + 243

HRIΘHIR||2F = ||Vec(H̄r) + (HIR ∗ HT
RI)Vec(Θ)||22. 244

The next is to solve problem (14). Solving this problem is hard in general as it is non- 245

convex. Hence, we first use the following lemma and theorem to solve it. There, it is shown 246

Figure 2. An example of mapping from three-dimensional to two-dimensional space. The hexagon
and the circle are the mapping output of the cube and the sphere respectively.
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Figure 3. Geometrical representation of optimization problem (18).

Next we solve problem (14). Solving this problem is hard in general as it is non-convex.
Hence, we first use the following lemma and theorem to solve it. There, it is shown that
for every possible choice of H1 and H2, there exists at least one set of simultaneously
diagonalizable matrices Htot, Qs and Qr that are the solutions to the problem (14).

Lemma 1. For two positive semi-definite and positive definite matrices A and B with eigenvalues
λ1(A) ≥ λ2(A) ≥ ... ≥ λN(A) and λ1(B) ≥ λ2(B) ≥ ... ≥ λN(B), respectively, the following
inequalities hold,

N∏

i=1

(
1 +

λi(A)

λi(B)

)
≤
∣∣∣I + AB−1

∣∣∣ ≤
N∏

i=1

(
1 +

λi(A)

λN+1−i(B)

)
. (21)

Proof. Consider Fiedler’s inequality given by [40],

N∏

i=1

(λi(A)+λi(B))≤
∣∣∣B + A

∣∣∣≤
N∏

i=1

(λi(A)+λN+1−i(B)). (22)

Furthermore, given B as a positive definite matrix, the following are true,
∣∣B
∣∣ > 0, (23)

∣∣B−1∣∣ =
N∏

i=1

1
λi(B)

. (24)

Now, dividing the sides of (22) by
∣∣B
∣∣, one can readily obtain (21).
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Note that in (21), the inequalities hold with equality if and only if A and B are
diagonalizable over a common basis. Using the result of Lemma 1, RFD

sr can be lower-
bounded as

log2

∣∣σ2
t IKr + Ĥ1QsĤH

1 + H̄1QsH̄H
1 + Htot1 QrHH

tot1

∣∣
∣∣σ2

t IKr + H̄1QsH̄H
1 + Htot1 QrHH

tot1

∣∣ ≥

min (M,Kr)∑

i=1

log2


1 +

λi

(
H1QsH1

H
)

λi

(
σ2

t IKr+H̄1QsH̄H
1 +Htot1QrHH

tot1

)


. (25)

In addition, it holds that λi

(
σ2

t IKr+H̄1QsH̄H
1 +Htot1QrHH

tot1

)
= σ2

t+

λi

(
H̄1QsH̄H

1 +Htot1QrHH
tot1

)
. Hence, we obtain

log2

∣∣σ2
t IKr + Ĥ1QsĤH

1 + H̄1QsH̄H
1 + Htot1 QrHH

tot1

∣∣
∣∣σ2

t IKr + H̄1QsH̄H
1 + Htot1 QrHH

tot1

∣∣ ≥

min (M,Kr)∑

i=1

log2


1 +

λi

(
H1QsH1

H
)

σ2
t +λi

(
H̄1QsH̄H

1 +Htot1QrHH
tot1

)


. (26)

Note that the inequality holds with equality whenever H1QsH1
H and H̄1QsH̄H

1 +
Htot1QrHH

tot1
share a common basis. Next, we use the following inequality

min (M,Kr)∑

i=1

log2


1 +

λi

(
H1QsH1

H
)

σ2
t +λi

(
H̄1QsH̄H

1 +Htot1QrHH
tot1

)


 ≥

min (M,Kr)∑

i=1

log2


1 +

λi

(
H1QsH1

H
)

σ2
t + T1Ps + λi

(
Htot1QrHH

tot1

)


. (27)

The above inequality holds true since λi(H̄1QsH̄H
1 ) ≤ T1Ps.

Now, instead of completing the minimization over the left-hand side (LHS) of Equa-
tion (26), we can first minimize the right-hand side (RHS) of Equation (27) to find an
achievable rate. Similarly, for RFD

rd we have

log2

∣∣σ2
d IN + Ĥ2QrĤH

2 + H̄2QrH̄H
2

∣∣
∣∣σ2

d IN + H̄2QrH̄H
2

∣∣ ≥
min (M,Kr)∑

i=1

log2


1 +

λi

(
H2QrH2

H
)

σ2
d + T2Pr


. (28)

Remark 1. Having the equality C = H̄rQrH̄H
r , one can generally conclude the rule of multi-

plication is determinant, i.e., det(C) = det
(
H̄H

r H̄r
)

det(Qr). Further, using the properties of

determinants we can also conclude
∏N

i=1 λi(C) =
∏N

i=1

(
λρ(i)

(
H̄H

r H̄r
)
λi(Qr)

)
where ρ(i) is a

random permutation of i and indicates that there is no need for λρ(i)
(
H̄H

r H̄r
)

to be in decreasing
order. However, one cannot generally conclude λi(C) = λρ(i)

(
H̄H

r H̄r
)
λi(Qr), ∀i, unless H̄H

r H̄r
and Qr share common basis.

As a result of Remark 1, in general, we cannot rewrite (26) in terms of λi
(
H̄H

r H̄r
)
,

λi(Qr), λi
(
HH

1 H1
)

and λi(Qs). However, if we show that for every choice of Qs, there
exists a matrix Q′s with properties: (1) λi(H1QsHH

1 ) = λi(H1Q′sHH
1 ); (2) λi(H1Q′sHH

1 ) =
λi(Q′s)λi(HH

1 H1) and (3) Tr(Q′s) ≤ Tr(Qs); then we can use Q′s instead and rewrite (26)
in terms of λi

(
HH

1 H1
)

and λi(Q′s) to simplify the problem. The first property implies that
both Qs and Q′s have the exact same impact on the capacity. Hence, if we find a Qs which
is the solution to the problem (14), its corresponding Q′s will also be a solution. The second
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property means, unlike Qs, Q′s actually shares the common basis with HH
1 H1. The last

property implies that Q′s is at least as good as Qs in terms of power consumption. Observe
that if we show for every feasible Qs there exists at least one such Q′s, then we can solve
the problem (14) in a much easier way. The reason is, in such a case, instead of searching
for optimal Qs over the whole feasible set, we can search for the optimal Q′s. Unlike Qs,
finding Q′s does not need a complete search over the whole feasible set since Q′s shares
a common basis with HH

1 H1. Therefore, we can limit our search only to the portion of
the feasible set in which the matrices have eigendirections identical to those of HH

1 H1.
Similarly, if we show for every choice of H̄r, there exist at least one H̄′r for which we have
three conditions λi(H̄rQrH̄H

r ) = λi(H̄′rQrH̄′Hr ), λi(H̄rQrH̄′Hr ) = λi(Qr)λi(H̄′H1 H̄′1) and
Tr(H̄′H1 H̄′1) ≤ Tr(H̄H

1 H̄1), we can simplify our search to finding H̄′r instead of H̄r. In the
next theorem, we show that such Q′s and H̄′r exist.

Theorem 2. For all matrices Qs and H1, there exists at least one matrix Q′s that satisfies the
following conditions,

λi
(
H1QsHH

1
)
= λi

(
H1Q′sHH

1
)
, (29)

λi(H1Q′sHH
1 ) = λρ(i)(Q

′
s)λi(HH

1 H1), (30)

Tr(Q′s) ≤ Tr(Qs), (31)

where ρ(i) is a random permutation of i and indicates that there is no need for λρ(i)(Q′s) to be in
decreasing order.

Proof. The proof is given in Appendix B.

For the sake of simplicity, we use the following notions for the rest of the paper,

γsi = λi(Qs), (32)

γri = λi(Qr), (33)

σ2
1i
= λi(H1HH

1 ), (34)

σ2
ri
= λi(H̄tot1 H̄H

tot1
), (35)

σ2
2i
= λi(H2HH

2 ). (36)

Now, using Theorem 2 alongside Lemma 1, we infer that with no loss of generality,
instead of optimising over matrices, one can complete the optimization over eigenvalues to
find the optimal value for RSH of (27). Then we have

max
γs ,γr

min
σr

min

(min(M,Kr)∑

i=1

log

(
1 +

σ2
1i

γsρ(i)

σ2
t + T1Ps + γri σ

2
rρ(i)

)
,

min(Kt,N)∑

i=1

log
(

1 +
σ2

2i
γri

σ2
d + T2Pr

))
(37)

subject to ‖γs‖1 ≤ Ps, (37a)

‖γr‖1 ≤ Pr, (37b)

‖σ2
r‖1 ≤ T′, (37c)

σ2
1i

γsρ(i) ≥ σ2
1i+1

γsρ(i+1) , ∀i ≤ min(M, Kr), (37d)

γri σ
2
rρ(i)
≥ γri+1 σ2

rρ(i+1)
, ∀i ≤ min(Kt, N). (37e)

Note that the two additional constraints (37d) and (37e) need to be satisfied due to the
conditions of Lemma 1 (i.e., eigenvalues have to be in decreasing order). Interestingly,
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these two additional constraints are affine. The above optimization problem can further be
simplified using the following lemma,

Lemma 2. The objective function of the optimization problem (37) is optimized when the constraints
(37a) and (37c) are satisfied with equality.

Proof. Intuitively, as the objective function is an increasing and decreasing function of each
element of γs and σ2

r , respectively, at convergence, the constraints are met with equality.
See Appendix C for the proof.

3.3. Algorithm Description

In this subsection, our proposed algorithm is given. In short, it works as follows.
First, based on the task of the IRS in the system, we compute the effect of IRS on the
RSI, source–relay and/or relay–destination channel links. After that, we design the best
signal design for the source and relays transmitters with the objective of maximizing the
throughput. In the rest of this subsection, the detailed explanation of the algorithm is given.
First, we need to solve the optimization problem (37). It can be readily shown that RFD

rd
is a monotonically increasing function of Pr. Furthermore, one can show that RFD

sr is an
increasing function with respect to Ps and a decreasing function with respect to T′ and
Pr (See Appendix D). Consequently, the worst-case RSI chooses a strategy to reduce the
spectral efficiency, while the relay and the source cope with such strategy for improving
the system robustness. That means, on one hand, the RSI hurts the stronger eigendirections
of the received signal space more than the weaker ones. However, on the other hand, the
source tries to cope with this strategy adaptively by smart eigen selection. This process
clearly makes the optimization problem complicated at the source–relay hop. Unlike the
source–relay hop, the resource allocation problem at the relay–receiver hop is rather easy.
Since at the relay–receiver hop there is only one maximization, we can find the sum capacity
simply by using the well-known water-filling algorithm.

Observe that although finding each RFD
sr and RFD

rd separately is a convex problem, the
problem (37) as a whole is not convex. Therefore in this paper, we find the optimal RFD

sr by
keeping RFD

rd fixed. Then we use the resulting RFD
sr to find optimal RFD

rd and again, using the
new resulted RFD

rd to find optimal RFD
sr . This iterative process repeats until the convergence.

Our simulation showed that the algorithm has a very fast convergence and only in rare
cases does it take more than 20 iterations for the algorithm to converge. This is mainly
due to the fact that inequalities (37d) and (37e) restrict the eigenvalues to vary up to a
certain limit, which in turn, makes the whole outputs more stable. Figure 4 depicts a typical
histogram of iterations. As it can be seen, only less than 3% of cases did not converge until
50 iterations.

Notice that the optimum values for the transmission power on relay hop may not
sum to Pr. The reason is that RFD

sr is a monotonically decreasing function of Pr and as we
are interested in the min(RFD

sr , RFD
rd ), with RFD

sr < RFD
rd we will have min(RFD

sr , RFD
rd ) = RFD

sr .
Therefore, it is in our interest to keep Pr as low as possible to increase RFD

sr as much as
possible. Analogously, in the case of RFD

sr > RFD
rd we have min(RFD

sr , RFD
rd ) = RFD

rd which
can be increased by increasing the total power usage of relay’s transmitter. As a result,
the well-known bisection method can be used to find the optimal rate where we have
RFD

sr = RFD
rd , unless the case RFD

sr ≥ RFD
rd happens even if the maximum allowed power

is used at the relay transmitter. In such a case, the relay–destination link becomes the
bottleneck.
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Figure 4. Cumulative distribution function (cdf) of iterations when Ps = 5 and Pr = 1 and M =

Kt = Kr = N = 10. The maximum number of iterations is set to be 50. Cases that took more than 50
iterations to converge are considered to be divergent.

Now we focus on how to find RFD
sr . In order to find the sum rate for the source–

relay hop, we assume that we are already given γ?
r which is the vector of relay input

powers that maximizes the sum rate at the relay–destination hop. The next step is to
complete the minimization over σr and the maximization over γs. One approach to
solve this problem is to solve it iteratively. With this method, first one finds the optimal
γs by solving the maximization part of (37) under the assumption that the optimal σr
is given, and then, having the optimal γs, the minimization part of (37) can be solved
efficiently. This process goes on until the convergence of γs and/or σr. The maximization
part is performed using the water-filling method. However, the additional conditions
∀ i ≤ min(M, Kr), σ2

1i
γsρ(i) ≥ σ2

1i+1
γsρ(i+1) should be taken into account. For instance, if the

optimal value for γsi turns out to be equal to zero, then we should have γsj = 0 for all j > i
irrespective of their SNR. Figure 5 depicts two different examples of multi-level water-filling
algorithms. As it can be seen, first, a regular water-filling algorithm is considered where

for each subchannel we have
σ2

1i
1+γri σ2

rρ(i)
as its channel gain. After finding the water-level in

this way, we need to impose γsρ(i+1) ≤
min1≤i′≤i{σ2

1i′
γs

ρ(i′)
}

σ2
1i+1

. These additional restrictions act

like caps on top of the water and create multilevel water-filling which can be interpreted as
a cave. Figure 5a shows the case where these caps do not make any subchannel to have
zero power. However, Figure 5b shows the case where subchannel i = 13 has to be zero
as a result of the cap imposed by the additional constraints (37d). In this case, we have
γsρ(13) = 0, and as a result min1≤i′≤13{σ2

1i′
γsρ(i′)} = 0. Thus, this condition forces all other

subchannels (i.e., i > 13) to get no power. Algorithm 1 provides the detail of multilevel
water-filling. For the minimization part, a Lagrangian multiplier is used. We have

L =

min(M,Kr)∑

i=1

log2

(
1 +

σ2
1i

γsρ(i)

σ2
t + T1Ps + γri σ

2
rρ(i)

)
+ λ

( N∑

i=0

σ2
ri
− Tr

)
. (38)

Calculating ∂L
∂σ2

ri
= 0 we arrive at

σ2
ri
=




√(
σ2

1i
γsi

)2
+

4σ2
1i

γsi γri

λ −σ2
1i

γsi−2(σ2
t +T1Ps)

2γri




+

, (39)

where λ is the water level.
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Similarly to the maximization case, there are additional constraints γri σ
2
sρ(i)
≥ γri+1 σ2

ri+1

that must be considered during the minimization process. However, it can be shown that if
the constraints γri ≥ γri+1 and σ2

1i
γsρ(i) ≥ σ2

1i+1
γsi+1 are met, then the constraint γri σ

2
sρ(i)
≥

γri+1 σ2
ri+1

becomes redundant. Please refer to Appendix E for proof. The summary of the
algorithm to find the achievable rate can be found in Algorithm 2. Next we deal with the
optimization for the cases where IRS is utilized to help either the source–relay or relay–
destination channels. In such cases, the optimization part over the covariance matrices
remains the same as the abovementioned case. In addition, the optimization of the IRS
elements can be performed using eigenvalue decomposition and the algorithm introduced
in [8]. Notice that for the case in which IRS is assisting the source–relay link, the term
T1Ps in (27) should be replaced with (T1 + TSI TIR)Ps, and for the case where IRS helps the
relay–destination link, the term T2Ps in (28) should be replaced with (T2 + TRI TID)Pr. The
pseudo code for these scenarios is given in Algorithm 3.

Algorithm 1 The optimal γs

1: Find power allocation P0 using water-filling algorithm
2: while |P(q) − P(q−1)| is large do
3: Define temp = 0
4: for i do
5: Calculate capi = min1≤i′≤i−1{σ2

1i′
γsρ(i′)}/σ2

1i

6: if Pi > capi then
7: Pi = capi
8: temp = temp + Pi − capi
9: end if

10: end for
11: P = P +

temp
number of channels

12: end while

Algorithm 2 Robust Transceiver Design for FD scenario, the first case

1: Define U = Pr, L = 0, P̄(1)
r = Pr

2
2: while |U − L| is large do
3: Determine γr = [τr − 1

σ2
2
]+, s.t. ‖γr‖1 = P̄r

4: Define σ
(0)2

r = 0 and σ
(1)2

r = 1 and q = 0
5: Set T′ =

(√
Tr − σmin(HIR ∗HT

RI)
)2

6: while ‖σ(q)2

r − σ
(q−1)2

r ‖1 is large do

7: Obtain σ
(q)2

r , using Equation (39)
8: Obtain γ

(q)
s , using Algorithm 1

9: q = q + 1
10: end while
11: Calculate Rsr and Rrd
12: if Rsr > Rrd then
13: U = P̄r
14: else if Rsr < Rrd then
15: L = P̄r
16: end if
17: P̄r =

U+L
2

18: end while
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Algorithm 3 Robust Transceiver Design for FD scenario, the second and third case

1: Define U = Pr, L = 0, P̄(1)
r = Pr

2
2: Define Case = 1 if the IRS is being used help the source–relay link or Case = 0 if IRS is

being used to help the relay–destination link
3: while |U − L| is large do
4: Determine γr = [τr − 1

σ2
2
]+, s.t. ‖γr‖1 = P̄r

5: Define σ
(0)2

r = 0 and σ
(1)2

r = 1 and q = 0
6: if Case = 1 then
7: H̄tot2 = (H̄1 + H̄RIΘH̄IR)
8: Find the optimum Θ, using Algorithm 1 in [8]
9: else if Case = 0 then

10: H̄tot3 = (H̄2 + H̄RIΘH̄IR)
11: Find the optimum Θ, using Algorithm 1 in [8]
12: end if
13: Obtain γ

(q)
s , using Algorithm 1

14: q = q + 1
15: end while
16: Calculate Rsr and Rrd
17: if Rsr > Rrd then
18: U = P̄r
19: else if Rsr < Rrd then
20: L = P̄r
21: end if
22: P̄r =

U+L
2

i
1 3 5 7 9 11 13 15

σ2
1i

1+γri σ2
ræ(i)

(a)

i
1 3 5 7 9 11 13 15

σ2
1i

1+γri σ2
ræ(i)

(b)

Figure 5. Examples of multilevel water-filling for two different cases. (a) No subchannel with
optimum power equal to zero. Note that due to the power cap constraint (37d), water does not have
the same level for all subchannels. (b) Subchannel i = 13 receives the optimum of zero as its input
power. Notice that in this case, due to the additional power cap constraint (37d), all the remaining
subchannels i > 13 also have zero power.

3.4. Discussion

In this part, we evaluate the various aspects of our method. First, we examine the
complexity of our algorithm and compare it with the state of the art. Algorithms 1 and 2 are
the main solutions provided in this paper. Algorithm 1 is a multi-level water-filling, and as
a result, it has the complexity of O(Iw min(Nt, Kr)), where Iw is a constant that is indepen-
dent of system parameters and is only related to the accuracy of the multi-level water-filling
algorithm. Algorithm 2 requires the SVD for matrices H1, H2 and (HIR ∗HT

RI), with the
complexity O(NtKr min(Nt, Kr)), O(NrKt min(Nr, Kt)) and O(MKrKt min(M, KrKt)), re-
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spectively. Furthermore, the Khatri–Rao multiplication HIR ∗HT
RI is needed that has the

complexity O(NrKt M). As a result, the overall complexity of our method is O(MKrKt
min(M, KrKt) + NrKt M + NtKr min(Nt, Kr) + NrKt min(Nr, Kt) + It(Iw min(Nt, Kr))),
where It is a constant independent of the system parameters. Interestingly, our method has
a super linear complexity with respect to the number of IRS elements which is better than
the state of the art works, e.g., [5,8]. This means that our algorithm in more energy efficient
and suitable for latency sensitive applications. It should also be noted that our algorithm
does not provide the optimal IRS pattern; instead, it provides analytical bounds for the
performance of the IRS that can be used as a benchmark. In other words, our work provides
a tool with which one can evaluate the efficiency of their robust design. A comparison
between our method and previous works is summarized in Table 2

Table 2. Comparison of the proposed method with previous studies.

Method Complexity Robust Design * Solution System Model

This work O(MKrKt min(M, KrKt)) Yes Analytical bounds Relay and IRS

Zhang et al. [8] O(IO M3) No Practical solution Only IRS

Esmaeili et al. [34] O(It(Iw min(Nt, Kr))) Yes Practical solution Only relay

Obeed et al. [9] O(Iλ IO Iw M3) No Practical solution Relay and IRS

* This means that the method is robust against channel uncertainties and/or RSI.

4. Achievable Rate (Half-Duplex Relay)

We consider a simple HD relay where the source and the relay transmit in two sub-
sequent time instances. Notice that for the case of HD, IRS can be used to assist both the
source–relay and the relay–destination channels as the signal is being sent over each of
these channels in a different time slot. Therefore, the received signals at the relay and the
destination can, respectively, be expressed as

yr =
(
Ĥ1+ĤIRΘĤSI

)
xr+(H̄1+H̄IRΘH̄SI)xr + nt, (40)

yd =
(
Ĥ2+ĤIDΘĤRI

)
xr+(H̄2+H̄IDΘH̄RI)xr + nd. (41)

Consequently, the achievable rates for the transmitter–relay and relay–destination
links can be expressed as below

RHD
sr = log

∣∣∣IKr+
(
Ĥ1+ĤIRΘĤSI

)
Qs
(
Ĥ1+ĤIRΘĤSI

)H

(
σ2

t IKr+(H̄1+H̄IRΘH̄SI)Qs(H̄1+H̄IRΘH̄SI)
H
)−1∣∣∣

≥
min (M,Kr)∑

i=1

log2


1 +

λi

(
H′1QsH′1

H
)

σ2
t + T1Ps


, (42)

RHD
rd = log

∣∣∣IN+
(
Ĥ2+ĤIDΘĤRI

)
Qr
(
Ĥ2+ĤIDΘĤRI

)H

(
σ2

d IN+(H̄2+H̄IDΘH̄RI)Qr(H̄2+H̄IDΘH̄RI)
H
)−1∣∣∣

≥
min (M,Kr)∑

i=1

log2


1 +

λi

(
H′2QrH′2

H
)

σ2
d + T2Pr


. (43)

where H′1 = Ĥ1+ĤIRΘĤSI and H′2 = H̄2+H̄IDΘH̄RI. In addition, RHD
sr and RHD

rd are the
achievable rates on the source–relay and relay–destination links, respectively. Using time
sharing, the achievable rate between the source and destination nodes is given by

RHD = min(αRHD
sr , (1− α)RHD

rd ), (44)
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where α is the time-sharing parameter.
Note that in half-duplex relaying, the source and relay transmissions are conducted

in separate channel uses. Hence, the transmit covariance matrices Qs ∈ HNt×Nt and Qr ∈
HKt×Kt are optimized by maximizing the achievable rate from the source to the destination.
Here, the convex cone of Hermitian positive semidefinite matrices of dimensions Nt ×
Nt and Kt × Kt are represented by HNt×Nt and HKt×Kt , respectively. Importantly, for
maximizing this achievable rate, the time-sharing parameter, i.e., α, needs to be optimized
alongside the system parameters, e.g., power allocation. Readily, optimal α occurs at
αRHD

sr = (1− α)RHD
rd . Therefore, the achievable rate becomes as follows

RHD =
RHD

sr RHD
rd

RHD
sr + RHD

rd
. (45)

Notice that as the objective function of the above optimization problem is a mono-
tonically increasing function of both RHD

sr and RHD
rd , the problem can be simplified to

maximizing RHD
sr and RHD

rd separately.
Next, we provide the solution to the rate optimization problem when IRS is assisting

the source–relay link. We have

max
Qs

min
H̄SI ,H̄1,H̄IR

RHD
sr (46)

subject to Tr(Qs) ≤ Ps, (46a)

Tr(H̄1H̄H
1 ) ≤ T1, (46b)

Tr(H̄SIH̄H
SI) ≤ TSI , (46c)

Tr(H̄IRH̄H
IR) ≤ TIR, (46d)

The above optimization problem follows the same approach applied for the optimiza-
tion of the relay–destination link in the FD scenario. As a result, the same method could be
applied to find it. In other words, the well-known water-filling algorithm can be used to
find the optimal covariance matrices along with the algorithm introduced in [8] to find the
best IRS pattern. This process continues iteratively until it finally converges. The solution
to RHD

rd is the same as well, and the same procedure can be applied to find Qr. The overall
procedure of finding the solution for the HD mode is summarized in Algorithm 4.

Algorithm 4 Robust Transceiver Design for HD scenario

1: H̄tot2 = (H̄1 + H̄RIΘH̄IR)
2: Find the optimum Θ, using Algorithm 1 in [8]
3: H̄tot3 = (H̄2 + H̄RIΘH̄IR)
4: Find the optimum Θ, using Algorithm 1 in [8]
5: Find RHD

sr , using Equation (42)
6: Find RHD

rd , using Equation (43)
7: Find RHD, using Equation (45)

5. Numerical Results

We assume the transmit power budgets at the source and at the relay are Ps = 5 and
Pr = 1, respectively. Moreover, the AWGN spectral density is assumed to be−175 dBm and
the bandwidth is BW = 180 MHz. In this section, we investigate the performance of IRS-
assisted full-duplex relaying with RSI channel uncertainty bound Tr, i.e., Tr(H̄rH̄H

r ) ≤ Tr.
We consider all the channels to follow the Rician distribution with the factor ε = 0.1 and
the specificaiton given in Table 3. We also assume Tx = 0.001, x ∈ {1, 2, SI, IR, RI, ID}. We
perform Monte Carlo simulations with L = 103 realizations from random channels and
noise vectors. Hence, the average worst-case throughput rate is defined as the average
of worst-case rates for L randomization, i.e., Rav = 1

L
∑L

l=1 Rl . Notice that for each set of
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realizations, we solve the robust transceiver design as is elaborated in Algorithm 2. We run
different sets of simulations as described in the following subsections.

Table 3. Simulation parameters.

Parameters Values

Transmitter location (0 m, 0 m)

IRS location (4000 m, 20 m)

Relay location (4000 m, 0 m)

Receiver location (8000 m, 0 m)

Path-loss 32.6 + 36.7log(d)

Transmission bandwidth B 180 Mb

5.1. Antenna Array Increment with No IRS

In this part, first we assume that there is no IRS installed. Then we evaluate the
performance of the system using different strategies. Thereafter, we examine how installing
an IRS can help increase the throughput. We consider two cases where the source, relay
and destination are equipped with (a) a small antenna array, and (b) a large antenna arrays.
In order to see the impact of IRS, we first assume that there is no IRS installed. For these
cases, we have

(a) Nt = 4, Kr + Kt = 10, Nr = 4,
(b) Nt = 10, Kr + Kt = 24, Nr = 10.

These cases are considered to highlight the performance of full-duplex DF relaying
as a function of the number of antennas with the worst-case RSI. Interestingly, as the
number of antennas at the source, relay and destination increase, full-duplex relaying
achieves a higher throughput rate even with strong RSI. This can be seen by comparing
rates from Figure 6a to those from Figure 6b.
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Figure 6. Sum rate throughput of the FD mode as a function of normalized interference T
P with

different number of antennas at the source, relay and destination. The transmit power budget at the
source and the relay are assumed to be equal, i.e., Ps = 5 and Pr = 1. (a) {Nt, Kr + Kt, Nr} = {4, 10, 4}.
(b) {Nt, Kr + Kt, Nr} = {10, 24, 10}.

Furthermore, notice that the worst-case RSI casts strong interference on the strong
streams from the source to the destination. With very low RSI power Tr → 0, full-duplex
almost doubles the throughput rate compared to the half-duplex counterpart. This can
be seen in Figure 6, where the curves have their intercept point with the vertical axis.
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However, as Tr increases, the efficiency of full-duplex operation drops. It is worth not-
ing that at low RSI power the DoF plays the most important role to have a higher sum
rate. For instance, consider Figure 6a in which the cases FD = {4,5,5,4}, FD = {4,4,6,4}
and FD = {4,6,4,4} have DoFtotal = 4 – DoFtotal is the minimum of the DoF of source–
relay and relay–destination channels, i.e., DoFtotal = min (DoFsr, DoFrd) – while the cases
FD = {4,7,3,4} and FD = {4,3,7,4} have DoFtotal = 3. At Tr = 0, there is a noticeable gap
between the first three cases and the last two, while the difference of the first three cases
from each other is small. The big gap is due to the difference in DoFtotal, and the small one
is due to the difference in SNR. Similarly, in Figure 6b, the three cases FD = {10,12,12,10},
FD = {10,10,14,10} and FD = {10,10,14,10} with DoFtotal = 10 have higher rates than the
two cases FD = {10,6,18,10} and FD = {10,18,6,10} with DoFtotal = 6.

Finally, it can be seen in both Figure 6a,b that at Tr = 0 there is no difference between
cases that have the same DoFtotal but different DoFsr and DoFrd. As it can be seen in
both Figure 6a,b, for cases with Kt > Kr the sum rate drops quickly as RSI increases. In
fact, the more relative antennas at the relay transmitter compared to its receiver, the faster
the sum rate drops with the rise in RSI. To understand this behaviour of the system better,
again, consider case {10,18,6,10} and also suppose Tr → ∞. As discussed before, we have
DoFsr = 10 and DoFrd = 6. Moreover, we have DoFI = 6 for the interference channel
(H̄r). Unlike the case with no interference, in this case the bottleneck is no longer the
relay–destination link. This is due to the fact that interference can act to the detriment of
some six of the source–relay subchannels. As we have DoFI = 6, interference can choose
at most six independent subchannels, and as we assumed Tr → ∞, for those subchannels
we obtain SINR → 0. Therefore, no information can be conveyed from those links, and
the bottleneck becomes the source–relay link with 4 usable subchannels. It can be seen in
Figure 6a,b that as Tr increases, the cases with the same sum-rate at Tr = 0 start to diverge
because of the different characteristics of the interference they experience. We explain the
effect of interference in the following subsection in more detail.

5.2. The Impact of IRS

In this part, we evaluate the impact of IRS on the throughput rate when it is used to
perform different tasks. Figure 7 shows the throughput for three different scenarios, namely,
when IRS is used to help the transmitter–relay link, when it is applied to cancel RSI and
when the IRS job is to help the relay–destination link. Then the results are compared with
two cases where the system is working in HD with IRS and the case where the system is
working in FD with no IRS. It is also assumed that Tr

(HrHH
r )

= 75%, i.e., the system works
at high RSI range. As it can be seen, the highest performance is achieved when the IRS
is utilized to deal with the RSI. As a result, for the rest of the paper we use the IRS for
this purpose.
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Figure 7. Comparison of five different scenarios: HD with IRS, FD with no IRS, FD with IRS as RSI
cancelator; FD with IRS to help transmitter–relay link; FD with IRS to help relay–destination link. We
considered the case where {Nt, Kt, Kr, Nr, M} = {4, 5, 5, 4, 100}.
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Figure 8 shows the impact of IRS on the throughput. For Figure 8a, we considered
the case {Nt, Kt, Kr, Nr} = {4, 5, 5, 4}, and for Figure 8b, we considered {Nt, Kt, Kr, Nr} =
{10, 12, 12, 10}. As shown in the figure, the number of IRS elements has a great impact on
RSI cancellation to the extend that having an IRS with M = 100 and M = 300 can cancel
interference of Tr

Tr(HrHH
r )

= 0.75 for {Nt, Kt, Kr, Nr} = {4, 5, 5, 4}, and {Nt, Kt, Kr, Nr} =

{10, 12, 12, 10}, respectively. Further, it can also be seen in the figure that having IRS with
20 and 100 elements for the small and large antenna array cases, respectively, is not helpful
at all. This is mainly due to the fact that unlike the average case, for the case of worst-case
scenario, the number of IRS elements should be at least as large as the dimension of H̄r.
Otherwise, the IRS feasible set cannot span into all dimensions of H̄r. Therefore, there is
always at least one representation for H̄r in which IRS cannot perform any RSI cancellation.
In addition, comparing two figures Figure 8a,b one can conclude that, when the dimension
of H̄r increases, the effort that IRS has to make in order to cancel RSI remarkably increases
which is consistent with the previous statement.
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Figure 7. Comparison of five different scenarios: HD with IRS, FD with no IRS, FD with IRS as RSI
cancelator; FD with IRS to help transmitter-relay link; FD with IRS to help relay-destination link. We
considered the case where {Nt, Kt, Kr, Nr, M} = {4, 5, 5, 4, 100}.
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Figure 8. Sum rate throughput as a function of IRS elements. The transmit power budget at the
source and the relay are assumed to be equal, i.e., Ps = 5 and Pr = 1.
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Figure 8. Sum rate throughput as a function of IRS elements. The transmit power budget at the
source and the relay are assumed to be equal, i.e., Ps = 5 and Pr = 1: (a) {Nt, Kt, Kr, Nr} = {4, 5, 5, 4};
(b) {Nt, Kt, Kr, Nr} = {10, 12, 12, 10}.

5.3. Relay Tx/Rx Antenna allocation

Suppose that the relay has Kt + Kr = 8 in total. Furthermore, following cases in which
the number of antenna at the source and destination are {Nt, Nr} = {4, 4}. The question
is, from eight antennas at the relay, how many should be used for reception for the robust
design? Figure 9 shows the sum rate as a function of Kr for different values of T where there
is no IRS and there is an IRS with M = 60 elements, respectively. As it can be seen, by using
more antennas for reception than for transmission, i.e., Kr > Kt, at the relay, the throughput
rate is maximized. This is due to the fact that increasing the signal-to-noise ratio (SNR) of
the source–relay streams enhances the overall throughput rate more than increasing the
number of antennas for transmission in order to enhance the DoF of the relay–destination
link. Furthermore, notice that in this setup the overall DoF from the source to destination is
limited by the DoF of the source–relay link, i.e., the bottleneck is in the first hop.

By comparing two scenarios, we see that having an IRS not only improves the rates
in all cases, but also it may change the best antenna allocation. For instance, for the case
of T = 15%, it is best to have six antennas at the relay receiver and four4 antennas at the
relay transmitter. However, after establishing the IRS, the best antenna allocation changes
to five antennas at each end. For instance, the results show that although the DoFtotal
for both {Nt, Kt, Kr, Nr} = {4, 3, 5, 4} and {Nt, Kt, Kr, Nr} = {4, 5, 3, 4} is three, the sum
rate capacity of the latter is much better than that of the former at high interference. This
is because of the fact when DoFsr > DoFrd, the source–relay link enjoys DoFsr −DoFrd
subchannels with no interference. Therefore, the source can manage to obtain a higher sum
rate by choosing its power allocation wisely. However, in the case of DoFsr ≤ DoFrd, no
matter how well the power allocation is performed, all sub channels suffer from interference
at the source–relay end.
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Figure 9. Sum rate throughput as a function of relay receiver antennas Kr with and without RSI. The
transmit power budget at the source and the relay are assumed to be equal, i.e., Ps = 5 and Pr = 1.
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Figure 9. Sum rate throughput as a function of relay receiver antennas Kr with and without RSI. The
transmit power budget at the source and the relay are assumed to be equal, i.e., Ps = 5 and Pr = 1:
(a) {Nt, Kt + Kr , Nr} = {4, 10, 4} with no IRS; (b) {Nt, Kt + Kr Nr} = {4, 10, 4} with M = 60.

5.4. Full-Duplex vs. Half-Duplex

In this subsection, we determine the thresholds where the HD relaying outperforms
the FD relaying. This threshold provides a mode-switching threshold in hybrid HD/FD
relay systems. As it can be seen in Figure 10, for each case of Kr, there is a maximum
value of T

P above which the HD mode outperforms the FD mode in terms of sum rate
maximization. Furthermore, Figure 10 shows the threshold for different IRS configurations.
For this part, we continued with the case of Nt = 4, Kr = 5, Kt = 5, Nr = 4. As it can
be seen, by increasing the number of antennas, the threshold occurs at higher RSI. This
is in fact a direct result of obtaining better performance by having more antennas at the
relay’s receiver. It is worth noting that the IRS has a great impact on the performance of
FD relaying. For instance, by having an IRS consisting of only 60 elements, the FD mode
outperforms the HD mode in almost all cases.
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which HD outperforms FD. In contrast, points below the curve belong to cases where FD performs
better than HD.
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6. Conclusions

In this paper, we investigated a multi-antenna source communicating with a multi-
antenna destination through a multi-antenna relay. The relay is assumed to exploit a
decode-and-forward (DF) strategy. An IRS is installed to help the relay cope with the RSI.
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The transceivers are designed in order to be robust against the worst-case residual self-
interference (RSI). To this end, the worst-case achievable throughput rate is maximized. This
optimization problem turns out to be a non-convex problem. Assuming that the degrees-of-
freedom (DoF) of the source–relay link is less than the DoF of the relay–destination link,
we determined the left and right matrices of the singular vectors of the worst-case RSI
channel. Then, the problem is simplified to the optimal power allocation at the transmitters,
which guarantees robustness against the worst-case RSI singular values. This simplified
problem is still non-convex. Based on the intuitions for optimal power allocation at the
source and relay, we proposed an efficient algorithm to capture a stationary point. Our
proposed method showed a significant improvement in robustness. More precisely, we
showed that in the case of high uncertainty, using our method can lead to at least 100%
worst-case throughput improvement for the case of few antenna arrays and up to 500% for
the case of large antenna arrays at transceivers. Furthermore, we confirmed that there is a
direct relation between the performance of the system and the number of IRS elements. The
simulations show that having the IRS with as low as 90 and 300 elements can completely
remove the RSI for our system configuration. Finally, we showed that when there is no RSI,
the impact of the relay can be fully harnessed where the number of antennas are equal at
the relay transmitter and receiver. Therefore, employing the IRS to deal with the RSI can
lead to the best performance of the relay.
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Appendix A. Proof of Equation (16)

To show the proof, we use the Bra–Ket notation. We have

HRIΘHIR =




Kr∑

r1=1

M∑

r2=1

hRIr1,r2
|r1〉〈r2|






M∑

r3=1

θr3,r3 |r3〉〈r3|





M∑

r4=1

Kt∑

r5=1

hIRr4,r5
|r4〉〈r5|


 (A1)

=
Kr∑

r1=1

M∑

r2=1

M∑

r3=1

M∑

r4=1

Kt∑

r5=1

hRIr1,r2
θr3,r3 hIRr4,r5

|r1〉〈r2|r3〉〈r3|r4〉〈r5| (A2)

=
Kr∑

r1=1

M∑

r3=1

Kt∑

r5=1

hRIr1,r3
θr3,r3 hIRr3,r5

|r1〉〈r5| . (A3)

Now, after turning the matrix representation into the vector representation we obtain

Vec(HRIΘHIR) =
Kr∑

r1=1

M∑

r3=1

Kt∑

r5=1

hRIr1,r3
θr3,r3 hIRr3,r5

|r1, r5〉 (A4)

=
Kr∑

r1=1

M∑

r3=1

M∑

r4=1

Kt∑

r5=1

hRIr1,r4
θr3,r3 hIRr4,r5

|r1, r5〉 〈r4|r3〉 (A5)
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=
Kr∑

r1=1

M∑

r4=1

Kt∑

r5=1

hRIr1,r4
hIRr4,r5

|r1, r5〉 〈r4|
M∑

r3=1

θr3,r3 |r3〉 (A6)

= (HIR ∗HT
RI)Vec(Θ). (A7)

As a result, we have, ||H̄r + HRIΘHIR||2F = ||Vec(H̄r) + (HIR ∗HT
RI)Vec(Θ)||22, and

the proof is complete.

Appendix B. Proof of Theorem 1

Before stating the proof, first we introduce the following definitions.

Definition A1. For a vector a, we denote vector a↓ which has the same components as a except
that they are sorted in a decreasing order.

Definition A2. Vector a is said to be majorized by vector b and denoted by a ≺ b if:

K∑

i=1

a↓i ≤
K∑

i=1

b↓i , (A8)

N∑

i=1

a↓i =
N∑

i=1

b↓i , (A9)

where a↓i is the i’th component of a↓, Nr is the number of vector components and K ≤ N. If the last
equality does not hold, a is said to be weakly majorized by b and denoted by a ≺w b.

Definition A3. Vector a is said to be multiplicatively majorized by vector b and denoted by
a ≺× b if:

K∏

i=1

a↓i ≤
K∏

i=1

b↓i , (A10)

N∏

i=1

a↓i =
N∏

i=1

b↓i . (A11)

In addition, it is easy to check

a ≺× b ⇔ log(a) ≺ log(b). (A12)

To begin with, we know that for n×m matrix A and m× n matrix B we have λi(AB) =
λi(BA), ∀i ∈ {1, · · · , min(m, n)}. In addition, the only difference between eigenvalues of
BA and AB are the number of eigenvalues 0. Thus, non-zero eigenvalues of H̄rQrH̄H

r and
QrH̄H

r H̄r and also H1QsHH
1 and QsHH

1 H1 are equal, respectively. Notice that all Qs, HH
1 H1,

Qr and H̄H
r H̄r are square matrices. For HH

1 H1 and H̄H
r H̄r we define λi(HH

1 H1) = σ2
i (H1)

and λi(H̄H
r H̄r) = σ2

i (H̄r), respectively.
As discussed in Remark 1, the equality λi(QsHH

1 H1) = λρ(i)(Qs)λi(HH
1 H1) does

not hold in general. However, using the definition of determinant one can arrive at the
following equality

min(M,Kr)∏

i=1

λi(QsHH
1 H1) =

min(M,Kr)∏

i=1

λi(Qs)σ
2
i (H1). (A13)

Now, we define vector λ(Q′s) and set its components to be λρ(i)(Q′s) =
λi(QsHH

1 H1)

σ2
i (H1)

.

By defining λρ(i)(Q′s) instead of λi(Q′s), we emphasize that the elements of λ(Q′s) are
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not necessarily in decreasing order. Then, we construct the matrix Q′s having the same
eigenvectors as those of HH

1 H1 and the eigenvalues λρ(i)(Q′s). One can check that for each i
we have λi(Q′sHH

1 H1) = λi(QsHH
1 H1). In addition, by the definition of λρ(i)(Q′s) we have

λρ(i)(Q
′
s) =

λi(QsHH
1 H1)

σ2
i (H1)

, (A14)

⇒log
(

λρ(i)(Q
′
s)
)
= log

(
λi(QsHH

1 H1)
)
−log

(
σ2

i (H1)
)

, (A15)

⇒ log
(
λ(Q′s)

)
= log

(
λ(QsHH

1 H1)
)
− log

(
σ2(H1)

)
. (A16)

Lemma A1. Let A and B be semidefinite Hermitian matrices with λmin(m,n)(AB) > 0. Then

log(λ(AB))− log(λ(B)) ≺ log(λ(A)). (A17)

Proof. The proof is given in [41] (H.1,e).

Using the above lemma, we can conclude

log
(
λ(Q′s)

)
≺ log(λ(Qs)). (A18)

Then, immediately we can conclude

λ(Q′s) ≺× λ(Qs). (A19)

Remark A1. It is worth mentioning that, depending on channel realizations, the optimal Qs
might contain some zero eigenvalues. In such cases, we can simply ignore the zeros and construct
matrix Q′s with dimension (n− k)× (n− k). Similarly, in the cases where H̄H

r H̄r has some zero
eigenvalues, we can do the same and proceed to constitute H̄′s using only nonzero eigenvalues of
H̄H

r H̄r and add the zeros back to the result again at the end.

Finally, we use the following lemma to show that H̄′r and Q′s are in the feasible set.

Lemma A2. For two vectors a and b, if a ≺× b, then a ≺w b follows.

Proof. The proof is given in [41] (5.A.2.b).

Exploiting the above lemma, one concludes

λ(Q′s) ≺× λ(Qs) ⇒ λ(Q′s) ≺w λ(Qs), (A20)

which consequently results in

N∑

i=1

λi(Q′s) ≤
N∑

i=1

λi(Qs)⇒ Tr(Q′s) ≤ Tr(Qs). (A21)

Therefore, there exists Q′s and H̄′r fulfilling (29)–(31), which satisfy

min (M,Kr)∑

i=1

log2

(
1 +

λi
(
H1QsHH

1
)

1 + λi(H̄rQrH̄H
r )

)
= (A22)

min (M,Kr)∑

i=1

log2

(
1 +

λρ(i)(Q′s)σ2
i (H1)

1 + λi(Qr)σ2
ρ(i)(H̄

′
r)

)
. (A23)
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Appendix C. Proof of Proposition 2

In this section, we prove that the problem

max
γs ,γr

min
σr

min(M,Kr)∑

i=1

log2

(
1 +

σ2
1i

γsρ(i)

1 + γri σ
2
sρ(i)

)
(A24)

s.t. ‖γs‖1 ≤ Ps, (A24a)

‖γr‖1 ≤ Pr, (A24b)

‖σ2
r‖1 ≤ T, (A24c)

σ2
1i

γsρ(i) ≥ σ2
1i+1

γsρ(i+1) , ∀i ≤ min(M, Kr), (A24d)

γri σ
2
rρ(i)
≥ γri+1 σ2

rρ(i+1)
, ∀i ≤ min(Kt, N). (A24e)

can be further simplified to

max
γs ,γr

min
σr

min(M,Kr)∑

i=1

log2

(
1 +

σ2
1i

γsρ(i)

1 + γri σ
2
sρ(i)

)
(A25)

s.t. ‖γs‖1 = Ps, (A25a)

‖γr‖1 ≤ Pr, (A25b)

‖σ2
r‖1 = T. (A25c)

σ2
1i

γsρ(i) ≥ σ2
1i+1

γsρ(i+1) , ∀i ≤ min(M, Kr), (A25d)

γri σ
2
rρ(i)
≥ γri+1 σ2

rρ(i+1)
, ∀i ≤ min(Kt, N). (A25e)

The proof is by contradiction. Starting with the minimization, assume that the optimal
vector σ?2

r , for which we have RFD
sr (σ?2

r ) ≤ RFD
sr (σ2

r ), does not sum to T and thus, we have
‖σ?2

r‖1 < T. Then there exists ε > 0 for which we have ‖σ?2
r‖1 + ε = T. Now define

εi =
ε

σ2
1i

γri

∑
j

σ2
1j

γrj

. (A26)

Note that we have
∑

i

εi = ε, εi ≥ 0. (A27)

In addition, as we have ε > 0, there is at least one εi which is strictly greater than zero,
i.e., εi > 0. Now define

σ′2rρ(i)
= σ?2

rρ(i)
+ εi. (A28)

One can check that
∑

i σ′2rρ(i)
= T and ∀i ≤ min(Kt, N)⇒ γri σ

′2
rρ(i)
≥ γri+1 σ′2rρ(i+1)

. As a

result, σ′2rρ(i)
meets the constraints and could be a feasible solution. Note that as γ?

s is the

optimal source power allocation based on all other parameters, by changing σ?2
r to σ′2

r , γ?
s

might also change. However, we created each σ′2rρ(i)
in a special way to avoid this change.

To show this, first notice that we have

γ?
sρ(i)

=


λ−

1 + γri σ
?2

rρ(i)

σ2
1i



+

, (A29)
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where λ is water level and can be found based on power constraints. Substituting the
new power allocation for interference, we obtain new power allocation for input power as
follows

γsρ(i) =

[
λ−

1 + γri σ
′2
rρ(i)

σ2
1i

]+
=


λ−

1 + γri (σ
?2

rρ(i)
+ εi)

σ2
1i



+

(A30)

=


λ−

1 + γri σ
?2

rρ(i)

σ2
1i

+
ε

∑N
j=1

σ2
1j

γrj




+

(a)
=


λ′ −

1 + γri σ
?2

rρ(i)

σ2
1i



+

= γ?
sρ(i)

, (A31)

where (a) comes from the fact that ε/∑N
j=1

σ2
1j

γrj
is a constant independent of i. So we can define

λ′ = λ + ε/∑N
j=1

σ2
1j

γrj
. This shows, for σ′2r , all the optimal variables and parameters remain

the same as those of σ?2
r . Now we compare RFD

sr for both cases. First, notice that we have
∀i, εi ≥ 0 and among them there is at least one index i′, for which we have εi′ > 0. This

means ∀i, σ′2rρ(i)
≥ σ?2

rρ(i)
and σ′2rρ(i′)

> σ?2
rρ(i′)

. Now, notice that fi(x) = log2

(
1 +

σ2
1i

γ?
sρ(i)

1+γri x

)

is a monotonically decreasing function of x. Thus, we have fi(σ
′2
rρ(i)

) ≤ fi(σ
?2

rρ(i)
) and

fi′(σ
′2
rρ(i′)

) < fi′(σ
?2

rρ(i′)
). Adding all above inequalities, we obtain

min(M,Kr)∑

i=1

log2

(
1 +

σ2
1i

γ?
sρ(i)

1 + γri σ
′2
rρ(i)

)
<

min(M,Kr)∑

i=1

log2

(
1 +

σ2
1i

γ?
sρ(i)

1 + γri σ
?2

rρ(i)

)
. (A32)

The above equation indicates RFD
sr (σ?2

r ) > RFD
sr (σ2

r ) which contradicts the first assump-
tion RFD

sr (σ?2
r ) ≤ RFD

sr (σ2
r ). This completes the proof of the minimization part.

For the maximization part, the general idea is the same. Again, the proof is by
contradiction. We assume the optimal vector γ?

s , for which we have RFD
sr (γ?

s ) ≥ RFD
sr (γs),

does not sum to Ps. Therefore, we have ‖γs‖1 < Ps. Then there exists ε > 0 for which we
have ‖γs‖1 + ε = Ps. Now we define

εi =
ε

η

(
1 + σ?2

ri
γri

σ2
1i

+ γ?
si

)
, (A33)

where, η =
∑

i

(
1+σ?2

ri
γri

σ2
1i

+ γ?
si

)
. Now we define the new source power allocation as below

γ′sρ(i)
= γ?

sρ(i)
+ εi. (A34)

One can check that
∑

i γ′sρ(i)
= Ps and σ2

1i
γ′sρ(i)

≥ σ2
1i+1

γ′sρ(i+1)
. Thus, the new source

power allocation is in the feasible set. Now the remaining is to make sure the new allocation
does not change the corresponding σ2

r . Using Lagrangian multiplier, we have

L =
∑

i

log2

(
1 +

σ2
1i

γ′sρ(i)

1 + γri σ
2
sρ(i)

)
+ λ

( N∑

i=0

σ2
ri
− T

)
, (A35)

=
∑

i

log2

(
1 +

σ2
1i
(γ?

sρ(i)
+ εi)

1 + γri σ
2
sρ(i)

)
+ λ

( N∑

i=0

σ2
ri
− T

)
, (A36)

=
∑

i

log2

(
(1 +

ε

η
)

(
1 +

σ2
1i

γ?
sρ(i)

1 + γri σ
2
sρ(i)

))
+ λ

( N∑

i=0

σ2
ri
− T

)
, (A37)
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=
∑

i

log2(1 +
ε

η
) +

∑

i

log2

(
1 +

σ2
1i

γ?
sρ(i)

1 + γri σ
2
sρ(i)

)
+ λ

( N∑

i=0

σ2
ri
− T

)
. (A38)

Now notice that as
∑

ilog2(1 +
ε
η ) is a constant, we have

∂
∑

ilog2(1+
ε
η )

∂σ2
ri

= 0 and

∂
∑

ilog2(1+
ε
η )

∂λ = 0. As a result, the optimum interference allocation for γ′r is the same
as that of γ?

r . Similarly to the case of minimization, here we have
∑

i εi = ε. In addition,
we have εi ≥ 0 and there exists at least one i′ for which we have εi′ > 0. Finally, as

fi(x) = log
(

1 +
σ2

1i
x

1+Pσ?
2 rρ(i)

γri

)
is a monotonically increasing function of x, we conclude

RFD
sr (γ?

s ) < RFD
sr (γ′

s) which contradicts the first assumption of γ?
s being the optimal source

power allocation, and the proof is complete.

Appendix D

First, we show RFD
sr is a decreasing function of T and an increasing function of Ps. It is

sufficient to show dRFD
sr

dPs
≥ 0 and dRFD

sr
dT ≤ 0. We have

dRFD
sr

dPs
=

∑
i

∂RFD
sr

∂γsρ(i)
dγsρ(i)

∑
i

∂Ps
∂γsρ(i)

dγsρ(i)

=

∑
i

σ2
1i

dγsρ(i)

1+σ2
rρ(i)

γri+σ2
1i

γsρ(i)∑
i dγsρ(i)

≥
∑

i φ1dγsρ(i)∑
i dγsρ(i)

= φ1 > 0, (A39)

dRFD
sr

dT
=

∑
i

∂RFD
sr

∂σ2
rρ(i)

dσ2
rρ(i)

∑
i

∂T
∂σ2

rρ(i)
dσ2

rρ(i)

(A40)

=

∑
i

−σ2
1i

γsρ(i)
γri(

1+σ2
rρ(i)

γri

)(
1+σ2

1i
γsρ(i)

+σ2
ri

γri

)dσ2
rρ(i)

∑
i dσ2

rρ(i)

≤
∑

i −φ2dσ2
rρ(i)∑

i dσ2
rρ(i)

= −φ2 ≤ 0, (A41)

where

φ1
.
= min

i

{
σ2

1i

1 + σ2
rρ(i)

γri + σ2
1i

γsρ(i)

}
(A42)

and

φ2
.
= min

i

{ −σ2
1i

γsρ(i)γri(
1 + σ2

rρ(i)
γri

)(
1 + σ2

1i
γsρ(i) + σ2

rρ(i)
γri

)
}

(A43)

respectively.
Next, we show g(Pr) = RFD

sr (Pr)− RFD
rd (Pr) is a monotonically decreasing function of

Pr. It is sufficient to show dRFD
sr

dPr
≤ 0 and dRFD

rd
dPr

> 0. We have

dRFD
rd =

∑

i

∂RFD
rd

∂γri

dγri =
∑

i

σ2
2i

1 + σ2
2i

γri

dγri (A44)

dRFD
sr =

∑

i

∂RFD
sr

∂γri

dγri =
∑

i

−σ2
1i

γsρ(i)σ
2
rρ(i)(

1 + σ2
rρ(i)

γri

)(
1 + σ2

1i
γsρ(i) + σ2

rρ(i)
γri

)dγri (A45)

dPr =
∑

i

∂Pr

∂γri

dγri =
∑

i

dγri . (A46)
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Now we define

ψ1
.
= min

i

{
σ2

2i

1 + σ2
2i

γri

}
(A47)

ψ2
.
= min

i

{
σ2

1i
γsρ(i)σ

2
rρ(i)(

1 + σ2
rρ(i)

γri

)(
1 + σ2

1i
γsρ(i) + σ2

rρ(i)
γri

)
}

. (A48)

It is obvious that ψ1 > 0 and ψ2 ≥ 0. Now we have

dRFD
sr

dPr
=

∑
i

−σ2
1i

γsρ(i)
σ2

rρ(i)(
1+σ2

rρ(i)
γri

)(
1+σ2

1i
γsρ(i)

+σ2
rρ(i)

γri

)dγri

∑
i dγri

≤
∑

i −ψ2dγri∑
i dγri

= −ψ2 ≤ 0, (A49)

and

dRFD
rd

dPr
=

∑
i

σ2
2i

1+σ2
2i

γri
dγri

∑
i dγri

≥
∑

i ψ1dγri∑
i dγri

= ψ1 > 0. (A50)

Finally, one can conclude

dg
dPr

=
dRFD

sr
dPr

− dRFD
rd

dPr
≤ −ψ2 − ψ1 < 0. (A51)

Appendix E

Here we show that if γri ≥ γri+1 and σ2
1i

γsρ(i) ≥ σ2
1i+1

γsρ(i+1) then γri σ
2
sρ(i)
≥ γri+1 σ2

rρ(i+1)
.

First we define f (x, y) =
√

x2 + axy− x− b, x ≥ 0, y ≥ 0 in which a and b are positive
constants. Now we have,

∂ f
∂y

=
ax

2
√

x2 + axy
≥ 0. (A52)

In addition, for ∂ f
∂x we have

∂ f
∂x

=
2x + ay

2
√

x2 + axy
− 1 ≥ 0. (A53)

One can check that for positive values x, y and a, we always have 2x+ay
2
√

x2+axy
≥ 1. As a

result, f is an increasing function of both x and y. The rest of the proof is as follows

σ2
ri

γri =




√(
σ2

1i
γsρ(i)

)2
+

4σ2
1i

γsρ(i)
γri

λ − σ2
1i

γsρ(i) − 2(σ2
t +T1Ps)

2




+

(A54)

(a)
≥




√(
σ2

1i
γsρ(i)

)2
+

4σ2
1i

γsρ(i)
γri+1

λ − σ2
1i

γsρ(i) − 2(σ2
t +T1Ps)

2




+

(A55)

(b)
≥




√(
σ2

1i+1
γsρ(i+1)

)2
+

4σ2
1i+1

γsρ(i+1)
γri+1

λ

2
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−
−σ2

1i+1
γsρ(i+1)−2(σ2

t +T1Ps)

2




+

(A56)

=σ2
ri+1

γri+1 , (A57)

in which (a) holds because γri ≥ γri+1 and (b) holds because σ2
1i

γsρ(i) ≥ σ2
1i+1

γsρ(i+1) .
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