Non-Invasive Data Acquisition and IoT Solution for Human Vital Signs Monitoring: Applications, Limitations and Future Prospects
Abstract
:1. Introduction
- The sensing stage converts physical features to electrical signals.
- The processing stage converts the acquired signals into a form that is understandable for software algorithms/embedded platforms/computers.
- The analysis stage extracts valuable features for taking decisions.
2. Internet of Things for Vital Data
2.1. Vital-IoT in Smart Homes
2.2. Vital IoT in M-Health and E-Health
2.3. Integration of Vital Data Acquisition into IoT Nodes
3. Non-Invasive Vital Signs Acquisition
3.1. Heart Rate Vital Sign
3.2. Body Temperature Vital Signs
3.3. Sensing Techniques for Vital Data Acquisition
4. Review Summary, Perspective for the Future Work, and Open Challenges
4.1. Review Summary of IoT and Vital Data Aqcusition for e-Healthcare Systems
4.2. Limitations, Open Challenges and Future Procpects in Non-Invasive Vital Data Acquisition
4.3. Limitations, Open Challenges and Future Procpects in IoT for Healthcare
4.4. Next Generation of e-Healthcare Systems with the Aid of Metaverse Technology
5. Conclusions
- (a)
- Computer vision algorithms can be utilized to extract the heart rate vital signs in real-time without requiring high processing power. On the other hand, the user is limited to using the computer vision application in a stable environment with not too bright, nor too dull, nor too noisy illumination in the captured frame because it increases the error of the heart rate estimation algorithm. Moreover, the subject has to place his/her face towards the camera without any orientation of the head, and care must be taken not to touch or obscure the face with a hand. Additionally, the algorithm for heart rate was also sensitive to the subject taking deep breaths or exhaling strongly. This suggests the computer vision solution may not be convenient for use in, for example, the intensive care units in hospitals but could be used generally in most internal environments.
- (b)
- The body temperature can be sensed via IR without incurring any high costs of thermal cameras. The review shows that measuring the body temperature using a finger is not sufficiently accurate to be useful, and the sensing process has to target the middle of the forehead. The IR body temperature sensing can be affected by the environmental temperature if it is extra low/high, such as 15 °C or 35 °C, so it is recommended to use the IR sensing at “room temperature”, around 23 °C. The error of the developed algorithm at room temperature is ±0.5–3.5 °C. The error was calculated from 18 different readings with an average error of ±0.15 °C.
- (c)
- The IoT network can be developed to be heterogeneous in the physical layer. However, with the IoT, the term heterogeneous also refers to the ability of the platform to be able to communicate with widely different devices. Here a heterogeneous IoT broker was developed via an embedded system without any needs to develop a mixed signal chip. The study shows that, the IoT broker can communicate with complex IoT nodes with different frequencies and with the cloud computing in real-time without latency. This communication algorithm was developed using sequential programming based on “interrupt”, without any need to use a real-time operating systems (RTOS).
- (d)
- The design of software has a high impact on enhancing the data acquisition algorithm and minimizing the usage of the processing power of the hardware platform as well. The effective development of software makes the system able to deploy on low specification platforms such as embedded Linux kits and microcontrollers.
- (e)
- The next generation e-healthcare systems is foreseen, especially in the light of recent development of metaverse, AI, VR, AR and smart non-invasive sensing techniques. The transition from the R&D mode into a commercial business model is envisioned and expected to pave the way for reliable, cost efficient, and rapid smart healthcare systems.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kislay, A.; Singh, P.; Shankar, A.; Nayak, S.R.; Bhoi, A.K. A Review on Internet of Things in Healthcare Applications. In Cognitive Informatics and Soft Computing; Springer Nature Singapore: Singapore, 2022. [Google Scholar]
- Naresh, V.; Lee, N. A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors 2021, 21, 1109. [Google Scholar] [CrossRef] [PubMed]
- Cerfoglio, S.; Ferraris, C.; Vismara, L.; Amprimo, G.; Priano, L.; Pettiti, G.; Galli, M.; Mauro, A.; Cimolin, V. Kinect-Based Assessment of Lower Limbs during Gait in Post-Stroke Hemiplegic Patients: A Narrative Review. Sensors 2022, 22, 4910. [Google Scholar] [CrossRef] [PubMed]
- Hina, A.; Saadeh, W. Noninvasive Blood Glucose Monitoring Systems Using Near-Infrared Technology—A Review. Sensors 2022, 22, 4855. [Google Scholar] [CrossRef] [PubMed]
- Secinaro, S.; Calandra, D.; Secinaro, A.; Muthurangu, V.; Biancone, P. The role of artificial intelligence in healthcare: A structured literature review. BMC Med. Inform. Decis. Mak. 2021, 21, 1–23. [Google Scholar] [CrossRef]
- Gan, S.; Reis, C.; Martínez, R.C.; Baxter, C.; Carroll, J.-A.; Keogh, B.; Vandelanotte, C. Assessment of Mobile Health Apps Using Built-In Smartphone Sensors for Diagnosis and Treatment: Systematic Survey of Apps Listed in International Curated Health App Libraries. JMIR mhealth uhealth 2020, 8, e16741. [Google Scholar] [CrossRef]
- Rahimi, M.; Navimipour, N.J.; Hosseinzadeh, M.; Moattar, M.H.; Darwesh, A. Cloud healthcare services: A comprehensive and systematic literature review. Trans. Emerg. Telecommun. Technol. 2022, 33, e4473. [Google Scholar] [CrossRef]
- Mehrotra, P. Biosensors and their applications—A review. J. Oral Biol. Craniofacial Res. 2016, 6, 153–159. [Google Scholar] [CrossRef]
- Bandodkar, A.J.; Wang, J. Non-invasive wearable electrochemical sensors: A review. Trends Biotechnol. 2014, 32, 363–371. [Google Scholar] [CrossRef]
- Ali, O.; Shrestha, A.; Soar, J.; Wamba, S.F. Cloud computing-enabled healthcare opportunities, issues, and applications: A systematic review. Int. J. Inf. Manag. 2018, 43, 146–158. [Google Scholar] [CrossRef]
- Santos, A.; Macedo, J.; Costa, A.; Nicolau, M.J. Internet of Things and Smart Objects for M-health Monitoring and Control. Procedia Technol. 2014, 16, 1351–1360. [Google Scholar] [CrossRef] [Green Version]
- Ahlgren, B.; Hidell, M.; Ngai, E.C.-H. Internet of Things for Smart Cities: Interoperability and Open Data. IEEE Internet Comput. 2016, 20, 52–56. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, H.; Jiang, R.; Guo, X.; Cheng, J.; Chen, Y. A Review of IoT-Enabled Mobile Healthcare: Technologies, Challenges, and Future Trends. IEEE Internet Things J. 2022, 9, 9478–9502. [Google Scholar] [CrossRef]
- Rogers, J.L. Customizable Health Monitoring. 2015. Available online: https://patentimages.storage.googleapis.com/f9/10/65/bd2ea2fcca7aa0/US20160321428A1.pdf (accessed on 29 August 2022).
- Yu, L.; Tao, S.; Gao, W.; Yu, L. Self-monitoring Method for Improving Health-related Quality of Life: Data Acquisition, Monitoring, and Analysis of Vital Signs and Diet. ASP Trans. Pattern Recognit. Intell. Syst. 2021, 1, 24–31. [Google Scholar] [CrossRef]
- Oniani, S.; Pires, I.M.; Garcia, N.M.; Mosashvili, I.; Pombo, N. A review of frameworks on continuous data acquisition for e-Health and m-Health. In Proceedings of the 5th EAI International Conference on Smart Objects and Technologies for Social Good, Valencia, Spain, 25–27 September 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 231–234. [Google Scholar]
- Lee, H.-C.; Jung, C.-W. Vital Recorder—A free research tool for automatic recording of high-resolution time-synchronised physiological data from multiple anaesthesia devices. Sci. Rep. 2018, 8, 1527. [Google Scholar] [CrossRef]
- Sun, G.; Matsui, T.; Watai, Y.; Kim, S.; Kirimoto, T.; Suzuki, S.; Hakozaki, Y. Vital-SCOPE: Design and Evaluation of a Smart Vital Sign Monitor for Simultaneous Measurement of Pulse Rate, Respiratory Rate, and Body Temperature for Patient Monitoring. J. Sens. 2018, 2018, 4371872. [Google Scholar] [CrossRef]
- Khan, M.B.; Zhang, Z.; Li, L.; Zhao, W.; Al Hababi, M.A.M.; Yang, X.; Abbasi, Q.H. A Systematic Review of Non-Contact Sensing for Developing a Platform to Contain COVID-19. Micromachines 2020, 11, 912. [Google Scholar] [CrossRef]
- Salama, M.; Elkaseer, A.; Saied, M.; Ali, H.; Scholz, S. Industrial Internet of Things Solution for Real-Time Monitoring of the Additive Manufacturing Process. In Information Systems Architecture and Technology: Proceedings of 39th International Conference on Information Systems Architecture and Technology—ISAT 2018; Springer International Publishing: Cham, Switzerland, 2019. [Google Scholar]
- Bhuiyan, M.N.; Rahman, M.; Billah, M.; Saha, D. Internet of Things (IoT): A Review of Its Enabling Technologies in Healthcare Applications, Standards Protocols, Security, and Market Opportunities. IEEE Internet Things J. 2021, 8, 10474–10498. [Google Scholar] [CrossRef]
- Nord, J.H.; Koohang, A.; Paliszkiewicz, J. The Internet of Things: Review and theoretical framework. Expert Syst. Appl. 2019, 133, 97–108. [Google Scholar] [CrossRef]
- Jagadeeswari, V.; Vairavasundaram, S.; Logesh, R.; Vijayakumar, V. A study on medical Internet of Things and Big Data in personalized healthcare system. Health Inf. Sci. Syst. 2018, 6, 14. [Google Scholar] [CrossRef]
- Yang, X.; Wang, X.; Li, X.; Gu, D.; Liang, C.; Li, K.; Zhang, G.; Zhong, J. Exploring emerging IoT technologies in smart health research: A knowledge graph analysis. BMC Med. Inform. Decis. Mak. 2020, 20, 260. [Google Scholar] [CrossRef]
- Javaid, M.; Khan, I.H. Internet of Things (IoT) enabled healthcare helps to take the challenges of COVID-19 Pandemic. J. Oral Biol. Craniofacial Res. 2021, 11, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Hall, T.; Lie, D.Y.C.; Nguyen, T.Q.; Mayeda, J.C.; Lie, P.E.; Lopez, J.; Banister, R.E. Non-Contact Sensor for Long-Term Continuous Vital Signs Monitoring: A Review on Intelligent Phased-Array Doppler Sensor Design. Sensors 2017, 17, 2632. [Google Scholar] [CrossRef]
- Yuksel, A. Energy IQ: Three Trends That Will Change the Future of Health Care Infrastructure. 2019. Available online: https://www.cummins.com/news/2019/08/15/energy-iq-three-trends-will-change-future-health-care-infrastructure (accessed on 29 August 2022).
- Laghari, A.A.; Wu, K.; Laghari, R.A.; Ali, M.; Khan, A.A. A Review and State of Art of Internet of Things (IoT). Arch. Comput. Methods Eng. 2022, 29, 1395–1413. [Google Scholar] [CrossRef]
- Elkaseer, A.; Salama, M.; Ali, H.; Scholz, S. Approaches to a Practical Implementation of Industry 4.0. In Proceedings of the Eleventh International Conference on Advances in Computer-Human Interactions ACHI 2018, Rome, Italy, 25–29 March 2018. [Google Scholar]
- Salem, M.; El-Maddah, I.; Youssef, K.; Mohamed, H. Internet of Things Solution for Non-invasive Vital Data Acquisition: A Step Towards Smart Healthcare System. In Sustainable Design and Manufacturing; Springer: Singapore, 2019; pp. 387–397. [Google Scholar]
- Gulati, K.; Boddu, R.S.K.; Kapila, D.; Bangare, S.L.; Chandnani, N.; Saravanan, G. A review paper on wireless sensor network techniques in Internet of Things (IoT). Mater. Today Proc. 2022, 51, 161–165. [Google Scholar] [CrossRef]
- Pattnaik, S.K.; Samal, S.R.; Bandopadhaya, S.; Swain, K.; Choudhury, S.; Das, J.K.; Mihovska, A.; Poulkov, V. Future Wireless Communication Technology towards 6G IoT: An Application-Based Analysis of IoT in Real-Time Location Monitoring of Employees Inside Underground Mines by Using BLE. Sensors 2022, 22, 3438. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, H.; Arji, G.; Shahmoradi, L.; Safdari, R.; Nilashi, M.; Alizadeh, M. The application of internet of things in healthcare: A systematic literature review and classification. Univers. Access Inf. Soc. 2019, 18, 837–869. [Google Scholar] [CrossRef]
- Plaza, I.; Martín, L.; Martin, S.; Medrano, C. Mobile applications in an aging society: Status and trends. J. Syst. Softw. 2011, 84, 1977–1988. [Google Scholar] [CrossRef]
- Klasnja, P.; Pratt, W. Healthcare in the pocket: Mapping the space of mobile-phone health interventions. J. Biomed. Inform. 2012, 45, 184–198. [Google Scholar] [CrossRef]
- Ludwig, W.; Wolf, K.-H.; Duwenkamp, C.; Gusew, N.; Hellrung, N.; Marschollek, M.; Wagner, M.; Haux, R. Health-enabling technologies for the elderly—An overview of services based on a literature review. Comput. Methods Programs Biomed. 2012, 106, 70–78. [Google Scholar] [CrossRef]
- Armgarth, A.; Pantzare, S.; Arven, P.; Lassnig, R.; Jinno, H.; Gabrielsson, E.O.; Kifle, Y.; Cherian, D.; Sjöström, T.A.; Berthou, G.; et al. A digital nervous system aiming toward personalized IoT healthcare. Sci. Rep. 2021, 11, 7757. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A. Industry 4.0 applications in medical field: A brief review. Curr. Med. Res. Pract. 2019, 9, 102–109. [Google Scholar] [CrossRef]
- Salem, M.; El-Maddah, I.; Youssef, K.; Elkaseer, A.; Scholz, S.; Mohamed, H. Heterogeneous Dual-Frequency IoT Network for Vital Data Acquisition. In Sustainable Design and Manufacturing 2020; Springer: Singapore, 2021. [Google Scholar]
- Pang, Z.; Zheng, L.; Tian, J.; Kao-Walter, S.; Dubrova, E.; Chen, Q. Design of a terminal solution for integration of in-home health care devices and services towards the Internet-of-Things. Enterp. Inf. Syst. 2013, 9, 86–116. [Google Scholar] [CrossRef]
- Konstantinidis, E.I.; Bamparopoulos, G.; Billis, A.; Bamidis, P.D. Internet of Things for an Age-Friendly Healthcare. In Digital Healthcare Empowering Europeans; Studies in Health Technology and Informatics; IOS Press: Amsterdam, The Netherlands, 2015; Volume 210, pp. 587–591. [Google Scholar] [CrossRef]
- van Kasteren, T.L.M.; Englebienne, G.; Kröse, B.J.A. Human Activity Recognition from Wireless Sensor Network Data: Benchmark and Software. In Activity Recognition in Pervasive Intelligent Environments; Atlantis Press: Dordrecht, The Netherlands, 2011; pp. 165–186. [Google Scholar] [CrossRef]
- Chang, Y.-J.; Chen, C.-H.; Lin, L.-F.; Han, R.-P.; Huang, W.-T.; Lee, G.-C. Wireless Sensor Networks for Vital Signs Monitoring: Application in a Nursing Home. Int. J. Distrib. Sens. Netw. 2012, 8, 685107. [Google Scholar] [CrossRef]
- Haddara, M.; Staaby, A. RFID Applications and Adoptions in Healthcare: A Review on Patient Safety. Procedia Comput. Sci. 2018, 138, 80–88. [Google Scholar] [CrossRef]
- Jung, K.Y.; Kim, T.; Jung, J.; Lee, J.; Choi, J.S.; Kang, M.; Chang, D. Effectiveness of Near-field Communication Integrated with Mobile Electronic Medical Record System in Terms of Physician Turn-around Time in an Emergency Department: Simulation Study (Preprint). JMIR mhealth uhealth 2018, 6, 352–354. [Google Scholar] [CrossRef]
- Alwan, O.S.; Rao, K.P. Dedicated real-time monitoring system for health care using ZigBee. Health Technol. Lett. 2017, 4, 142–144. [Google Scholar] [CrossRef]
- Dohr, A.; Modre-Opsrian, R.; Drobics, M.; Hayn, D.; Schreier, G. The Internet of Things for Ambient Assisted Living. In Proceedings of the 2010 Seventh International Conference on Information Technology: New Generations, Las Vegas, NV, USA, 12–14 April 2010. [Google Scholar]
- Alharbe, N.; Atkins, A.S.; Akbari, A.S. Application of ZigBee and RFID Technologies in Healthcare in Conjunction with the Internet of Things. In Proceedings of the 11th International Conference on Advances in Mobile Computing & Multimedia, Vienna, Austria, 2–4 December 2013. [Google Scholar] [CrossRef]
- Zhang, F.; Yang, K.; Pei, Z.; Wu, Y.; Sang, S.; Zhang, Q.; Jiao, H. A highly accurate flexible sensor system for human blood pressure and heart rate monitoring based on graphene/sponge. RSC Adv. 2022, 12, 2391–2398. [Google Scholar] [CrossRef]
- Xie, C. Biomedical Signal Processing: An ECG Application. In Leveraging Data Science for Global Health; Celi, L.A., Majumder, M.S., Ordóñez, P., Osorio, J.S., Paik, K.E., Somai, M., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 285–303. [Google Scholar]
- Hajare, R.; Kadam, S. Comparative study analysis of practical EEG sensors in medical diagnoses. Glob. Transit. Proc. 2021, 2, 467–475. [Google Scholar] [CrossRef]
- Tarapiah, S.; Aziz, K.; Atalla, S.; Haj, S. Smart Real-Time Healthcare Monitoring and Tracking System using GSM/GPS Technologies. In Proceedings of the 2016 3rd MEC International Conference on Big Data and Smart City (ICBDSC), Muscat, Oman, 15–16 March 2016. [Google Scholar] [CrossRef]
- Cerlinca, T.; Turcu, C.; Turcu, C.; Cerlincă, M. RFID-based Information System for Patients and Medical Staff Identification and Tracking. In Sustainable Radio Frequency Identification Solutions; IntechOpen: London, UK, 2010; pp. 193–206. Available online: https://books.google.com.au/books?hl=en&lr=&id=GXOfDwAAQBAJ&oi=fnd&pg=PA193&dq=RFID-based+Information+System+for+Patients+and+Medical+Staff+Identification+and+Tracking&ots=vDefcoL6JP&sig=UVZ31srP8NIwl-YUPWx6WErpzRU&redir_esc=y#v=onepage&q=RFID-based%20Information%20System%20for%20Patients%20and%20Medical%20Staff%20Identification%20and%20Tracking&f=false (accessed on 29 August 2022).
- Nourizadeh, S.; Deroussent, C.; Song, Y.Q.; Thomesse, J.P. Medical and Home Automation Sensor Networks for Senior Citizens Telehomecare. In Proceedings of the 2009 IEEE International Conference on Communications Workshops, Dresden, Germany, 14–18 June 2009. [Google Scholar] [CrossRef]
- Woznowski, P.; Fafoutis, X.; Song, T.; Hannuna, S.; Camplani, M.; Tao, L.; Paiement, A.; Mellios, E.; Haghighi, M.; Zhu, N.; et al. A multi-modal sensor infrastructure for healthcare in a residential environment. In Proceedings of the 2015 IEEE International Conference on Communication Workshop (ICCW), London, UK, 8–12 June 2015; pp. 271–277. [Google Scholar] [CrossRef]
- Guo, W.; Xiong, N.; Vasilakos, A.V.; Chen, G.; Cheng, H. Multi-Source Temporal Data Aggregation in Wireless Sensor Networks. Wirel. Pers. Commun. 2011, 56, 359–370. [Google Scholar] [CrossRef]
- Qiu, Y.; Ma, M. Secure Group Mobility Support for 6LoWPAN Networks. IEEE Internet Things J. 2018, 5, 1131–1141. [Google Scholar] [CrossRef]
- Sinha, R.S.; Wei, Y.; Hwang, S.-H. A survey on LPWA technology: LoRa and NB-IoT. ICT Express 2017, 3, 14–21. [Google Scholar] [CrossRef]
- Wan, J.; Li, M.; O’Grady, M.J.; Gu, X.; Alawlaqi, M.A.; O’Hare, G.M. Time-bounded Activity Recognition for Ambient Assisted Living. IEEE Trans. Emerg. Top. Comput. 2018, 9, 471–483. [Google Scholar] [CrossRef]
- Wan, J.; AAH Al-awlaqi, M.; Li, M.; O’Grady, M.; Gu, X.; Wang, J.; Cao, N. Wearable IoT enabled real-time health monitoring system. EURASIP J. Wirel. Commun. Netw. 2018, 2018, 298. [Google Scholar] [CrossRef]
- Olatinwo, D.D.; Abu-Mahfouz, A.; Hancke, G. A Survey on LPWAN Technologies in WBAN for Remote Health-Care Monitoring. Sensors 2019, 19, 5268. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, S.; Mali, K.; Chatterjee, S. Edge Computing Based Conceptual Framework for Smart Health Care Applications Using Z-Wave and Homebased Wireless Sensor Network. In Mobile Edge Computing; Mukherjee, A., De, D., Ghosh, S.K., Buyya, R., Eds.; Springer International Publishing: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Miozzi, C.; Amendola, S.; Bergamini, A.; Marrocco, G. Reliability of a re-usable wireless Epidermal temperature sensor in real conditions. In Proceedings of the 2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN), Eindhoven, The Netherlands, 9–12 May 2017; pp. 95–98. [Google Scholar] [CrossRef]
- Li, S.; Chiu, C. A Smart Pillow for Health Sensing System Based on Temperature and Humidity Sensors. Sensors 2018, 18, 3664. [Google Scholar] [CrossRef]
- Caballero, I.; Sáez, J.V.; Zapirain, B.G. Review and New Proposals for Zigbee Applications in Healthcare and Home Automation. In Ambient Assisted Living; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- Singh, D.; Kropf, J.; Hanke, S.; Holzinger, A. Ambient Assisted Living Technologies from the Perspectives of Older People and Professionals. In Machine Learning and Knowledge Extraction; Springer: Cham, Switzerland, 2017; pp. 255–266. [Google Scholar] [CrossRef]
- Maskeliūnas, R.; Damaševičius, R.; Segal, S. A Review of Internet of Things Technologies for Ambient Assisted Living Environments. Future Internet 2019, 11, 259. [Google Scholar] [CrossRef]
- Mainetti, L.; Manco, L.; Patrono, L.; Secco, A.; Sergi, I.; Vergallo, R. An ambient assisted living system for elderly assistance applications. In Proceedings of the 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Valencia, Spain, 4–8 September 2016. [Google Scholar]
- Páez-Montoro, A.; García-Valderas, M.; Olías-Ruíz, E.; López-Ongil, C. Solar Energy Harvesting to Improve Capabilities of Wearable Devices. Sensors 2022, 22, 3950. [Google Scholar] [CrossRef]
- Xu, C.; Song, Y.; Han, M.; Zhang, H. Portable and wearable self-powered systems based on emerging energy harvesting technology. Microsyst. Nanoeng. 2021, 7, 1–14. [Google Scholar] [CrossRef]
- Kim, Y.J.; Park, S.E.; Cho, B.J. A wearable organic photovoltaic-thermoelectric (OPV-TE) hybrid generator to minimize the open-circuit voltage losses of OPV module. Nano Energy 2022, 93, 106775. [Google Scholar] [CrossRef]
- Suryavansh, S.; Benna, A.; Guest, C.; Chaterji, S. A data-driven approach to increasing the lifetime of IoT sensor nodes. Sci. Rep. 2021, 11, 22459. [Google Scholar] [CrossRef]
- Coelho, C.; Coelho, D.; Wolf, M. An IoT smart home architecture for long-term care of people with special needs. In Proceedings of the 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT), Milan, Italy, 14–16 December 2015. [Google Scholar]
- Ray, P.P. Home Health Hub Internet of Things (H3 IoT): An architectural framework for monitoring health of elderly people. In Proceedings of the 2014 International Conference on Science Engineering and Management Research (ICSEMR), Chennai, India, 27–29 November 2014. [Google Scholar]
- Sureshkumar, V.; Aminb, R.; Vijaykumar, V.; Sekar, S.R. Robust secure communication protocol for smart healthcare system with FPGA implementation. Future Gener. Comput. Syst. 2019, 100, 938–951. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, G.; Yang, L.; Balaji, V.; Elamaran, V.; Arunkumar, N. Revisiting signal processing with spectrogram analysis on EEG, ECG and speech signals. Future Gener. Comput. Syst. 2019, 98, 227–232. [Google Scholar] [CrossRef]
- Balcı, A.; Sokullu, R. Effects of LTE Random Access Methods on Healthcare M2M Applications. Procedia Comput. Sci. 2017, 113, 597–602. [Google Scholar] [CrossRef]
- Lee, H.J.; Lee, S.H.; Ha, K.-S.; Jang, H.C.; Chung, W.-Y.; Kim, J.Y.; Chang, Y.-S.; Yoo, D.H. Ubiquitous healthcare service using Zigbee and mobile phone for elderly patients. Int. J. Med. Inform. 2009, 78, 193–198. [Google Scholar] [CrossRef]
- Jara, A.J.; Zamora, M.A.; Skarmeta, A.F.G. An internet of things–based personal device for diabetes therapy management in ambient assisted living (AAL). Pers. Ubiquitous Comput. 2011, 15, 431–440. [Google Scholar] [CrossRef]
- Korzun, D.G.; Nikolaevskiy, I.; Gurtov, A. Service Intelligence Support for Medical Sensor Networks in Personalized Mobile Health Systems. In Internet of Things, Smart Spaces, and Next Generation Networks and Systems; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar]
- Mulita, F.; Verras, G.-I.; Anagnostopoulos, C.-N.; Kotis, K. A Smarter Health through the Internet of Surgical Things. Sensors 2022, 22, 4577. [Google Scholar] [CrossRef]
- Anwer, A.H.; Khan, N.; Ansari, M.Z.; Baek, S.-S.; Yi, H.; Kim, S.; Noh, S.M.; Jeong, C. Recent Advances in Touch Sensors for Flexible Wearable Devices. Sensors 2022, 22, 4460. [Google Scholar] [CrossRef]
- Dongxin, L.; Tao, L. The application of IOT in medical system. In Proceedings of the 2011 IEEE International Symposium on IT in Medicine and Education, Cuangzhou, China, 9–11 December 2011. [Google Scholar]
- Xu, B.; Xu, L.D.; Cai, H.; Xie, C.; Hu, J.; Bu, F. Ubiquitous Data Accessing Method in IoT-Based Information System for Emergency Medical Services. IEEE Trans. Ind. Inform. 2014, 10, 1578–1586. [Google Scholar]
- Krishna, K.D.; Akkala, V.; Bharath, R.; Rajalakshmi, P.; Mohammed, A.M. FPGA based preliminary CAD for kidney on IoT enabled portable ultrasound imaging system. In Proceedings of the 2014 IEEE 16th International Conference on e-Health Networking, Applications and Services, Healthcom, Natal, Brazil, 15–18 October 2014. [Google Scholar]
- Uhm, K.E.; Yoo, J.; Chung, S.; Lee, J.; Lee, I.; Kim, J.I.; Lee, S.K.; Nam, S.; Park, Y.; Lee, J.; et al. Effects of exercise intervention in breast cancer patients: Is mobile health (mHealth) with pedometer more effective than conventional program using brochure? Breast Cancer Res. Treat. 2016, 161, 443–452. [Google Scholar] [CrossRef]
- Sung, W.-T.; Chang, K.-Y. Evidence-based multi-sensor information fusion for remote health care systems. Sens. Actuators A Phys. 2013, 204, 1–19. [Google Scholar] [CrossRef]
- Prouski, G.; Jafari, M.; Zarrabi, H. Internet of Things in Eye Diseases, Introducing a New Smart Eyeglasses Designed for Probable Dangerous Pressure Changes in Human Eyes. In Proceedings of the 2017 International Conference on Computer and Applications (ICCA), Doha, Qatar, 6–7 September 2017. [Google Scholar]
- Koprowski, R.; Tian, L. Quantitative Assessment of the Impact of Blood Pulsation on Intraocular Pressure Measurement Results in Healthy Subjects. J. Ophthalmol. 2017, 2017, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein, B.E.K.; Klein, R.; Knudtson, M.D. Intraocular pressure and systemic blood pressure: Longitudinal perspective: The Beaver Dam Eye Study. Br. J. Ophthalmol. 2005, 89, 284–287. [Google Scholar] [CrossRef] [PubMed]
- Karabatakis, V.; Natsis, K.; Balis, T.C.; Lake, S.; Bisbas, I.; Kallinderis, K.; Stangos, N. Correlating intraocular pressure, blood pressure, and heart rate changes after jogging. Eur. J. Ophthalmol. 2004, 14, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Singh, N.K.; Rousseau, V. Chapter 10—Sensor Interfaces. In System on Chip Interfaces for Low Power Design; Mishra, S., Singh, N.K., Rousseau, V., Eds.; Morgan Kaufmann: Burlington, MA, USA, 2016; pp. 331–344. [Google Scholar]
- Frenzel, L.E. Chapter Thirteen—Inter-Integrated Circuit (I2C) Bus. In Handbook of Serial Communications Interfaces; Frenzel, L.E., Ed.; Newnes: Oxford, UK, 2016; pp. 65–68. [Google Scholar]
- Barry, P.; Crowley, P. Chapter 4—Embedded Platform Architecture. In Modern Embedded Computing; Barry, P., Crowley, P., Eds.; Morgan Kaufmann: Boston, MA, USA, 2012; pp. 41–97. [Google Scholar]
- Yilmaz, T.; Foster, R.; Hao, Y. Detecting Vital Signs with Wearable Wireless Sensors. Sensors 2010, 10, 10837–10862. [Google Scholar] [CrossRef] [PubMed]
- Banaee, H.; Ahmed, M.U.; Loutfi, A. Data Mining for Wearable Sensors in Health Monitoring Systems: A Review of Recent Trends and Challenges. Sensors 2013, 13, 17472–17500. [Google Scholar] [CrossRef] [PubMed]
- Di Rienzo, M.; Rizzo, F.; Parati, G.; Brambilla, G.; Ferratini, M.; Castiglioni, P. MagIC System: A New Textile-Based Wearable Device for Biological Signal Monitoring. Applicability in Daily Life and Clinical Setting. In Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 17–18 January 2006; Volume 7, pp. 7167–7169. [Google Scholar]
- Antman, E.M.; Benjamin, E.J.; Harrington, R.A.; Houser, S.R.; Peterson, E.D.; Bauman, M.A.; Brown, N.; Bufalino, V.; Califf, R.M.; Creager, M.A.; et al. Acquisition, Analysis, and Sharing of Data in 2015 and Beyond: A Survey of the Landscape: A Conference Report from the American Heart Association Data Summit 2015. J. Am. Heart Assoc. 2015, 4, e002810. [Google Scholar] [CrossRef] [PubMed]
- Dias, D.; Cunha, J.P. Wearable Health Devices—Vital Sign Monitoring, Systems and Technologies. Sensors 2018, 18, 2414. [Google Scholar] [CrossRef]
- Seoane, F.; Mohino-Herranz, I.; Ferreira, J.; Alvarez, L.; Buendia, R.; Ayllón, D.; Llerena, C.; Gil-Pita, R. Wearable Biomedical Measurement Systems for Assessment of Mental Stress of Combatants in Real Time. Sensors 2014, 14, 7120–7141. [Google Scholar] [CrossRef]
- ams: Vital Sign Sensing. Available online: https://ams.com/vital-sign-sensing (accessed on 29 August 2022).
- Abuella, H.; Ekin, S. Non-Contact Vital Signs Monitoring Through Visible Light Sensing. IEEE Sens. J. 2020, 20, 3859–3870. [Google Scholar] [CrossRef]
- Taleb, H.; Nasser, A.; Andrieux, G.; Charara, N.; Cruz, E.M. Energy Consumption Improvement of a Healthcare Monitoring System: Application to LoRaWAN. IEEE Sens. J. 2022, 22, 7288–7299. [Google Scholar] [CrossRef]
- Javid, S.; Mirzaei, A. Presenting a Reliable Routing Approach in IoT Healthcare Using the Multiobjective-Based Multiagent Approach. Wirel. Commun. Mob. Comput. 2021, 2021, 5572084. [Google Scholar] [CrossRef]
- Ali, H.M.; Liu, J.; Bukhari, S.A.C.; Rauf, H.T. Planning a secure and reliable IoT-enabled FOG-assisted computing infrastructure for healthcare. Clust. Comput. 2022, 25, 2143–2161. [Google Scholar] [CrossRef]
- Woo, M.W.; Lee, J.; Park, K. A reliable IoT system for Personal Healthcare Devices. Future Gener. Comput. Syst. 2018, 78, 626–640. [Google Scholar] [CrossRef]
- Tripathi, M.M.; Haroon, M.; Khan, Z.; Husain, M.S. Security in Digital Healthcare System. In Pervasive Healthcare: A Compendium of Critical Factors for Success; Husain, M.S., Adnan, M.H.B.M., Khan, M.Z., Shukla, S., Khan, F.U., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 217–231. [Google Scholar]
- Nasiri, S.; Sadoughi, F.; Tadayon, M.; Dehnad, A. Security Requirements of Internet of Things-Based Healthcare System: A Survey Study. Acta Inform. Med. 2019, 27, 253–258. [Google Scholar] [CrossRef]
- Thilagam, K.; Beno, A.; Lakshmi, M.V.; Wilfred, C.B.; George, S.M.; Karthikeyan, M.; Peroumal, V.; Ramesh, C.; Karunakaran, P. Secure IoT Healthcare Architecture with Deep Learning-Based Access Control System. J. Nanomater. 2022, 2022, 2638613. [Google Scholar] [CrossRef]
- Verma, D.; Singh, K.R.; Yadav, A.K.; Nayak, V.; Singh, J.; Solanki, P.R.; Singh, R.P. Internet of things (IoT) in nano-integrated wearable biosensor devices for healthcare applications. Biosens. Bioelectron. X 2022, 11, 100153. [Google Scholar] [CrossRef]
- Vedaei, S.S.; Fotovvat, A.; Mohebbian, M.R.; Rahman, G.M.E.; Wahid, K.A.; Babyn, P.; Marateb, H.R.; Mansourian, M.; Sami, R. COVID-SAFE: An IoT-Based System for Automated Health Monitoring and Surveillance in Post-Pandemic Life. IEEE Access 2020, 8, 188538–188551. [Google Scholar] [CrossRef]
- Moon, M. Stanford Publishes Its Massive Apple Watch Heart-Rate Study. 2019. Available online: https://www.engadget.com/2019-11-14-stanford-apple-watch-heart-rate-study-paper.html (accessed on 1 April 2020).
- Poh, M.-Z.; Kim, K.; Goessling, A.; Swenson, N.; Picard, R. Cardiovascular Monitoring Using Earphones and a Mobile Device. IEEE Pervasive Comput. 2011, 11, 18–26. [Google Scholar] [CrossRef]
- Ding, X.; Yan, B.P.; Zhang, Y.; Liu, J.; Zhao, N.; Tsang, H.K. Pulse Transit Time Based Continuous Cuffless Blood Pressure Estimation: A New Extension and A Comprehensive Evaluation. Sci. Rep. 2017, 7, 11554. [Google Scholar] [CrossRef]
- Mohammed, J.; Lung, C.-H.; Ocneanu, A.; Thakral, A.; Jones, C.; Adler, A. Internet of Things: Remote Patient Monitoring Using Web Services and Cloud Computing. In Proceedings of the 2014 IEEE International Conference on Internet of Things (iThings), and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom), Taipei, Taiwan, 1–3 September 2014; pp. 256–263. [Google Scholar] [CrossRef]
- IOIO Kit. 2020. Available online: https://www.adafruit.com/product/885 (accessed on 29 August 2022).
- Iyer, S.; Zhao, L.; Mohan, M.P.; Jimeno, J.; Siyal, M.Y.; Alphones, A.; Karim, M.F. mm-Wave Radar-Based Vital Signs Monitoring and Arrhythmia Detection Using Machine Learning. Sensors 2022, 22, 3106. [Google Scholar] [CrossRef]
- Xu, H.; Ebrahim, M.P.; Hasan, K.; Heydari, F.; Howley, P.; Yuce, M.R. Accurate Heart Rate and Respiration Rate Detection Based on a Higher-Order Harmonics Peak Selection Method Using Radar Non-Contact Sensors. Sensors 2022, 22, 83. [Google Scholar] [CrossRef] [PubMed]
- Kathuria, N.; Seet, B.-C. 24 GHz Flexible Antenna for Doppler Radar-Based Human Vital Signs Monitoring. Sensors 2021, 21, 3737. [Google Scholar] [CrossRef] [PubMed]
- Iwata, Y.; Thanh, H.; Sun, G.; Ishibashi, K. High Accuracy Heartbeat Detection from CW-Doppler Radar Using Singular Value Decomposition and Matched Filter. Sensors 2021, 21, 3588. [Google Scholar] [CrossRef]
- Giovangrandi, L.; Inan, O.; Banerjee, D.; Kovacs, G. Preliminary results from BCG and ECG measurements in the heart failure clinic. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; pp. 3780–3783. [Google Scholar]
- Kim, C.-S.; Ober, S.L.; McMurtry, M.S.; Finegan, B.A.; Inan, O.T.; Mukkamala, R.; Hahn, J.-O. Ballistocardiogram: Mechanism and Potential for Unobtrusive Cardiovascular Health Monitoring. Sci. Rep. 2016, 6, 31297. [Google Scholar] [CrossRef] [PubMed]
- Aarts, V.; Dellimore, K.H.; Wijshoff, R.; Derkx, R.; Laar, J.V.D.; Muehlsteff, J. Performance of an accelerometer-based pulse presence detection approach compared to a reference sensor. In Proceedings of the 2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN), Eindhoven, The Netherlands, 9–12 May 2017; pp. 165–168. [Google Scholar]
- Wu, H.-Y.; Rubinstein, M.; Shih, E.; Guttag, J.; Durand, F.; Freeman, W. Eulerian Video Magnification for Revealing Subtle Changes in the World. ACM Trans. Graph. TOG 2012, 31, 1–8. [Google Scholar] [CrossRef]
- MathWork. Available online: www.Mathwork.com (accessed on 29 August 2022).
- Pirzada, P.; Morrison, D.; Doherty, G.; Dhasmana, D.; Harris-Birtill, D. Automated Remote Pulse Oximetry System (ARPOS). Sensors 2022, 22, 4974. [Google Scholar] [CrossRef]
- Martinez-Delgado, G.H.; Correa-Balan, A.J.; May-Chan, J.A.; Parra-Elizondo, C.E.; Guzman-Rangel, L.A.; Martinez-Torteya, A. Measuring Heart Rate Variability Using Facial Video. Sensors 2022, 22, 4690. [Google Scholar] [CrossRef]
- Ronca, V.; Giorgi, A.; Rossi, D.; Di Florio, A.; Di Flumeri, G.; Aricò, P.; Sciaraffa, N.; Vozzi, A.; Tamborra, L.; Simonetti, I.; et al. A Video-Based Technique for Heart Rate and Eye Blinks Rate Estimation: A Potential Solution for Telemonitoring and Remote Healthcare. Sensors 2021, 21, 1607. [Google Scholar] [CrossRef]
- Liu, X.; Wei, W.; Kuang, H.; Ma, X. Heart Rate Measurement Based on 3D Central Difference Convolution with Attention Mechanism. Sensors 2022, 22, 688. [Google Scholar] [CrossRef]
- Chambino, P.B. Android-based implementation of Eulerian Video Magnification for vital signs monitoring. In Faculty of Engineering; University of Porto: Porto, Portugal, 2013. [Google Scholar]
- Tran, Q.V.; Su, S.F.; Tran, Q.M.; Truong, V. Intelligent Non-Invasive Vital Signs Estimation from Image Analysis. In Proceedings of the 2020 International Conference on System Science and Engineering (ICSSE), Kagawa, Japan, 31 August–3 September 2020. [Google Scholar]
- Garbey, M.; Sun, N.; Merla, A.; Pavlidis, I. Contact-Free Measurement of Cardiac Pulse Based on the Analysis of Thermal Imagery. Biomedical Engineering. IEEE Trans. Biomed. Eng. 2007, 54, 1418–1426. [Google Scholar] [CrossRef]
- Fuentes, S.; Viejo, C.G.; Chauhan, S.; Joy, A.; Tongson, E.; Dunshea, F. Non-Invasive Sheep Biometrics Obtained by Computer Vision Algorithms and Machine Learning Modeling Using Integrated Visible/Infrared Thermal Cameras. Sensors 2020, 20, 6334. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Gebhart, I.; Kühmstedt, P.; Rosenberger, M.; Notni, G. Enhanced Contactless Vital Sign Estimation from Real-Time Multimodal 3D Image Data. J. Imaging 2020, 6, 123. [Google Scholar] [CrossRef]
- Cheng, C.-H.; Wong, K.-L.; Chin, J.-W.; Chan, T.-T.; So, R.H.Y. Deep Learning Methods for Remote Heart Rate Measurement: A Review and Future Research Agenda. Sensors 2021, 21, 6296. [Google Scholar] [CrossRef]
- Gaura, E.; Kemp, J.; Brusey, J. Leveraging Knowledge from Physiological Data: On-Body Heat Stress Risk Prediction with Sensor Networks. IEEE Trans. Biomed. Circuits Syst. 2013, 7, 861–870. [Google Scholar] [CrossRef]
- Buller, M.; Tharion, W.; Hoyt, R.; Jenkins, O. Estimation of Human Internal Temperature from Wearable Physiological Sensors. In Proceedings of the Twenty-Second Conference on Innovative Applications of Artificial Intelligence, Atlanta, GA, USA, 11–15 July 2010; Volume 3. [Google Scholar] [CrossRef]
- Buller, M.J.; Tharion, W.J.; Cheuvront, S.N.; Montain, S.J.; Kenefick, R.W.; Castellani, J.; A Latzka, W.; Roberts, W.S.; Richter, M.; Jenkins, O.C.; et al. Estimation of human core temperature from sequential heart rate observations. Physiol. Meas. 2013, 34, 781–798. [Google Scholar] [CrossRef]
- Popovic, Z.; Momenroodaki, P.; Scheeler, R. Toward wearable wireless thermometers for internal body temperature measurements. IEEE Commun. Mag. 2014, 52, 118–125. [Google Scholar] [CrossRef]
- Boano, C.A.; Lasagni, M.; Romer, K.; Lange, T. Accurate Temperature Measurements for Medical Research Using Body Sensor Networks. In Proceedings of the 2011 14th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing Workshops, Newport Beach, CA, USA, 28–31 March 2011; pp. 189–198. [Google Scholar] [CrossRef]
- Webb, R.; Bonifas, A.P.; Behnaz, A.; Zhang, Y.; Yu, K.J.; Cheng, H.; Shi, M.; Bian, Z.; Liu, Z.; Kim, Y.-S.; et al. Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat. Mater. 2013, 12, 938–944. [Google Scholar] [CrossRef]
- Boonsong, W.; Senajit, N.; Prasongchan, P. Contactless Body Temperature Monitoring of In-Patient Department (IPD) Using 2.4 GHz Microwave Frequency via the Internet of Things (IoT) Network. Wirel. Pers. Commun. 2022, 124, 1961–1976. [Google Scholar] [CrossRef]
- Mai, T.C.; Delanaud, S.; Bach, V.; Braun, A.; Pelletier, A.; De Seze, R. Effect of non-thermal radiofrequency on body temperature in mice. Sci. Rep. 2020, 10, 5724–5729. [Google Scholar] [CrossRef]
- Looney, D.P.; Buller, M.J.; Gribok, A.V.; Leger, J.L.; Potter, A.W.; Rumpler, W.V.; Tharion, W.J.; Welles, A.P.; Friedl, K.E.; Hoyt, R.W. Estimating Resting Core Temperature Using Heart Rate. J. Meas. Phys. Behav. 2018, 1, 79–86. [Google Scholar] [CrossRef]
- Wei, Q.; Park, H.-J.; Lee, J.H. Development of a Wireless Health Monitoring System for Measuring Core Body Temperature from the Back of the Body. J. Health Eng. 2019, 2019, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Lab View. Available online: www.labview.com (accessed on 1 January 2020).
- Manullang, M.C.T.; Lin, Y.-H.; Lai, S.-J.; Chou, N.-K. Implementation of Thermal Camera for Non-Contact Physiological Measurement: A Systematic Review. Sensors 2021, 21, 7777. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, H.; Uchiyama, A.; Higashino, T. ThermalWrist: Smartphone Thermal Camera Correction Using a Wristband Sensor†. Sensors 2019, 19, 3826. [Google Scholar] [CrossRef]
- Shen, L.; Shi, X.; Zhao, Z.; Wang, K. Informatics and machine learning methods for health applications. BMC Med Inform. Decis. Mak. 2020, 20, 342. [Google Scholar] [CrossRef]
- Gupta, N.; Gupta, S.K.; Pathak, R.K.; Jain, V.; Rashidi, P.; Suri, J.S. Human activity recognition in artificial intelligence framework: A narrative review. Artif. Intell. Rev. 2022, 55, 4755–4808. [Google Scholar] [CrossRef]
- Golestani, N.; Moghaddam, M. Human activity recognition using magnetic induction-based motion signals and deep recurrent neural networks. Nat. Commun. 2020, 11, 1551. [Google Scholar]
- Mohsen, S.; Elkaseer, A.; Scholz, S.G. Industry 4.0-Oriented Deep Learning Models for Human Activity Recognition. IEEE Access 2021, 9, 150508–150521. [Google Scholar] [CrossRef]
- da Silva, D.B.; Schmidt, D.; da Costa, C.A.; da Rosa Righi, R.; Eskofier, B. DeepSigns: A predictive model based on Deep Learning for the early detection of patient health deterioration. Expert Syst. Appl. 2021, 165, 113905. [Google Scholar] [CrossRef]
- Alloghani, M.; Baker, T.; Al-Jumeily, D.; Hussain, A.; Mustafina, J.; Aljaaf, A.J. Prospects of Machine and Deep Learning in Analysis of Vital Signs for the Improvement of Healthcare Services. In Nature-Inspired Computation in Data Mining and Machine Learning; Yang, X.-S., He, X.-S., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 113–136. [Google Scholar]
- Lyra, S.; Mayer, L.; Ou, L.; Chen, D.; Timms, P.; Tay, A.; Chan, P.; Ganse, B.; Leonhardt, S.; Antink, C.H. A Deep Learning-Based Camera Approach for Vital Sign Monitoring Using Thermography Images for ICU Patients. Sensors 2021, 21, 1495. [Google Scholar] [CrossRef]
- e-Health Sensor Platform V2.0 for Arduino and Raspberry Pi. 2022. Available online: https://www.cooking-hacks.com/documentation/tutorials/ehealth-biometric-sensor-platform-arduino-raspberry-pi-medical.html (accessed on 29 August 2022).
- Paradiso, R.; Loriga, G.; Taccini, N. A Wearable Health Care System Based on Knitted Integrated Sensors. IEEE Trans. Inf. Technol. Biomed. 2005, 9, 337–344. [Google Scholar] [CrossRef]
- Bariya, M.; Nyein, H.Y.Y.; Javey, A. Wearable sweat sensors. Nat. Electron. 2018, 1, 160–171. [Google Scholar] [CrossRef]
- Müller, A.; Haneke, H.; Kirchberger, V.; Mastella, G.; Dommasch, M.; Merle, U.; Heinze, O.; Siegmann, A.; Spinner, C.; Buiatti, A.; et al. Integration of mobile sensors in a telemedicine hospital system: Remote-monitoring in COVID-19 patients. J. Public Health 2022, 30, 93–97. [Google Scholar] [CrossRef]
- Donati, M.; Celli, A.; Ruiu, A.; Saponara, S.; Fanucci, L. A telemedicine service platform exploiting BT/BLE wearable sensors for remote monitoring of chronic patients. In Proceedings of the 2018 7th International Conference on Modern Circuits and Systems Technologies (MOCAST), Thessaloniki, Greece, 7–9 May 2018. [Google Scholar]
- Przybyło, J. A deep learning approach for remote heart rate estimation. Biomed. Signal Process. Control. 2022, 74, 103457. [Google Scholar] [CrossRef]
- Sun, M.; Xie, L.; Liu, Y.; Li, K.; Jiang, B.; Lu, Y.; Yang, Y.; Yu, H.; Song, Y.; Bai, C.; et al. The metaverse in current digital medicine. Clin. eHealth 2022, 5, 52–57. [Google Scholar] [CrossRef]
- Yang, D.; Zhou, J.; Chen, R.; Song, Y.; Song, Z.; Zhang, X.; Wang, Q.; Wang, K.; Zhou, C.; Sun, J.; et al. Expert consensus on the metaverse in medicine. Clin. eHealth 2022, 5, 1–9. [Google Scholar] [CrossRef]
- Yang, Y.; Siau, K.; Xie, W.; Sun, Y. Smart Health Intelligent Healthcare Systems in the Metaverse, Artificial Intelligence, and Data Science Era. J. Organ. End User Comput. (JOEUC) 2022, 34, 1–14. [Google Scholar] [CrossRef]
- Ginsburg, G.S.; Phillips, K.A. Precision Medicine: From Science to Value. Health Aff. 2018, 37, 694–701. [Google Scholar] [CrossRef]
- Ramdani, B.; Binsaif, A.; Boukrami, E. Business model innovation: A review and research agenda. N. Engl. J. Entrep. 2019, 22, 89–108. [Google Scholar] [CrossRef] [Green Version]
Technology | Merits | Demerits | Used in |
---|---|---|---|
LoRa | Low energy consumption, long-range operable standard | Low data size and volume | [30,39] |
SigFox | Low energy consumption, long range, higher spectral efficiency, low noise | Supports one-way communication without acknowledgment, low data rate | [61] |
Zwave | Low Interferences, power efficiency | Implementation cost of network, difficulty in configuration, performance issues with the number in nodes, limited number of nodes | [62] |
RFID | No wave emission No need for energy | Low range | [63] |
Bluetooth | Message size and volume debit | Low range | [64] |
Wi-Fi | High data rate, secure communication | High power consumption, need for gateway | [30,39] |
ZigBee | Secure connection, low power low cost, high range | Low data rate Short range | [65] |
Sensors | Interfacing | Features | Vital Signs | Measuring Methodology |
---|---|---|---|---|
MySignals (Commercial sensor) [156] | WiFi and BLE Integrated with Arduino and Raspberry Pi | Unwearable | Body Position, Body Temperature, Electromyography, Electrocardiography, Airflow, Galvanic Skin Response, Blood Pressure, Pulse Oximeter Glucometer, Spirometer, Snore Scale, Electroencephalography | Invasive |
e-Health V2.0 (Commercial sensor) [156] | WiFi and BLE Integrated with Arduino and Raspberry Pi | Wearable as T-shirt | Patient Position Sensor (Accelerometer) Glucometer Sensor, Body Temperature Sensor, Blood Pressure Sensor (Sphygmomanometer) V2.0, Pulse and Oxygen in Blood Sensor (SPO2), Airflow Sensor (Breathing), Galvanic Skin Response Sensor (GSR-Sweating), Electrocardiogram Sensor (ECG), Electromyography Sensor (EMG) | Invasive |
WEALTHY (Developed sensor) [157] | Analog-to-digital Converter (ADC) Can be interfacing with microcontroller | Wearable | Electrocardiogram, Respiration, Activity | Invasive |
Wearable sweat sensors (Developed sensor) [158] | Analog-to-digital Converter (ADC) Can be interfacing with microcontroller | Wearable on hand above skin | Diabetes | Partially non-invasive |
Thermal Camera (Developed algorithm) [147,148] | Computer Embedded Linux kit | Utilizing thermal camera | Body Temperature | Partially non-invasive |
RGB Camera and IR Sensor (Developed algorithm) [30,39] | Computer Embedded Linux kit Microcontroller | Utilized thermal camera and Infrared sensor | Heart rate and Body Temperature | Non-invasive |
3D Camera (Developed algorithm) [134] | Computer | 3D imaging | Heart Rate and Oxygen Saturation | Non-invasive |
Work | Non-Invasive | IoT | Wireless Technology | Sensing Technology | Measured Vital Data | Advantages | Limitations |
---|---|---|---|---|---|---|---|
[49] | No | No | N/A | Piezoresistive | BP, Heart rate | High accuracy, short measurement time, portable | Very sensitive |
[52] | No | Yes | GPS, GSM | Analog, optical | Heart rate, BT | Direct tracking of patients, SMS iseasier to access | Bulky circuitry, movement artifacts may affect accuracy of heart rate sensor |
[113] | No | Yes | 2.4 GHzradio | Infrared LED with phototransistor | Heart rate | Comfortable | Looseness leads to movement artifacts, |
[118] | Yes | No | No | CW Doppler radar | Respiration rate, Heartrate | Non-contact measurement | Easy interference by noise |
[120] | Yes | No | N/A | CW Doppler radar | Heart rate | High accuracy, non-contact measurement | Must be readjusted in different environments |
[121] | No | No | No | Strain gauges, dry electrodes | BCG, ECG | Convenient, safe | Not portable, PC is required |
[132] | Yes | No | N/A | Piezoelectric pulse transducer, middle-wavelength IRcamera | Cardiovascular pulse | Non-contact measurement, high accuracy | Environment may seriously affect the performance |
[133] | No | No | N/A | IR thermal camera | Respiration rate, heart rate (in sheep) | Non-contact measurement | Animal use only |
[134] | Yes | No | N/A | 3D camera | Temperature, respiration rate, heart rate, SpO2 | Non-contact measurement, real-time | Low accuracy |
[63] | No | No | RFID | Digital sensor | Temperature | Battery-free, compact | Requires a reading device |
[142] | No | Yes | Wi-Fi | Non-contact IR sensor | Temperature | Non-contact measurement, Robust Wi-Fi | Low reliability |
[145] | No | No | 2.4 GHz radio | Digital sensor | Temperature | High accuracy, low power, low cost | The difference in temperature is approximated |
[64] | No | Yes | Bluetooth | Digital sensors | Temperature, humidity | Critical data are extracted from simple data | Indirect connection to internet |
[148] | Partially | No | N/A | Thermal camera, wristband | Temperature | High accuracy | Low reliability with sweat requires uses of a reference device |
[151] | No | No | N/A | Magnetic induction | Human activity recognition | Lightweight, portable, cheap, high accuracy | Cross-coupling may be destructive |
[30,39] | Yes | Yes | LoRa and WiFi | RGB Camera | Heart Rate | Low Processing power, portable, safe, easy to use, high range of sending data | Very sensitive for environment light |
[39] | Yes | Yes | LoRa and WiFi | IR Sensor | Body temperature | Portable, easy to use, high range of sending data, low cost | Needs short distance to be used |
[159] | No | Yes | Bluetooth and mobile phone | Photoplethysmography | Body Temperature, oxygen saturation, heart rate, and respiratory | Enable remote monitoring Easy to be integrated with mobile phone | Needs to be worn |
[160] | No | Yes | BT/BLE | Pulse oximetry sensor | oxygen saturation | Secured connection | Needs to be worn |
Business Model Components | Description |
---|---|
Product Description | Sense and recognize vital sign of human using surveillance camera/mobile phone camera and visualize and analyze the acquired vital signs in cloud-based applications. Moreover, the facility provides medical consultation and investigating for remote patients using metaverse. |
Customer needs | Real-time visualization and analysis of their vital signs on their mobile phone application without need to wear/touch sensors as well as the ability to meet doctors in metaverse and perform investigation. |
Technologies | IoT, non-invasive data acquisition, cloud computing, combined AI and metaverse application |
Human resources | embedded systems engineers, computer vision engineers, augmented reality engineers, pre-sales engineers, marketing employers, sales employers, technical support employers and customer services employers. |
Financial | Looking for funding agency and partnership with health insurance companies. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salem, M.; Elkaseer, A.; El-Maddah, I.A.M.; Youssef, K.Y.; Scholz, S.G.; Mohamed, H.K. Non-Invasive Data Acquisition and IoT Solution for Human Vital Signs Monitoring: Applications, Limitations and Future Prospects. Sensors 2022, 22, 6625. https://doi.org/10.3390/s22176625
Salem M, Elkaseer A, El-Maddah IAM, Youssef KY, Scholz SG, Mohamed HK. Non-Invasive Data Acquisition and IoT Solution for Human Vital Signs Monitoring: Applications, Limitations and Future Prospects. Sensors. 2022; 22(17):6625. https://doi.org/10.3390/s22176625
Chicago/Turabian StyleSalem, Mahmoud, Ahmed Elkaseer, Islam A. M. El-Maddah, Khaled Y. Youssef, Steffen G. Scholz, and Hoda K. Mohamed. 2022. "Non-Invasive Data Acquisition and IoT Solution for Human Vital Signs Monitoring: Applications, Limitations and Future Prospects" Sensors 22, no. 17: 6625. https://doi.org/10.3390/s22176625
APA StyleSalem, M., Elkaseer, A., El-Maddah, I. A. M., Youssef, K. Y., Scholz, S. G., & Mohamed, H. K. (2022). Non-Invasive Data Acquisition and IoT Solution for Human Vital Signs Monitoring: Applications, Limitations and Future Prospects. Sensors, 22(17), 6625. https://doi.org/10.3390/s22176625