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Abstract: Carbon–steel pipelines have mostly been utilized in the oil and gas (OG) industry owing
to their strength and cost-effectiveness. However, the detection of corrosion under coating poses
challenges for nondestructive (ND) pipeline monitoring techniques. One of the challenges is inac-
cessibility because of the pipeline structure, which leads to undetected corrosion, which possibly
leads to catastrophic failure. The drawbacks of the existing ND methods for corrosion monitoring
increase the need for novel frameworks in feature extraction, detection, and characterization of corro-
sion. This study begins with the explanations of the various types of corrosion in the carbon–steel
pipeline in the OG industry and its prevention methods. A review of critical sensors integrated with
various current ND corrosion monitoring systems is then presented. The importance of acoustic
emission (AE) techniques over other ND methods is explained. AE data preprocessing methods
are discussed. Several AE-based corrosion detection, prediction, and reliability assessment models
for online pipeline condition monitoring are then highlighted. Finally, a discussion with future
perspectives on corrosion monitoring followed by the significance and advantages of the emerging
AE-based ND monitoring techniques is presented. The trends and identified issues are summarized
with several recommendations for improvement in the OG industry.

Keywords: acoustic emission; corrosion prediction; nondestructive testing; oil and gas industry;
pipeline corrosion; structural health monitoring.

1. Introduction

Corrosion assessment and monitoring are valuable for applications in the oil and gas
(OG) industry because corrosion factors lead to great economic damage, which is a large
amount of the total global cost for OG industries yearly [1–3]. The impact of corrosion in
the field of OG industries can be assessed based on its effect on operational expenditure
and capital expenditure, including health, safety, and environment [4]. According to the
production pipeline failure data between 1980 and 2005 in Alberta [5], Canada, corrosion is
one of the main factors causing a pipeline failure. Figure 1 shows the percentages of several
causes that contribute to pipeline failure.

Based on corrosion management statistics, the global cost caused by corrosion is
billions of dollars annually [6]. Thus, the OG industries focus on the development of
corrosion management strategies and control practices to significantly reduce the corrosion
cost. Understanding the causes of corrosion mainly helps to implement and upgrade
corrosion management and prevention strategies [7].

Corrosion of the carbon–steel pipeline can be attributed to several causes, including
structural properties, materials properties, chemical factors, and environmental factors,
as shown in Figure 2. These factors can further breakdown individually for better un-
derstanding. For example, material properties, residual and operating stresses, design
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factors, crevices, deposits, and others are associated with structural properties; temperature,
pressure, flow rate, entrained solid and liquid and flow pattern are related to product
properties; chemical factors included H2O, H2S, CO2, dissolved solids, organic and inor-
ganic acids, sulphur and sulphur compounds, microorganisms, hydrocarbons and pH;
environmental factors associated with oil field composition, soil composition, temperature
and moisture levels, saltwater, freshwater and land [8]. This article focuses on numerous
methods developed for corrosion assessment and monitoring in OG industries.
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Figure 1. The percentages of several causes of production pipeline failure based on the report in [5].
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Figure 2. The causes of pipeline corrosion.

The nondestructive (ND) technique represents the execution of material fault identi-
fication, which prevents the risk of material failure and avoids the interruption of future
performance of the material. The degradation of the materials’ properties is known as
corrosion, which is caused by environmental interactions [9]. The corrodible materials
include metals and alloys, carbon steel, nonmetals, ceramics, and composites [10]. Owing
to its economy and mechanical strength, mild steel is yet preferred for many applications.
The fact that mild steel corrodes easily is the biggest disadvantage as it quickly loses
strength, resulting in the failure of the structure. Carbon–steel or other metal structures,
in particular, vessels, are routinely coated to avoid corrosion. The main goal of coating is
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to establish a barrier between the metal surface and the environment, avoiding corrosion.
Although the coating protects the metal from corrosion, it is still susceptible to corrosion.
The corrosion may happen on the coated carbon–steel structure, which is difficult to identify
as the corrosion is hidden by the coating layer. Corrosion that goes unnoticed can lead to
catastrophic failure. The risk to people’s safety, environmental degradation, and economic
ramifications are all serious effects. When carbon steel comes into touch with water and
oxygen, it corrodes. To boost the efficiency of inspection, many ND techniques have been
used to identify corrosion beneath coating without removing it [11–13], Each of them has
distinct capabilities. These ND methods are then used to identify problem areas that require
more examination.

This study investigates the advancements in sensing technologies for corrosion data
acquisition, corrosion data analysis methods, pipeline monitoring technologies, machine
learning (ML) models for corrosion assessment, and reliability prediction. The objectives are
to enhance the reliability of the coated carbon–steel pipeline and reduce the cost associated
with corrosion. This paper is organized as follows. Section 2 discusses the existing several
kinds of corrosion and its issues with control practices. Section 3 highlights the sensors that
are utilized for corrosion data extraction. Section 4 explains several corrosion monitoring
technologies utilized for carbon–steel pipelines in the OG industry. Section 5 explains the
importance of AE methods over other ND methods. Section 6 studies the methods for
corrosion data analysis, detection, and classification. Section 7 describes several corrosion
assessment and reliability prediction models for the carbon–steel pipeline undercoating.
Section 8 highlights the challenges and recommendations for future perspectives. Finally,
Section 9 concludes this study.

2. Corrosion in Carbon–Steel Pipeline and Its Factors with Prevention Methods

Several kinds of corrosion and the causes that introduce corrosion in carbon–steel
pipelines are stated and explained in the following subsections [14,15]. Various preventive
methods are introduced to control corrosion and to enhance the sustainability of the
pipelines [16]. Table 1 presents different types of corrosion and their factors with the
preventive technique, which are explained in the next sub-sections.

Table 1. A summary of several kinds of corrosion in a carbon–steel pipeline, its causes and preven-
tion methods.

Corrosion Types Causes Preventive Methods

Uniform corrosion Open atmospheres, soils, H2O, pH etc. Coating and chemical treatment.
Pitting corrosion chemical and mechanical attacks Oxide film and pH management.
Crevice corrosion Metal-ion cells and oxygen cells Welding and non-absorbent gaskets.
Galvanic corrosion Electrochemical potential Zinc coating.
Cavitation corrosion Variation of rapid pressure Minimizing bubble formation and collapse.
Erosive corrosion High velocity Controlling velocity and utilizing copper-nickel

alloys.
Stray current corrosion DC flowing near the soil and discharge Coating and cathodic protections.
Stress corrosion cracking High stress, loading and temperature Threshold management and monitoring.
Microbiologically induced corrosion Anaerobic and aerobic bacteria as well

as other enzymes
Chemical treatment and inhibitors.

2.1. Corrosion Types in Carbon–Steel Pipeline
2.1.1. Uniform Corrosion

The most prevalent type of pipeline corrosion is uniform corrosion, which spreads
consistently over exposed surfaces [14]. Uniform corrosion is a regular occurrence in the
OG business and results in a consistent pipe wall reduction [17]. In the presence of corrosive
species that can rapidly deteriorate metallic surfaces owing to either anodic or cathodic
reactivity, untreated surfaces are susceptible to uniform corrosion. The most prevalent
source of uniform corrosion, which is easily detected by rust, is oxidation in the presence
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of air or water. Corrosion inhibitors, protective coatings, and cathodic protection are all
common strategies for preventing uniform corrosion [18].

2.1.2. Pitting Corrosion

Pitting corrosion happens along treated surfaces where the base material has abrasions
or inclusions, or when the surface is not appropriately treated to withstand environmental
effects or is exposed to high concentrations of aggressive chemical species [14]. Pitting
corrosion can be caused by a variety of factors [19]. Moreover, when the temperature is
above the critical pitting temperature (CPT) defined by the American Society for Testing
and Materials (ASTM) Standard G48-03, the resistance of a material to pitting corrosion is
greatly diminished. Proper material selection, pH management, and cathodic or anodic
protection are used to prevent pitting corrosion [20].

2.1.3. Crevice Corrosion

Crevice corrosion is a type of corrosion usually introduced in a small area at or near a
joint [14]. An electrochemical concentration cell is formed by the gap or fissure between the
attached materials. Chlorides condense in the crevice, which lose oxygen and have a lower
pH, making them an anode in an electrochemical reaction. Crevice corrosion is highly
influenced by crevice geometry, material composition, and environmental conditions [21].
The critical crevice temperature (CCT) is defined by ASTM Standard G48-03 as the lowest
temperature known to induce crevice corrosion. CCT is often substantially lower than CPT.
Crevice corrosion can be reduced by using welded butt joints, solid non-absorbent gaskets,
and metals with higher resistance to crevice corrosion. Continuous welding or soldering
should be used to eliminate crevices in lap joints.

2.2. The Causes that Introduce Corrosion in Carbon–Steel Pipeline
2.2.1. Galvanic Corrosion

When two metallic or semi-metallic conductors with different electrochemical po-
tentials are exposed to an electrolytic fluid, galvanic corrosion, also known as bimetallic
corrosion, occurs [14]. The electrochemical potential is dependent on the electrolyte and
ambient circumstances. The main driving force to introduce galvanic corrosion is the varia-
tion in potential as the direction of current flows through the electrolyte to the direction
of more noble metal, whereas galvanic corrosion occurs on the less noble metal or active
metal [22]. Threaded junctions between materials that are wide apart in the galvanic series
should be avoided. Moreover, dissimilar metals must be insulated whenever possible,
and coatings should be applied and maintained for integrity to prevent galvanic corrosion.

2.2.2. Cavitation and Erosive Corrosion

Cavitation corrosion is an erosion process that occurs when gas bubbles “implode” on
a metal surface [23]. This corrosion is commonly connected to pressure variations brought
on by the fluid’s hydrodynamic properties (e.g., propellers, stirrer blades, and hydraulic
turbine blades). The value of a constant hydraulic regime in the fluid is impossible to
be overestimated. When the surface is in good condition, the creation of vapor bubbles
reduces in the potential sites. The increment of fluid pressure is typically adequate to
provide a single phase-based fluid and avoid vapor bubble formation. Although adhesion
concerns between the coating and the metal are a regular stumbling point, plastic or rubber
coatings have consistently been shown to be useful. Erosive corrosion is typically associated
with the areas, where varying fluid flows, increasing turbulence, the corrosiveness of the
fluid, and some other factors [14]. The variation of erosion-corrosion rates is related to
the pipeline material properties, fluid properties, flow regime, fluid velocities, particle
sizes, geometry, and densities. The impacts of solid particles, such as sand, and their
characteristics, such as geometry, sharpness, and hardness, are studied. Pollutants and
corrosive species, such as oxygen and water, including salts, in particular, bicarbonate,
chloride, and sulfate, accelerate erosion corrosion [24].
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2.2.3. Stray Current Corrosion

Stray current corrosion refers to the passing of electrical current through circuits other
than the dedicated paths. The stray current corrosion occurs in the pipeline, whereas the
flow of current travels from one location to another into the pipeline and then returns to
the power source. Considering the process of the current flow, stray current corrosion intro-
duced in the pipeline is proportional to the amount of current flowing during the process
in the pipeline. Stray current corrosion can pose a threat to buried carbon–steel pipelines
and other underground metallic infrastructure [25]. However, preventing them from the
stray current corrosion is difficult because it is influenced by a variety of circumstances.
Stray current corrosion on buried carbon–steel pipelines can be prevented using two basic
methods, namely, the use of coating method and the use of cathodic protection method [26].
In the real environment, keeping the carbon–steel pipeline away from the direct or indirect
connection between the power transmission system and the available stray current in the
pipeline is crucial. Therefore, the purpose of general protection is to keep the potential of
underground carbon–steel pipelines constant.

2.2.4. Stress Corrosion Cracking (SCC)

Pipeline environmentally assisted cracking (EAC) is a kind of SCC. SCC is described
as the formation of cracks in a pipeline as a consequence of a mix of factors, including the
surrounding environment [14]. The pipe’s pressure carrying capacity is diminished when
these determinants are combined. When water (electrolyte) comes into touch with steel,
the minerals, ions, and gases in the water corrode the steel. Chemical or electrochemical
reactions can cause general thinning, corrosion pits, and/or fractures [27].

In EAC, corrosion fatigue and SCC are two phenomena to be aware of. Corrosion
fatigue is caused by chemically reactive substances penetrating fatigue fractures. These
chemicals can speed up fracture propagation. Within the crack, the chemical environment
might be more hostile than on the free surface [28]. Even if the metal at the fracture tip pas-
sives (forms an inert barrier), fatigue loading can break the brittle deposit, reactivating the
process. Corrosion fatigue occurs when cyclic stress and a corrosive environment combine
to lower the number of cycles required to break down. The corrosive environment’s major
role, compared with the life of the pipe when no corrosion is present, is to shorten the
component’s life [29]. SCC possesses corrosive processes and is sensitive to an aggressive
environment and tensile stress. Tensile tension, which can be applied directly or as residual
stress, produces fractures in the material. SCC is caused by long-term tensile stresses,
whereas corrosion fatigue is caused by cyclic loading.

2.2.5. Microbiologically Influenced Corrosion (MIC)

MIC occurs when either aerobic or anaerobic microorganisms cause corrosion to
accelerate. Sulfate-reducing bacteria is a type of anaerobic bacterium that causes the
majority of accelerated corrosion in offshore steel structures and marine environments [30].
On pipes that are predisposed to elevated levels of sulfides, regular pigging or cleaning
operations should be performed to prevent MIC [31]. Chemical treatments or inhibitors,
such as biocides, can be utilized to control the number of bacteria in a fluid.

3. Critical Sensors for Corrosion Monitoring in Carbon–Steel Pipeline

A range of corrosion sensor technologies based on distinct sensing ideas has been
developed for various forms of corrosion. Two different types of corrosion sensors exist,
that are, direct and indirect corrosion sensors [32], as shown in Figure 3. The detection
of corrosion processes and corrosion rates introduced owing to a variety of corrosion
causes and corrosive conditions are monitored directly using the direct corrosion sensors.
Corrosion causes, such as water, low pH, and CO2, or effects, such as rust, are monitored
using indirect corrosion sensors. Corrosion processes and effects can be understood through
the selection of monitoring parameters or areas of interest for sensing. Table 2 presents
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the existing corrosion sensors utilized widely and available commercially for corrosion
monitoring in OG industries.

Indirect sensing

Causes Corrosion Consequences

Direct sensing Indirect sensing

- pH

- Water

- Salinity

- Acid gases etc.

- Mass loss

- Oxidation

- Corrosion rate etc.

- Wall thickness

- Leak vibration

- Cracking

- Hoop strain etc.

Figure 3. The ways of corrosion sensing to assess corrosion process from causes to consequences [33].

Table 2. A summary of different corrosion sensors and their characteristics.

Corrosion Sensors Features Pros Cons

Corrosion coupon Measure materials weight loss Quick response, simple and flex-
ible

Not real-time and limited with
general corrosion.

ER probe Mesure the metal loss Remote monitoring, Environ-
ments friendly and real-time

Not suitable for liquid metal and
conductive salts environments.

Electrochemical Detect small quantity of corro-
sion and measure overall weight
loss

Utilizing in both dry and wet gas
environments

Not appropriate for conductive
liquids.

Ultrasonic Measure the wall thickness of the
materials

ND, real-time, suitable for both
internal and external corrosion

Not appropriate for small thin
materials.

Multi-frequency elec-
tromagnetic

Detect the wall properties and
measure the wall thickness

Non-intrusive, real-time and
cost-effective

Limited with surface and sub-
surface inspections.

OFS Measure corrosion as a function
of specimen roughness and color

ND, real-time, low cost and effec-
tive undercoating and painting

Require to measure coating and
paint thickness of the specimens.

RFID Measure the wall thickness
based on resonance frequency
features

Passive, wireless, low-cost and
multiple resonances

Not efficient in reliability and
sensitivity.

AE Measure corrosion rate and de-
tect microscopic damage

Passive, non-intrusive, low-cost,
real-time and remote monitoring

Sensitive to background noise.

3.1. Corrosion Coupon

For OG infrastructures, corrosion coupons are utilized as point sensors with a small
sensing coverage. Average corrosion rates are provided instead of real-time data over
time by these types of sensors. The coupon sensors are placed for monitoring a corrosive
environment over time and then extracting the measurement of corrosion weight [34].
The installation and removal of these sensors after corrosion lab examination, from another
aspect, take a long time.

3.2. Electrical Resistance (ER) Probe

Point sensors, such as ER probes, may detect homogeneous corrosion in specific loca-
tions. As the number of sensing sites increases, the total cost also increases. Installation
locations for ER probes, such as corrosion coupon sensors, must be carefully chosen to
maximize their use. Placements are usually made based on experience, and even in the face
of severe corrosion, some atypical placements can be ignored. The electrical-based sensor
measurement of the ER probes enables the collection and log of electronic data [35]. How-
ever, ER probes may introduce some common electronic issues considering the collection
of data logging, which is required to be maintained regularly and replaced. Electrical-
based sensors for corrosion monitoring in carbon–steel pipelines must also conform to
fundamental electrical safety rules.
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3.3. Electrochemical Sensor

An electrochemical sensor makes use of intrinsic electrochemical methods, such as
linear polarization resistance (LPR), galvanic current measurement, and electrochemical
impedance spectroscopy to exploit the fundamental electrochemical features of corro-
sion [36]. Electrochemical sensors have several advantages, including direct detection [37].
Moreover, direct determination of electrochemical corrosion rates and the capability to
examine in-situ corrosion techniques based on a range of electrochemical mechanisms
are some more pros of electrochemical sensors. The electrochemical sensors are the most
commercialized because of their simple operation and data interpretation in terms of the
detection of pipeline corrosion using the LPR technique. The main disadvantages of these
sensors are that externally forced potential or current might cause rapid corrosion com-
pared with the true value. Hence, correct electrochemical parameter settings and electrode
system design must be carefully specified. Furthermore, these sensors typically need an
ion-conductive electrolyte, such as aqueous processes, and are not easily adaptable to
non-conductive conditions without additional changes [38].

3.4. Ultrasonic Sensor

An ultrasonic sensor is placed to monitor pipeline corrosion and structural health by
analyzing the wall thickness of the pipeline [39]. High-frequency (MHz) acoustic waves
are generated from the piezoelectric transducer and controlled through electric pulses.
These waves are produced perpendicular to the pipeline wall in an ultrasonic sensor.
The generated acoustic waves are then reflected by the transducer by the external or inner
surfaces. Portable and fixed ultrasonic corrosion sensors are available [40], and they can
also be incorporated with in-line inspection systems. However, casing scales and highly
attenuating muds can damage these acoustic-based sensors [41].

3.5. Multi-Frequency Electromagnetic Sensor

A multi-frequency electromagnetic sensor is widely utilized as a ND sensor for corro-
sion monitoring in the OG industry. Corrosion and pipeline integrity, for example, might
be detected using a multi-frequency electromagnetic monitoring sensor [42]. The sensor
is made of a transmitter coil and a receiver coil. An alternating current (AC) activates
the transmitter coil, and the alternating magnetic field generates an eddy current in the
conductive pipeline surrounding [43]. The initial electromagnetic field from the transmitter,
in combination with a secondary electromagnetic field from eddy currents in the carbon–
steel pipelines, causes a phase-shifted voltage in a distinct receiver coil. The phase shift and
the change of magnitude are influenced by the electrical conductivity of the carbon–steel
materials and the presence of defects. Owing to the skin effect, low-frequency electromag-
netic scans can compute pipe metal thickness, whereas high-frequency electromagnetic
scans can detect internal wall properties [44].

3.6. Optical Fiber Sensor (OFS)

The OFS is another ND sensor developed in recent years for corrosion monitoring [45]
which is small in size, flexible, lightweight, and highly sensitive [46]. Moreover, the OFS is
compatible with optical fiber data communication networks and has enhanced safety in the
existence of flammables compared with other electrical-based sensors [47]. The traditional
point sensor monitors pipeline corrosion at distinct areas that are evaluated individually
by different channels, that is, each sensor detects just a single point. By contrast, OFS can
measure corrosion in several distinct areas inside a single optical channel.

3.7. Passive Radio-Frequency Identification (RFID) Sensor

The RFID sensor, particularly the chipless passive RFID sensor, is a comprehensive
family of wireless sensors for pipeline corrosion and SHM with cheap cost, compact size,
lightweight, and remote sensing [48]. RFID sensors can detect pipeline corrosion directly
when they are paired with corrosion-sensitive structures in the sensor design. The circuit
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on an RFID sensor for metal or steel will not be suitably electrified through the antennas to
respond because of the corrosion of the connection between the circuit and the antennae,
indicating the presence of corrosion [49]. Furthermore, RFID sensors may be utilized as an
indirect method to monitor pipeline corrosion.

3.8. Acoustic Emission (AE) Sensor

The waves are recorded using AE sensors, which are non-intrusive and passive sensors
affixed to the surface, and the signals are transferred to the AE acquisition system for further
analysis [50]. Stress waves are only generated through active or increasing corrosion or
cracks; if corrosion or cracks exist but remain constant of the corrosion growth, then no AE is
received. The AE sensors are often coated with target-specific chemical-sensitive materials,
such as polymers, metals, and metal oxides, and are tiny in size, low-cost, and efficient.
Rayleigh waves are most typically used for gaseous phase sensing with gas absorbing or
reactive layers deposited on AE devices as functional sensing layers [51].

4. Existing ND Techniques for Corrosion Monitoring

Several ND corrosion monitoring methods developed in OG industries have been
reviewed and explained in the following subsections. Table 3 presents a summary of
these methods.

4.1. Ultrasonic Monitoring Method

The ultrasonic method works by generating mechanical waves or vibrations in the
specimens that are being tested in an experimental lab or real environment [52]. Solids
are not the only type of sample available. Most ultrasonic techniques use 1 to 100 MHz as
operating frequencies. The term “ultrasonic” describes sound frequencies that are above the
range of human hearing. The density and elastic modulus of a material determine how fast
ultrasonic waves travel through it. Hence, ultrasonic procedures are ideal for determining
the characteristics of materials. Furthermore, changes in material characteristics at the
borders will substantially reflect ultrasonic waves. As a result, ultrasonic technologies are
frequently utilized for thickness measurement and corrosion monitoring [53].

Although ultrasonic methods can detect corrosion, distinguishing between reflections
from the corroded surface or near corroded surface and reflections from the surfaces of the
other material with these approaches is difficult. An additional issue is that acoustically
linking pulses from the transducer to the material requires a coupling medium, such
as water or gel. Owing to the surface preparation requirements, traditional ultrasonic
methods are not suitable for some scenarios. In recent years, considerable effort has gone
into developing non-contact ultrasonic techniques for defect assessment [54] that do not
require surface preparation. Conventional piezoelectric transducers [54], which are more
appropriate for most inspection situations, are used in air-coupled procedures. An adequate
angle for introducing the ultrasound into the specimens to be inspected, from another
aspect, is a strict condition. An experimental set for measuring corrosion in pipes using
guided acoustic waves has been published, as shown in Figure 4. A ring transducer that
runs through the pipe emits guided sound waves. When these sound waves hit corrosion
on the walls of the pipelines, they are reflected and back to the transducer [55].
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Figure 4. Ultrasonic monitoring for corrosion assessments adopted from [55].

4.2. Laser Ultrasonic Method

Owing to the recent advancements in laser ultrasonic technology, lasers may now be
utilized to make and identify ultrasonic waves [56]. This ND technique has been utilized to
characterize materials, quantify material thickness, and find faults. A laser ultrasonic gener-
ator produces a laser ultrasonic device including an interferometry sensor and transducer,
which are all run through the pipelines. Internal corrosion in hollow metallic components
was detected and located using the laser ultrasonic of Liu et al. [57]. Piezoelectric transduc-
ers with an operating frequency of 125 MHz and broadband laser-ultrasonic are utilized to
create waves that interact with the pipeline corrosion. Then, the variation in the generated
wave modes is assessed based on time-frequency decomposition methods. A laser beam is
created and senses the non-corrosive surface at the face side, where the reflection method
is employed, as illustrated in Figure 5. A pulsed Nd: YAG laser has been utilized to make
an ultrasound [58]. A TEMPO laser ultrasonic receiver detects the reflected ultrasound.
The detector generates an analog voltage over time, which is proportional to the instanta-
neous displacement at ultrasonic frequencies. Scanning the specimens to detect pipeline
corrosion can generate geometric images of corrosion. The main drawback of this method
is that it requires access to the material surface of the specimen under test. Moreover,
laser-ultrasonic applications are very limited and sensitive to surface-breaking issues.
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Figure 5. Schematic for laser ultrasonic corrosion monitoring method [58].

4.3. OFS Monitoring Method

The OFS is an emerging method to monitor carbon–steel corrosion in recent years [59–61].
When a light wave transmits in an optical fiber, the change in the electric field of the light
produces acoustic waves over electrostriction, periodically altering the fiber refractive
index. A pump pulse and a probe continuous wave are started from the two ends of an
optical fiber and counter propagate along the fiber, which can be measured by the optimal
time domain reflectometry. This method has numerous merits, such as high precision,
sensitivity, and immunity to electromagnetic interference, compared with other traditional
electric corrosion sensor-based methods.

The OFS method can be classified into two categories, namely, point sensor-based and
distributed sensor-based methods, in terms of their sensing length. As the conditions of
corrosion vary in a structure, a large number of point sensors are required for corrosion
monitoring in a large-scale structure. From another aspect, the distributed sensors have
a great potential compared with the point sensor in terms of providing detailed results
and high spatial resolution. Distributed optical fiber sensing can continuously monitor the
parameters along the whole optical fiber with a specific spatial resolution by interrogating
the backscattered light continuously [62]. Figure 6 presents the distributed OFS based
method for pipeline corrosion monitoring [63]. The corrosion growth of a pipe was detected
through the variation of strains sensed by a distributed OFS. The distributed OFS is placed
on the pipe with the location, and the length along the distributed OFS can be correlated
with the position on the pipe’s surface. The strain distributions are computed from the
distributed OFS, which can be replotted with the correlation over a coordinate transform.
The distributed OFS position on the pipes is explained in a polar coordinate structure,
which can also be converted into the Cartesian coordinate structure. The specimen is
separated along the length of the pipe, and the circumference of the pipe is unfolded to
a flat plane, as shown in Figure 6. The circumference becomes the plane width, and the
pipe length remains the same length as the plane. Then, the measured strain distributions
are mapped in the plane to present a two-dimensional contour of the strain, which can be
utilized for visualization of the condition of corrosion in real time. The highlighted areas
with the red color of pipes are referred to high strains, which indicate the appearance of
severe corrosion. However, more analysis and investigation are needed for the evaluation
of the effects of different parameters of this monitoring method.
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Figure 6. Schematic for distributed OFS based corrosion monitoring method [63].

4.4. Eddy Current Monitoring Method

One of the most useful methods is eddy current monitoring, which detects and assesses
the corrosion of the conductive materials. In this technique, the conducting coil, including
an AC, is placed near the specimen to form an initial magnetic field around the coil in an
axial direction [64]. From another aspect, the electrical current forms its own secondary
magnetic field in the opposite direction from the magnetic field of the conducting coil,
which contradicts Lenz’s Law [65]. The interaction between the conducting coil’s magnetic
field and eddy current magnetic field is studied using sensors or coils, as shown in Figure 7.

Sheeting

Coating Layer

Pipe Wall

Probe Conductive Coil

Primary Magnetic Field

Eddy Current

Figure 7. Eddy current framework for corrosion detection and monitoring [64].

Eddy current approaches are used to identify the existence of different types of cor-
rosion on the surface of carbon–steel pipelines and have proven to be quite successful.
As a result, eddy current methods have become the most popular ND methods, as they
are exceedingly portable and reasonably inexpensive. For SCC inspection, researchers
introduced a novel eddy current array technique [66]. Traditional eddy current approaches,
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from another aspect, face difficulties in the detection and assessment of tiny metal losses
caused by corrosion. The main reason is the skin effect having a significant impact on the
effectiveness of eddy current approaches to detect subsurface problems. The majority of
the current flow occurs on the conductor’s surface, with an exponential decline as depth
increases because of this skin effect. A multifrequency eddy current and signal processing
techniques have been introduced in [67] to characterize and monitor the iron oxide on
the storage tank. The proposed techniques were used to map the lap joint thicknesses in
different layers. The findings indicate that the corrosion estimation error is less than 5% for
the thickness of various corrosion. Meanwhile, novel magnetic sensors have been created to
replace coils in eddy current technology [68]. The authors in [69] investigated the utilization
of a giant magnetoresistive (GMR) sensor array to evaluate different types of corrosion
in pipelines that have been coated. Moreover, the implementation of GMR sensors has
been thoroughly studied and explained by Rifai et al. [70]. Eddy current-based approaches,
from another aspect, are confined to electrically conductive materials. Additionally, these
technologies are extremely sensitive to lift-off effects, and they require access to the surface
of the materials.

4.5. Magnetic Flux Leakage (MFL) Monitoring Method

Magnetic particle inspection (MPI) is a subset of MFL. It determines the amount of
magnetic flux that is lost due to corrosion [71]. In practice, a permanent magnet with direct
current (DC), AC, or pulsed stimulation provides magnetization. As shown in Figure 8 [72],
the inspection system mainly consists of a sensor-generated magnetic signal, PC, tri-axis
transmission system, and serial port server. Qu et al. suggested a method for estimating
cable corrosion breadth using spontaneous MFL (SMFL). Three mutually perpendicular
scanning paths can be provided using a three-axis transmission system, which is oper-
ated with three motors. To extract multi-dimensional MFL signals, the magnetic sensor
developed by Honeywell HMR2300 has been utilized. This sensor is a massive magnetore-
sistance sensor with a ±2 gauss range. The resolution is estimated to be approximately
70 micro-gauss. Hence, the data extracted from the experiment can be analyzed based on
signal processing tools and other quantitative assessments using PC. From another aspect,
MFL is only useful for determining corrosion in ferromagnetic materials.

Backing iron

Permanent 

Magnet

Magnetic Sensor

Corrosion

Pipeline

Figure 8. MFL framework for corrosion detection and monitoring [72].

Pipeline inspections frequently use MFL procedures. For carbon–steel pipeline in-
spection, the authors in [73] introduced filtering methods, including adaptive filtering and
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wavelet decomposition approaches for denoising the extracted signals. To quantify corro-
sion, a high-resolution SMFL was developed by [74] to create magnetic fields. The SMFL
is also utilized to detect leakage and mass loss of the pipeline structure and identify the
location of the corrosion. The authors of [75] used MFL with sensors to investigate the
feature named speed variable for corrosion detection in metal pipelines. The detection of
sensitivity and penetrating depth is improved owing to the abundance of components in
the speed-changing signal.

4.6. Microwave Monitoring Method

The range of microwave frequencies is 300 MHz to a maximum of 300 GHz. Mi-
crowave waves may easily pass through dielectric-coated materials without considerable
attenuation, allowing interior structures to interact with microwave data [76]. The mi-
crowave impulses would then be reflected fully off the metal. As a result, these signals pass
through corrosion and fault sites twice, increasing the likelihood of detecting them beneath
the covering. The microwave ND methods measure the scale or phase in assessing the
sample by monitoring sending or reflected microwave data. Moreover, lift-off and inspec-
tion frequency have an impact on reflection and transmission quality. By contrast, Figure 9
in [77] depicts the microwave ND experimental setup. A coaxial waveguide probe has been
positioned on top of the specimen and down the experiment with a predetermined lift-off.
Excitation signals are created by the vector network analyzer and retrieved frequency
spectrum information from reflected signals. A PC controls the analyzer and provides the
measurement signals to the PC over the General-Purpose Interface Bus. The X-Y scanner
connects to a controller using a parallel connection. MATLAB software is utilized to build
the XY scanner and analyzer that operate together during the measurement. Ultrasound
waves can readily pass-through dielectric coatings.

Vector Network Analyzer

Coaxial Waveguide Prob

Paper SupportShort Circuit

SMA 

Cable

VNA Cable 

Assembly

Antenna

Drivers & Controllers ScannerPC

Cable

Figure 9. Microwave framework for corrosion detection and monitoring under coating [77].

Zoughi [78] detected steel corrosion on concrete with a thickness of up to 500 mm
using a three-dimensional microwave camera. The authors in [79] explored an outline
of microwave and millimeter-wave-based ND processes. Detecting corrosion and pitting
precursors in aluminum and steel-backed insulated buildings was one of the many uses
highlighted. The authors in [80] employed a 2.4-GHz aperture microwave patch antenna
integrated with Electromagnetic Band Gap and a high resolution at approximately 14 mm
depth to assess steel bar corrosion in civil constructions. The near-field and far-field
microwave ND methods control the reflection coefficient in scaling and phase-shifting
to identify corrosion [81,82]. The far-field mode is suitable in terms of spatial resolution,
signal processing, and interpretation, including sensitivity to a relative location between
specimen and antenna. Nonetheless, this mode necessitates large-aperture antennas to
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obtain adequate spatial resolution. Large antennas are impractical and cumbersome in most
situations. Indoors, the near-field mode eliminates the effects of weather, electromagnetic
interference, and other factors. Near-field microwave imaging systems using open-ended
rectangular waveguides are extensively utilized in ND disciplines. The specimen picture is
created by the scanning microwave synthetic aperture radar (SAR) during the examination
and recorded reflected signals. Later, these signals are utilized to build two-dimensional
intensity raster images. A split-ring resonator sensor with super-resolution capabilities is
employed in [83] for composite imaging. The authors in [84] developed a system integration
with an open-ended rectangular waveguide sensor with an operating frequency of 24 GHz
to identify and classify flaws in nonceramic insulators. A one-of-a-kind artificial neural
network was deployed to detect and categorize faults. Microwaves, from another aspect,
have a hard time penetrating conductive materials. Therefore, they can only detect surface
corrosion, leaving deeper corrosion undetectable.

4.7. Terahertz (THz) Monitoring Method

THz is defined as electromagnetic waves, which provide a range of frequencies from
0.1 to 10 THz. THz radiation has wavelengths ranging from 0.03 to 3 mm, which fall
between the microwave and infrared spectra. The THz pulse, including known wavelength,
is utilized to light the target specimen during experimentation. The emitted pulse is
also analyzed in the near radiation source after interacting with the specimen during the
investigation. The internal structure of the tested material is discovered by monitoring
the fluctuations in the THz waves that are affected by the sample’s dielectric properties or
discontinuity. Figure 10 shows that a typical THz monitoring system investigates to detect
faults under the coating materials of shuttle fuel tanks in the space shuttle [10].
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Figure 10. Terahertz method for fuel tank corrosion detection and monitoring under coating [10].

THz waves penetrate mostly non-metallic dry materials including coating, foams,
glass, ceramics, and composite materials [85]. Thus, THz technologies are mostly utilized
for ND applications, which can be separated into two categories, namely, pulse THz and
continuous THz. The THz-based ND method provides specific benefits for the detection
of the internal fault of the nonmetallic materials compared with other ND monitoring
methods. The THz wave can also penetrate opaque materials and find defects inside them.

Insulating materials have also been inspected using THz-based ND testing. The capa-
bility of THz-based imaging has been investigated for corrosion detection undercoating
by the US Army Research Laboratory and NASA. THz imaging can detect corrosion be-
neath the coating, which causes supposedly flat surfaces to become harsh and uneven [86].
The THz wave, from another aspect, is unable to permeate metallic materials, which restricts
its use. High pricing and extensive water absorption are major drawbacks of THz-based
systems [87].
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4.8. Thermography Monitoring Method

Thermal variance for a specified sample that responds to a stimulus is measured using
thermography monitoring. More advanced kinds of thermography have resulted from
advancements in IR cameras. The benefits of thermography are that it can be performed
in real-time and non-contact, and it can inspect a large area in a short amount of time.
Infrared light is undetectable to the naked eye, is released by the objects owing to their
thermal environment, and is used to create a thermal image with an IR camera, as shown in
Figure 11. The detection of infrared thermography is based on temperature differences [88].
Thermography is divided into two types: active and passive [89]. The use of a stimulus
that provides heat to the target to determine a range of its characteristics is known as
“active thermography” (AT). Defects or corrosion can exist among the features obtained.
The term “passive thermography” refers to the measurement of temperature variations
between the target material and surrounding materials, including the ambient temperature.
AT-based approaches are often the most widely employed. Infrared thermography was
used by Sfarra et al. [90] to find cellular features in honeycomb architectures. Infrared
thermography has been investigated for pipeline corrosion detection undercoating [91].
The high cost of quality thermal cameras is one of the disadvantages of the IR approach,
but recent advancements have dramatically reduced this cost.
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Figure 11. Thermography setup for corrosion detection and monitoring [88].

4.9. Radiograph Monitoring Method

ND radiography monitoring is becoming one of the most common systems, which
change the attenuation of penetrating radiation in structures as a function of radiation
energy, thickness, and density. The corrosion causes the variation of the transmitted
radiation intensity. As a result, radiographs are effective in detecting flaws, corrosion,
and welds in metal [92]. An X-ray tube integrated with a 160-kV generator and a (1:5 mm
× 1:5 mm) focal spot was used to investigate corrosion in coated steel materials, as shown
in Figure 12 [93]. The current and voltage of the X-ray tube are tuned to 10.7 mA and
150 kV, respectively. The exposure period is set to 190 s for mapping corroded regions
in 11-mm thick tested samples. To get the concealed corrosion during the radiography
experimentation, the single wall and picture approaches are applied. With the sample
under test, the film is kept intact. The gap between the film and the X-ray source was set up
at 700 mm to reduce the distortion and geometric un-sharpness. The suitable image quality
indication is used to produce a radiographic image sensitivity of 2%. The radiograph image
was digitized with a 50-micron resolution using the Model Array 2905 film digitizer.
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Figure 12. Schematic framework of radiography setup for corrosion detection and monitoring [93].

Digital, Profile, flash, and real-time radiographies are some more radiographic tech-
niques developed by the researchers [94]. These methods rely on the utilization of gamma
or X-rays to photograph a structure’s profile or to deliver information about the structure’s
internal thickness. Discontinuities in insulated metals can often be observed easily. Despite
its high cost and the fact that ionizing radiation causes health and safety dangers, radiog-
raphy is nonetheless routinely used [95]. Digital radiography has improved to decrease
the need for film, which has resulted in cost savings. Apart from the aforementioned
concerns, however, radiography monitoring methods have some major limitations. Such
methods are neither suited for detecting surface corrosion, for example, nor possible to
obtain quantitative information for estimating the depth of the corrosion.

4.10. Acoustic Emission Monitoring Method

A transient elastic wave is created when stress energy is released rapidly on the
surface of the structures. As a result, AE signals can monitor the dynamic process to detect
degradation of the materials owing to corrosion. When the external force (pressure and
load) and other environmental factors (pH, CO2, temperature, and others) are utilized
on the structures, the energy is released. Considering these forces and factors, the stress
wave creates travels to the surface of the materials where AE sensors can measure them
for further investigation. Figure 13 shows the LPR experimental setup for carbon–steel
corrosion monitoring using AE.
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Figure 13. The LPR test setup for corrosion detection and monitoring using acoustic emission [96].
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Carbon–steel pipeline condition monitoring can be used to track the pipeline’s struc-
tural integrity or the process’s status (process condition monitoring, process monitoring).
As a result, a monitoring system must have the ability to detect structural and process
faults (e.g., fractures or leaks; undesirable fluid characteristics, for example, erosion or
cavitation). When material qualities are established, AE evaluation can be used as a foun-
dation for ongoing plant monitoring, improving structural safety, and reducing inspection
costs. For example, Wood and Harris [97] proposed that 20-year data on large cryogenic
storage tanks can be used to estimate remaining life and grade structural integrity. More-
over, AE methods have been employed to identify uniform or pitting corrosion in the
majority of investigations. Zhang et al. [98] investigated the use of an AE waveform
recorded by the sensors to detect the stress corrosion of the steel material. The AE approach
was utilized by Wu and Byeon [99] to assess the course of pitting corrosion for the steel
structure. The researchers confirmed that AE may be used in basic research for the assess-
ments of pitting corrosion because it has several advantages compared with other methods.
The authors in [100] proved the utility of AE for the early identification of corrosion in
concrete buildings.

Table 3. A summary of ND corrosion monitoring techniques.

ND Technologies Pros Cons

Ultrasonic [54] Long-range and automated monitoring capabili-
ties; deeply accessible in materials; fast corrosion
monitoring in both internal and external surfaces

Required accessible and smooth surface; cou-
pling materials and reference standards are also
needed.

Laser ultrasonic [56] Offered high energy and non-contact broadband al-
ternative; Produced corrosion images by scanning
the tested sample

Utilities of this method is limited and it is sensi-
tive to surface breaking issue.

OFS [60] Long-range and continuous monitoring capabilities The distributed sensors may isolate from the
structure and difficult to detect corrosion loca-
tion in the pipeline.

Eddy current [64] It is fast and most commonly used in conductive
materials; portable and cheap

It is sensitive to skin effect and surface oriented.

MFL [72] It cost-effective and portable; deeply penetrate the
materials and an effective for corrosion localization

it is sensitive to the material’s surface and lim-
ited to ferromagnetic materials.

Microwave [77] It is powerful in terms of energy and easily accessi-
ble to the coated materials;

It has difficulties in penetrating conductive ma-
terials; limited with surface corrosion detection
whereas the deeper corrosion was undetectable.

THz [10] It is highly sensible; better resolution; easily acces-
sible in coated materials

It is sensitive to the environment; costly and
complex wave interaction.

Thermography [88] It has long-range capability; fast remote sensing
and high sensitivity

Required heating and cooling processes; not
suitable for thick materials and costly.

Radiography [93] It is suitable for coated and thick materials; cost-
effective and real-time

it is not appropriate for surface corrosion detec-
tion and provides only qualitative information.

Acoustic emission [96] It is suitable for ultra long range and long-term
corrosion monitoring for coated materials; non-
intrusive and real-time; Highly sensitive; No en-
ergy require to be supplied (unlike ultrasonic)

It is sensitive to environmental noise, high sam-
pling rate and requires advanced signal process-
ing tools.

Based on the above discussion on several corrosion monitoring methods, the impact
of AE method is better compared to others in terms of corrosion growth monitoring,
localization, cost of long-term monitoring set-up and large-scale monitoring. The AE
approach is a highly sensitive passive test method over other ND methods which is used to
detect the micro-changes and depth of the corrosion in a monitoring structure. Moreover,
AE method detectability is another important parameter which can be local, semi-global
and global in terms of the detection range [33]. The global AE approach detection range
may vary from 2 m to 120 m or even more distance in between AE sensors [101]. This
detection distance mainly depends on some other factors such as temperature, velocity,
environmental and pipeline conditions [101]. Similarly, the OFS based ND method can also



Sensors 2022, 22, 6654 18 of 30

be both local and global in terms of the detection range [102]. Traditional OFS can only
detect local or point measurements but SMARTape distributed OFS detection range can
be kilometric (Up to 300 km) [102]. However, the distributed OFS approach is practically
complex and expensive in implementation than the AE method. On the other hand,
majority of other ND methods (ultrasonic, laser ultrasonic, eddy current, MFL, microwave
and so on) are local detection methods, where they are only able to measure on the sensor
point [44].

AE techniques can be utilized for qualitative and quantitative analysis. Further ND
procedures are essential to achieve quantitative data in terms of the extent and corrosion
depth estimation. However, environmental noise has a significant impact on the recorded
AE signals. Signal discrimination and noise reduction techniques are therefore critical in
real-world applications. Considering the limitations of recorded AE signals, advanced
signal processing and analyzing methods are introduced to improve the AE signals and
to facilitate pipeline corrosion monitoring and assessments [50,103]. The next sections
of this study will emphasize and explain the importance of AE methods and AE signal
processing techniques.

5. Importance of AE Techniques for Corrosion Monitoring

The AE method permits us to extend our hearing to detect sounds of higher fre-
quencies and lower intensities. Damage initiation, microcrack propagation, fracture of
reinforcement particles, corrosion growth slip, phase changes, stress or load identification,
fault slip, and dislocation movements in steels, metals, composites, wood concrete, rocks,
and geologic materials are all examples of processes we can now listen to [104–106]. Typ-
ically, AE maintains the sound frequencies up into the high range of ultrasonic. The AE
measurement is normally recorded in the range between 30 kHz and 2 MHz [107]. The op-
erating frequency during the LPR test is in the range between 5 and 20 kHz [96]. Moreover,
the detection of AE activity concentrates on the frequency range between 30 and 150 kHz
during the hydrogen evolution process [50]. At higher frequencies, the AE is not enough
intense in most cases, and the material absorbs large parts of the signal. In general, at lower
frequencies, background noise disturbs the measurement, for example, vibrations from
vehicles and noise from pumps or flowing mediums. As for carbon steel, the AE technique
has been used extensively because of the complexity of the corrosion development within
this material. The AE method can be distinguished from the other monitoring techniques
utilized to analyze corrosion growth, localization, and failure process, for example, optical
microscopy, which utilizes the information recorded by the material damage process while
and where they occur. The AE signal depends to a great extent on the type of corrosion
detection system and the type of structure being investigated. The AE technique has the
following unique features [108]: (i) AE is non-directional; the emitting sources radiate the
energy in every direction. (ii) AE is sensitive to defect growth and changes in the material
rather than to the static presence of defects. (iii) the AE method has the ability to locate
damage that acts as an emission source while it occurs. (iv) AE is a passive technology,
in the sense that no external energy needs to be supplied, but energy arising from the defect
within a structure itself is utilized. (v) Although AE is primarily used as a local method to
monitor a certain location of a structure, with the increased number of sensors, it can be
used as a semi-global or global technique to monitor a larger area or a complete structure.

6. AE Data Processing for Corrosion Detection and Classification in Carbon–Steel Pipeline

Burst, continuous, and mixed AE signals may all be recorded during experimentation,
as shown in Figure 14. Burst signals record the shape of discrete transients. An ex-
ponentially decaying sinusoid is often used to imitate the shape of a burst waveform.
A continuous AE signal has a random oscillatory appearance and is caused by several
burst-type overlapping AE signals with indistinguishable magnitude. In most real-world
environments, burst and continuous signals are extracted because both can be important
signals for analysis or one of them can be noise.
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Figure 14. Different types of AE signals recorded from the experiments [109].

Most of the AE time-series data contain frequency information ranging from 0.1 to
1 MHz. The temporal and/or frequency domains can thus be used to select the features
of those signals. Although time-domain signal analysis is commonly employed in the
applications of AE signals, AE signal is comparatively simple [50]. The frequency analysis of
the AE signal can often present an indication of the source type. The spectral decomposition
method can be utilized to distinguish several propagation modes [50,110]. Moreover,
the fast Fourier transform (FFT) frequency-domain transformation method is employed
to determine the type of defects in valves and each defect represents a unique spectral
signature [111].

The authors in [112] introduced a method to calculate the average diameter the length
of glass particles based on AE signal spectral peaks when the cylinders were tumbling.
Owing to the dispersive media, reflections, sensors, and multiple routes, the wave spectrum
sends at the variation of speeds and wave guiding qualities in complex materials, which
may produce distorted signals. Spall et al. [113] investigated and found the difficulty
in recognizing signals received by transducers far from the source. The author in [114]
reduced the strength of a Bruel Kjaer type 2637 preamplifier by the factor of 10 (20 dB)
to avoid signal distortion recorded from pencil lead breaks experiment on a cutting tool.
Moreover, the AE signal should be filtered as early as feasible in the processing chain, right
after the inevitable buffering as suggested in the proposed work.

Mathematical transforms are commonly used to extract essential information from raw
signals that are not immediately available from their time evolutions. The Fourier transform
is utilized to split the AE signal into its frequency information [115], which is the most
used tool in AE signal processing. The FFT is a mathematical procedure that decomposes
numerically discrete time-domain signal data into the frequency-domain in a short amount
of time while avoiding round-off errors [116]. Another approach is power spectral density
(PSD) estimation, which uses the FFT to present how the energy of the signal is distributed
in the frequency-domain representation [115]. The Welch approach in [117] employed to
estimate PSD using MATLAB software. The Welch method computes PSD by the division
of time-domain signal into segments (sometimes overlapping) and utilizing the FFT to
assemble each segment of a changed periodogram. Then, these periodograms are averaged
to reduce the variance of the PSD estimation.
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The FFT and PSD both decomposition methods need signals to be stationary, including
the frequency power remaining consistent throughout time [118]. A range of time-frequency
analyzing tools, for example, wavelet transform (WT), and Short-Time Fourier transform
(STFT) are widely available for non-stationary signals. The STFT is a basic method that
uses a time-varying spectrum to explain the signal’s energy distribution. By analyzing
the raw signal with the same window size, the STFT can offer a consistent resolution
for the frequencies of the signals. Nevertheless, a trade-off exists between the resolution
of the temporal and frequency, as shown in Figure 15a. Moreover, the WT performs a
multi-scaling analysis on the signal, in which the time resolution and frequency resolution
vary in the plane of the time-frequency, as shown in Figure 15b, with a longer time interval.
The WT provides more precise information about the low-frequency and shorter intervals
of time and provides more precise information about high frequency, thereby enhancing
the overall representation of the time-frequency attributes.
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Figure 15. Resolution of AE signal after transforming based on (a) STFT and (b) WT [77].

Noise from the environment, for example, is common in AE signals and must be
eliminated to facilitate signal interpretation. To define the AE signal components and
reduce noise, time-frequency analysis might be utilized. For example, Ng and Qi [119]
proposed a wavelet-based AE energy technique in which the ratio of the energy of the
reconstructed signal has been computed to detect minor information in the AE signal
without compromising the original signal integrity. The authors employed a wavelet-based
decomposition method to extract AE energy with fatigue metrics. In addition, the authors
in [120] introduced the wavelet decomposition method integrated with the Gabor wavelet,
which is considered a useful tool for studying wave propagation processes in structures.
The information retrieved using the WT decomposition method can be used to precisely
evaluate the dispersion behavior in velocity. In general, the WT is an effective way to
analyze AE signals as it gives frequency and temporal information.

7. Corrosion Prediction Models and Reliability Assessment of Carbon–Steel Pipeline

For asset managers, the dependability of carbon–steel pipes is critical. Methods of
reliability analysis are often used to predict how long structures will last and, in turn,
to make sure they are safe. In the development of novel corrosion prediction models,
the calibration has been performed initially utilizing the data that have been collected from
sensors in Section 3. The accuracy of the corrosion prediction models is a crucial factor in
the accuracy achieved by the reliability prediction models. Accordingly, the maintenance
works have been scheduled and performed effectively [121]. Predictive models for carbon–
steel pipeline corrosion can be classified as probabilistic, deterministic, statistical, fuzzy
logic, and knowledge-based models. Figure 16 depicts a diagram of these data-driven
models and their applications in the field of pipeline corrosion. The methods used to
estimate the corrosion of the carbon–steel pipeline are discussed in this section. In addition,
the reliability of corroding carbon–steel pipes is investigated.
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Figure 16. Diagram of data-driven corrosion modelling and its applications.

7.1. Deterministic Model

Examining the relationship among multiple important parameters excluding the unim-
portant parameters, the deterministic models have been carried out based on laboratory
experiments, including the corrosion data that are collected from the real environment.
Numerous deterministic models have been introduced recently in [122–125] to model cor-
rosion assessments in carbon–steel pipelines in the OG industry. Non-experts may easily
build up and comprehend these models. Deterministic models, from another aspect, ignore
the randomness of the corrosion process and hence fail to reflect the true character of
corrosion. Furthermore, the results of these models are not suitable for the investigation of
the physics of corrosion [126].

7.2. Statistical Model

Based on the corrosion and failure data collected from the experiments, statistical
models have been developed to assess and predict the future state of the pipeline struc-
ture. Several statistical models exist in the literature, such as linear regression, nonlinear
regression, Bayesian inference, and Markov chain models for carbon–steel pipeline corro-
sion prediction [127–132]. Expert opinions have been used to calibrate the distribution of
the related parameters. Romanova et al. [133] used data from pipe segments to make an
evolutionary polynomial regression model, which can predict how fast pipe segments will
corrode and how long they will still work. A statistical analysis, including joint multivariate
normal distribution fitting, has been performed by Del Giudice et al. [134]. The amount of
the input dataset and the quality of the data have a big impact on the statistical models’
accuracy. Most engineering problems do not have easy access to high-quality and large
enough input data, which makes statistical methods less useful.

7.3. Knowledge-Based Model

Knowledge-based models encompass several artificial intelligence (AI) models, in-
cluding ML, for forecasting the future corrosion states in the pipelines. Knowledge-based
approaches use various statistical analytic methods to process the input data to predict
patterns and effects [96,135–138]. In other words, to predict the desired output, a machine-
learning algorithm learns from input data and updates automatically by the variation of
the model parameters. The learning process has three types: unsupervised, supervised,
and reinforcement learning. The algorithm in unsupervised learning, from another aspect,
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learns from unlabeled data to disclose latent patterns in the input data. A combination of
labeled and unlabeled data can be used in a semi-supervised learning algorithm to improve
the effectiveness of the learning process. The data are labeled, and the outcome is predicted
in supervised learning. Moreover, reinforcement learning requires making the best possible
decisions in an unpredictable environment to maximize the reward through trial and error.
When input data are abundant, machine-learning models can outperform the other stated
methods in terms of accuracy and effectiveness. These models are robust in the presence
of noisy or missing data because they integrate linear and non-linear linkages between
key factors.

7.4. Probabilistic Model

The corrosion of a structure cannot accurately predict the absence of data along with
statistical, deterministic, and knowledge-based models. This problem can be solved using
probabilistic models [139–141]. The unpredictability of the deterioration is measured by
the probabilistic models’ process, and thus, it detects accurate mimic stochastic corrosion
processes. Implementing these models, from another aspect, demands a deep understand-
ing of mathematics and the physics behind the corrosion processes. Non-experts may find
it difficult to use these tactics because of the usage of relatively advanced probabilistic
approaches in generating the models. The pipeline corrosion process mainly depends
on time. Owing to the nature of corrosion, long-term studies should be carried out on
corroded structures for reliability analysis. Among the time-dependent reliability analysis
methods [142], the Gamma process concept [143] and time-discretized Monte-Carlo Simu-
lation (MCS) [144] are mostly utilized for the reliability prediction of corroded materials.
Assuming that no correlation exists between the failure modes, the usability and failure
modes are arranged in series and parallel designs. The authors in [142] introduced a
reliability prediction analysis, which is multi-failure and time-dependent. The proposed
model predicted the service life of the corroding carbon–steel pipeline. If the correlation
between different time steps is ignored, then MCS can only capture the degrading time-
dependency [144]. This problem was resolved by using the Gamma process idea in [145].
For modeling gradual degradation, the monotonic falling pattern of the corrosion is as-
sessed by the Gamma process. The authors in [146] employed the Gamma procedure to
test the reliability of corrosion-affected carbon–steel pipes. To mimic how corrosion varies
over time, the corrosion model based on power law was employed as the form function of
the Gamma distribution.

7.5. Fuzzy Logic Model

Fuzzy logic relies on expert opinion and specialized expertise to predict pipe dete-
rioration. These models can be beneficial when there is a shortage of data or when the
available data are hazy and confusing. In fuzzy logic, three processes exist: data fuzzifica-
tion, fuzzy inference, and data defuzzification [147]. In the fuzzification process, the input
data are transformed into a linguistic format that can be understood by humans. “Fuzzy
inference” is the process of employing fuzzy logic to map from the input to the output.
Defuzzification is the mechanism of creating measurable results in a fuzzy logic framework.
For defining the rule set and determining the defuzzification process, the application of
fuzzy logic-based models needs a high level of expertise. In particular, fuzzy logic models
in the corrosion evaluation of carbon–steel pipes can be found in the works of [148–151].

It may be concluded that the right corrosion estimation model should be chosen
based on data availability, skill level, necessary prediction accuracy, and computational
power. If no data on the pipeline network’s corrosion status are available, or if the available
information is vague and ambiguous, then fuzzy logic models can help by relying on
expert opinions and technical judgment. Probabilistic models are useful possibilities for
predicting the future condition of deterioration in carbon–steel pipes when data are scarce.
Considering the probabilistic character of these models, they can be used in a reliability
study to forecast the likelihood of corroding pipes failing. To achieve this goal, we need
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considerable computing power and experience in probabilistic modeling and structural
analysis. In the presence of a large amount of data, statistical and knowledge-based models
outperform probabilistic models in terms of accuracy, computational cost, and necessary
skill. Using knowledge-based models, a high level of automation in the dependability
assessment of corroding pipes can be achieved, owing to recent improvements in the
Internet of things, development of the sensors, handling techniques on big data, and the
high processing capacity of the computers today.

8. Discussion with Future Perspective

Corrosion is still a major challenge for a variety of industries ranging from OG to sewer
water. The future perspective appears to be primarily focused on creating various systems
for corrosion detection, categorization, reliability prediction, and prevention. For detecting
corrosion and safeguarding pipelines from corrosion, a variety of innovative active and
passive sensors have been proposed. These types of sensors can be utilized to predict
the reliability of OG pipelines by using various corrosion models. Recently, corrosion
assessment, characterization, long-term monitoring, and reliability prediction analysis
methodologies are included: the real-time data obtained by the data acquisition system,
multivariate control systems, smart remote sensing components, wireless communication,
and networking. Corrosion detection of the surface or subsurface, severity classification,
the quantification of corrosion dimension, and advanced data pre-treatment techniques
were used to clean the corrosion data, resulting in significant gains in the identification of
the size and depth. However, more complicated signal processing approaches are necessary
to enhance the ND system’s sensitivity and quantification ability.

Furthermore, recent studies looked at the possibility of ensemble learning, such as
bagging, boosting, and modified bagging, in the OG pipelines corrosion prediction using
data mining modeling. Asset managers can avoid pipeline network failure before the
system fails by adding diverse corrosion modeling methodologies into reliability analysis
methods, such as deterministic, statistical, knowledge-based, probabilistic, and fuzzy logic
models. This method saves millions of dollars and makes sure that the structures and the
people who use them are safe.

The variation in conductivity, permeability, and permittivity, including changes in
thickness, are all elements that contribute to corrosion. These factors have an impact on the
likelihood of corrosion detection. Owing to the intricate interaction of various elements, no
universally applicable corrosion detection method exists. As coating layers make a big gap
between sensors and the surface being checked, none of the above ND methods can handle
all the problems that come up when trying to find corrosion under the coating. More than
just the detecting capabilities must be considered when choosing a ND technique. These
factors include application, equipment mobility, inspection area, inspection schedule, types
of materials, accessibility, expenses, and projected corrosion types. When the coating is
used, certain procedures offer quantitative information but perform badly. As a result, new
corrosion monitoring systems are needed for long-term monitoring operations with low
costs and risks.

This study begins with a review of the literature, followed by the analysis of cor-
rosion detection methods employing acoustic, ultrasonic, radiographic, electromagnetic,
and thermographic approaches. Owing to the thick coating layer, most approaches are
constrained with regard to online in-situ corrosion monitoring undercoating. Engineers
frequently employ clumsy, costly equipment to inspect holes in the layer of coating to
transmit signals over the distance of an insulated structure to solve this problem. To solve
the issues of corrosion undercoating, new ideas and methodologies, signal processing
tools, the coupling of SHM and ND, intelligent inspection systems, and the installation of
unmanned techniques are all concerns that need to be investigated.

The integration of AI in an intelligent inspection system can help a corrosion detection
system work more efficiently. Distinct types of corrosion necessitate different treatments
because different types of corrosion might occur during material testing. Consider uniform
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corrosion, which occurs when all surface area corrodes simultaneously (or nearly the same).
Uniform (or broad) corrosion is reasonably easy to track and forecast. This sort of corrosion
reduces the thickness and weight of the metal, which is the most common type of corrosion
that needs to be identified to improve the coating’s manufacturing quality. As a result,
an intelligent inspection system is required to classify the corrosion kind. AI approaches can
be utilized to increase uniformity and save inspection time. Corrosion has been detected
using neural networks, normal computer vision methods, and deep learning methodologies.
Corrosion can be detected horizontally and vertically by autonomous robots. The ND
system’s safety and efficiency can be greatly enhanced. To allow autonomous inspection
capability, however, lightweight equipment and powerful detecting systems are required.

9. Conclusions

Advances in ND corrosion methods and assessment of corrosion undercoating in
carbon–steel pipelines led to the development of various sensors and monitoring methods
in searching for improvement in the OG industry. The AE monitoring method portrays
promising results due to its capability in real-time corrosion monitoring of pipelines sub-
jected to certain challenges. The challenges have been highlighted with several recom-
mendations for solutions. Successful implementation of real-time corrosion monitoring in
pipelines using AE is a step forward toward the emergence of smart pipeline monitoring
to keep up with the future trend through the development of corrosion detection, classi-
fication, reliability prediction and prevention techniques. In conclusion, the realization
of continuous real-time pipeline corrosion monitoring technology is possible considering
the existing shortcomings are taken into account and resolved systematically for a bet-
ter pipeline system. This can help the OG industry in predicting future outcomes more
accurately and plan for unknown events to avoid consequences of failure that can be
catastrophic due to the potential hazard to the Human Health and Safety Loss.
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