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Abstract: This study discusses a nonlinear electrical impedance tomography (EIT) technique under
different analysis conditions to propose its optimal implementation parameters. The forward problem
for calculating electric potential is defined by the complete electrode model. The inverse problem for
reconstructing the target electrical conductivity profile is presented based on a partial-differential-
equation-constrained optimization approach. The electrical conductivity profile is iteratively updated
by solving the Karush–Kuhn–Tucker optimality conditions and using the conjugate gradient method
with an inexact line search. Various analysis conditions such as regularization scheme, number of elec-
trodes, current input patterns, and electrode arrangement were set differently, and the corresponding
results were compared. It was found from this study that the proposed EIT method yielded appropri-
ate inversion results with various parameter settings, and the optimal implementation parameters of
the EIT method are presented. This study is expected to expand the utility and applicability of EIT
for the non-destructive evaluation of structures.

Keywords: electrical impedance tomography; inverse problem; complete electrode model; optimal
implementation parameters; partial-differential-equation-constrained optimization

1. Introduction

Electrical impedance tomography (EIT) is a non-destructive evaluation method through
which the electrical properties of part of a structure are determined using measured data
from surface electrodes. This method is highly applicable in medical imaging, industrial
process monitoring, and geotechnical site characterization because of its ease of use in
field experimentation, economic feasibility, and superior ability to penetrate the target. For
example, the EIT method coupled with convolutional neural networks has been explored
for reconstructing human organ boundaries [1], and EIT using an optimal control theory
has been developed for pathological diagnoses such as cancer detection [2]. In industrial
processes, EIT can be a useful tool to monitor the mixing process of chemical materials [3,4]
and evaluate the dredging process’s condition in real-time by monitoring the material
flowing through the dredging pipe [5,6]. Recent applications of EIT in civil engineering
include the characterization of layered soils [7], crack detection in pipes buried in the
ground [8], and ground contamination monitoring for remediation strategies [9].

EIT has many advantages; however, it requires improvements in its mathematical
modeling, numerical analysis, and implementation techniques to increase the accuracy of
solutions and to broaden its application scope to further extensive fields. Previous studies
on EIT suggest that the quality of the inverse tomographic images obtained using measured
electric potentials is sensitive to electrode arrangement and current input patterns [10–16].
Graham et al. [11] presented seven electrode placement configurations (planar, planar-offset,
planar-opposite, zigzag, zigzag-offset, zigzag-opposite, square) in which the electrodes
were arranged in two parallel planes of eight electrodes each, with electrodes equispaced
around a medium. These configurations were applied to three-dimensional (3D) EIT, and
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the inversion results concerning the electrode arrangements were compared. Consequently,
not one electrode placement configuration offered a good improvement over the others un-
der ideal conditions. However, when noise and electrode placement errors are considered,
the choice of electrode placement becomes important, and under that condition, planar
electrode placement has the best overall performance. Schullcke et al. [12] evaluated the
effect of different numbers of electrodes used for current injection and voltage measure-
ments on the reconstructed two-dimensional shape of the lungs. The number of electrodes
was varied systematically in steps of four, from n = 8 to n = 32. According to the research
results, the increased number of electrodes does not necessarily increase the image quality.
The reconstructions made with 16 electrodes preserved the best quality.

Examples of current input patterns commonly used in EIT include the adjacent drive
pattern [13], opposite or polar drive patterns [14], and trigonometric patterns [15]. The
adjacent drive pattern is sensitive to conductivity contrasts near the boundary and in-
sensitive to central contrasts. Furthermore, it is imperative to measurement errors and
noise. The opposite or polar drive pattern is less sensitive to conductivity changes at the
boundary in relation to the adjacent method, as the current travels with higher uniformity
through the imaged body [16]. In the trigonometric pattern, the current is injected on all
electrodes, and voltages are measured at all electrodes. This pattern results in more stable
and accurate reconstruction than the adjacent current pattern. However, current drivers
are required for each electrode to be injected, and the unknown contact impedance will
affect the reconstruction [16–18].

Based on the previous developments, this study proposes several implementation
parameters and analysis conditions for EIT, such as the number of electrodes, current input
pattern, and electrode arrangement. The proposed parameters and analysis conditions
are applied to the EIT procedure described in a recent study [19,20]. The EIT method is a
nonlinear inversion based on a partial-differential-equation (PDE)-constrained optimization
approach. By applying various implementation parameters, this study presents the optimal
parameters of the EIT method that minimize relative L2-error or relative misfit. It also
shows how much the quality of the reconstructed electrical conductivity profile using
the optimal implementation parameters is improved in relation to the results using a
conventional parameter set.

The remainder of this paper is organized as follows: In Section 2, the forward problem
based on the complete electrode model (CEM) is presented. For verification, the forward so-
lution was compared with that obtained using ANSYS Mechanical APDL [21]. In Section 3,
the inverse medium problem is described, which derives the optimal solution using the
Lagrangian functional and the first-order optimality conditions. The inversion process
updates the electrical conductivity profile iteratively using a conjugate gradient method
with an inexact line search. In Section 4, various numerical examples are described, wherein
the regularization scheme, number of electrodes, current input pattern, and electrode ar-
rangement are set differently. Optimal implementation parameters are suggested for the
best reconstruction of a layered profile. Section 5 presents the conclusions of the study.

2. The Forward Problem
2.1. Mathematical Method

The CEM is a mathematical model for resolving the electrostatic forward problem
for electric potential. It considers current loss that occurs when the current flows to a
low-impedance material through an electrode and the voltage drop due to the contact
impedance between the structural surface and electrode [22,23]. Therefore, the error
between the calculated electric potential and experimentally obtained data is smaller than
that computed using other models, such as a point electrode model. Figure 1 shows the
configuration of a two-dimensional (2D) square domain with electrodes on its surface.
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The CEM for calculating the electric potential due to the current input can be expressed
as a boundary value problem, as follows:

∇·(σ∇u) = 0, x ∈ Ω, (1)

u + zlσ
∂u
∂n = Ul , l = 1, 2, · · · , L, x ∈ ΓEl , (2)

∫
ΓEl

σ ∂u
∂n dΓ = Il l = 1, 2, · · · , L, x ∈ ΓEl , (3)

σ ∂u
∂n = 0, x ∈ ∂Ω \ ∪L

l=1
◦ΓEl , (4)

where Ω denotes structural domain, u is the scalar-valued electric potential to be calculated,
σ is electrical conductivity, n is the outward unit normal to the boundary ∂Ω, ΓEl is the lth
electrode boundary, zl is the contact impedance of El , Il is the injected current at El , Ul is
the electric potential at El to be calculated, and L is the number of electrodes. Equation (1)
is a Laplace equation for the electric potential u(x). Equation (2) is a Robin-type boundary
condition describing the electric potential at ΓEl , and Equations (3) and (4) are Neumann
boundary conditions for u(x). To ensure the existence and uniqueness of the solution, the
following continuity condition,

L

∑
l=1

Il = 0, (5)

is added to the model. For setting the reference point of the electric potential,

L

∑
l=1

Ul = 0 (6)

must be satisfied. For the variational form of the boundary value problem, Equation (1)
is multiplied by a test function v(x) ∈ H1(Ω), and then integrated over the domain Ω
using boundary conditions (2), (3), and (4). Meanwhile, Equation (2) is integrated over
ΓEl , multiplied by a test value Vl , and then summed for all electrodes. Adding the two
equations results in a variational form, expressed as follows [24]:

∫
Ω

σ∇u ·∇vdΩ +
L

∑
l=1

1
zl

∫
ΓEl

(u−Ul)(v−Vl)dΓ =
L

∑
l=1

IlVl . (7)

Introducing finite element approximations to the electric potential u(x) and the test
function v(x). results in a linear system of equations, where the electric potential u at
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each node and the electrode potential Ul can be calculated. The stiffness matrix and the
right-hand-side vector of the linear system can be found in [19,20].

2.2. Setting for Numerical Analysis

The forward CEM solution is validated by comparing it to the solution obtained by
ANSYS Mechanical APDL. Figure 2a shows the configuration of a homogeneous square
domain with a side length of 10 m. The electrical conductivity of the domain is 0.01 S/cm.
A total of 10 electrodes are distributed equally on the left and right sides, as shown in
the figure. Figure 2b shows a finite element model consisting of 1600 eight-node square
elements with sides of 0.25 m. The length of one electrode is 0.25 m, equal to the size of
the finite element. A current of 0.1 A is input into the electrodes placed on the left side of
the domain, and it flows out through the electrodes placed on the right side. The contact
impedance of the electrodes is 1× 10−5 Ω·m2.
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Figure 2. (a) Configuration of a homogeneous square domain and (b) finite element mesh with
eight-node quadrilateral elements.

2.3. Results of the Validation

Figure 3a,b show the distribution of the electric potential calculated by the CEM
and ANSYS APDL, respectively, owing to the current input. In Figure 4, calculated elec-
tric potential values using the CEM and ANSYS APDL at nodes on (a) y = −7.5 m,
(b) y = −2.5 m, (c) x = −3.0 m, and (d) x = 3.0 m are compared. It can be observed that
the solutions obtained by the two different solvers are similar at all positions.
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3. The Inverse Problem
3.1. PDE-Constrained Optimization

The inverse medium problem for reconstructing the electrical conductivity profile of a
structure using measured electric potential data at surface electrodes can be presented as
the following PDE-constrained optimization problem:

min
σ(x)

J :=
1
2

L

∑
l=1

∫
ΓEl

(Ul −Um
l )2dΓ + γ(σ). (8)

The objective functional J comprises a misfit functional and a regularization term. The
misfit functional is expressed as the sum of the squared differences of the calculated electric
potential Ul and the measured electric potential Um

l at electrode El . This optimization
problem is constrained by Equation (1), which is the governing equation of the CEM, and
boundary conditions (2)–(4). To relieve the ill-posedness present in such an inverse problem,
the regularization term γ(σ) for the electrical conductivity σ is included in the objective
functional J.
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3.2. Regularization Schemes

In this study, Tikhonov (TN) [25] and total variation (TV) [26] regularization schemes
are used to investigate the regularization effect. For TN regularization, the regularization
term γ(σ) can be expressed by Equation (9):

γTN(σ) =
1
2

Rσ

∫
Ω
∇σ·∇σdΩ , (9)

For TV regularization, γ(σ) can be expressed by Equation (10):

γTV(σ) = Rσ

∫
Ω
(∇σ·∇σ + β)

1
2 dΩ , (10)

where Rσ is a regularization factor that controls the penalty for the spatial variation of
electrical conductivity σ(x). In Equation (10), a small parameter β is included to make
γTV(σ) differentiable when ∇σ = 0. Generally, it is expected that TN regularization would
be suitable for reconstructing a smooth target profile. On the other hand, TV regularization
is expected to perform better when reconstructing a sharply varying target profile.

3.3. First-Order Optimality Conditions

The Lagrange multiplier method was used to convert the PDE-constrained optimiza-
tion problem written in Equation (8) into an unconstrained optimization problem. The
objective functional J can be augmented using Equations (1) and (2) to construct the La-
grangian functional L:

L(u, Ul , w, Wl , σ)= 1
2

L
∑

l=1

∫
ΓEl

(
Ul −Um

l
)2dΓ + γ(σ) +

∫
Ω w∇·(σ∇u)dΩ

+
L
∑

l=1

∫
ΓEl

Wl

(
σ ∂u

∂n − Il

)
dΓ,

(11)

where w and Wl are Lagrange multipliers multiplied to the left-hand terms of the governing
equation and boundary conditions, respectively. The electrical conductivity σ(x) that
minimizes the Lagrangian L is the solution to the inverse problem. For the optimal solution
to this problem, the first-order optimality conditions of the Lagrangian are enforced. In
other words, the first variation of L with respect to adjoint variables w and Wl , state
variables u and Ul , and control variable σ is enforced to vanish. There results the state
problem for u and Ul , the adjoint problem for w and Wl , and the control problem for σ,
respectively. Solving the three problems simultaneously in the reduced space of the control
variable yields the optimal solution of the material profile σ(x).

3.3.1. First Optimality Condition: State Problem

The state equation and the corresponding boundary conditions can be obtained from
the stationarity requirement that the first variation of the Lagrangian with respect to adjoint
variables w and Wl must be 0 (δwL = 0, δWlL = 0, l = 1, 2, · · · L). The derived state
problem is identical to the forward problem in Equations (1)–(4).

3.3.2. Second Optimality Condition: Adjoint Problem

The adjoint equation and the corresponding boundary conditions can be obtained
from the stationarity requirement that the first variation of the Lagrangian with respect to
state variables u and Ul must be 0 (δuL = 0, δUlL = 0, l = 1, 2, · · · L). The derived adjoint
problem can be described as follows [19,20]:

∇·(σ∇w) = 0, x ∈ Ω, (12)

w + zlσ
∂w
∂n = −Wl , l = 1, 2, · · · , L, x ∈ ΓEl , (13)
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σ ∂w
∂n = Ul −Um

l , l = 1, 2, · · · , L, x ∈ ΓEl , (14)

σ ∂w
∂n = 0, x ∈ ∂Ω \ ∪L

l=1 ΓEl . (15)

Equation (12) is the governing equation for the adjoint variable w(x). It has a dif-
ferential operator similar to (1), the state equation. Equations (13)–(15) are the boundary
conditions of the adjoint problem. Equation (14) indicates the source of the adjoint problem,
which depends on the misfit of the electric potential at electrodes. The adjoint problem can
also be solved by the finite element method in a manner similar to the state problem [20].

3.3.3. Third Optimality Condition: Control Problem

The control equation and the corresponding boundary conditions can be obtained
from the stationarity requirement that the first variation of the Lagrangian with respect to
the control variable σ must be 0 (δσL = 0). The derived control problem can be described
as follows [19,20]:

−Rσ∆σ−∇w·∇u = 0, x ∈ Ω, (16)

Rσ
∂σ
∂n + w ∂u

∂n + Wl
∂u
∂n = 0, l = 1, 2, · · · , L, x ∈ ΓEl , (17)

Rσ
∂σ
∂n + w ∂u

∂n = 0, x ∈ ∂Ω \ ∪L
l=1 ΓEl . (18)

In deriving Equation (16), the TN regularization scheme was used. If the TV scheme
were used instead, Equation (16) could be replaced by

−Rσ(∇σ·∇σ + β)−
3
2 [(∇σ·∇σ + β)∆σ−∇σ·(H∇σ)]−∇w·∇u = 0, x ∈ Ω, (19)

where H is the Hessian matrix of σ(x). It is different from the Hessian for the Gauss–Newton
inversion, which consists of the second Fréchet derivatives of the Lagrangian [27–29]. The
solution σ(x) of the control problem can be calculated once the state and adjoint solutions
u, w, and Wl are obtained. The state, adjoint, and control problems derived from the first-
order optimality conditions of the Lagrangian indicate the Karush–Kuhn–Tucker (KKT)
conditions for this optimization problem.

3.4. Material Property Update

The first and second optimality conditions are satisfied by solving the state and adjoint
problems, respectively. Because only the true profile of σ(x) exactly satisfies the control
problem, the material profile σ(x) must be updated to satisfy the third optimality condition.
The procedure of updating the control variable σ(x) using the state and adjoint solutions is
as follows:

1. Assume the initial electrical conductivity profile of a structure to be investigated,
then calculate the electric potential u and Ul due to the current input through the
surface electrodes.

2. Calculate the adjoint solutions w and Wl using the state solution Ul .
3. Using the state and adjoint solutions, calculate the gradient of the Lagrangian with

respect to the control variable σ, as follows:

gσ ≡ ∇σL = −Rσ∆σ−∇w·∇u. (20)

In Equation (20), the TN regularization scheme was used. If the TV scheme were
assumed, then the Lagrangian gradient for σ would be

gσ ≡ ∇σL = −Rσ(∇σ·∇σ + β)−
3
2 [(∇σ·∇σ + β)∆σ−∇σ·(H∇σ)]−∇w·∇u. (21)
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4. Update the electrical conductivity at each node using a line search method. Equations
(17) and (18) are not precisely enforced in updating the electrical conductivity at
boundaries since they are complicated to implement. Instead, one can enforce that the
normal derivative of σ(x) be zero along the boundary for computational simplicity.

3.5. Conjugate Gradient Method with an Inexact Line Search

The search direction for the optimal solution of the control variable σ is determined
using the Flétcher–Reeves conjugate gradient method with an inexact line search. Let gk
denote the discrete reduced gradient at the kth inversion iteration.

gk = (∇σL)k. (22)

Thereafter, the electrical conductivity vector σk comprising nodal values of σ is
updated via

σk+1 = σk + αdk, (23)

where dk is the search direction vector at σk, and α. is the step length in the direction of
dk. The step length can be determined by a backtracking algorithm in Table 1 [30]. In this
work, ρ = 0.5 was used.

Table 1. Backtracking algorithm to determine the step length α.

Choose α > 0, α, µ ∈ (0, 1); set α← α;
repeat α← ρα;
until J(σk + αdk) ≤ J(σk) + µαgk·dk
Terminate with αk = α

3.6. Regularization Factor Continuation Scheme

The choice of regularization factor Rσ in Equations (20) and (21) considerably affects
the reconstruction of the electrical conductivity profile because it controls the amount of
imposed penalty on high-frequency oscillations of the material properties. In this study,
a regularization factor continuation scheme [30–32] was used to determine the optimal
regularization factor at each inversion iteration. The reduced gradients in Equations (20)
and (21) can be rewritten as

∇σL = Rσ(∇σ Jr) +∇σ Jm, (24)

where Rσ∇σ Jr denotes the gradient of the regularization functional and ∇σ Jm the gradient
of the misfit functional. In the case of the TN regularization,

∇σ Jr = −∆σ, (25)

∇σ Jm = −∇w·∇u. (26)

If the TV regularization scheme were used,

∇σ Jr = −(∇σ·∇σ + β)−
3
2 [(∇σ·∇σ + β)∆σ−∇σ·(H∇σ)], (27)

∇σ Jm = −∇w·∇u. (28)

The first term of Equation (24), Rσ(∇σ Jr), penalizes spatial oscillations in the recon-
structed profile, such that a higher Rσ results in a smoother reconstructed profile. A balance
between these two terms can be imposed using

Rσ|∇σ Jr| < |∇σ Jm| =⇒ Rσ <
|∇σ Jm|
|∇σ Jr|

. (29)
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Therefore, Rσ can be calculated at each iteration as

Rσ = ε
|∇σ Jm|
|∇σ Jr|

, (0 ≤ ε ≤ 1), (30)

where ε is a weight factor, which plays the role of regularization effect controller. ε = 1
results in the maximum regularization effect, and ε = 0 indicates no regularization.

4. Numerical Studies for Optimal EIT Parameters

Consider a square domain with a side length of 10 m, as shown in Figure 1, sur-
rounded by electrodes with a contact impedance of 1× 10−5 Ω·m2. The initial value of
the regularization factor Rσ is 1.0, and the weight factor ε for the regularization factor
continuation scheme is set to 0.5. The parameter β for TV regularization is assumed to be
β = 1× 10−6.

This study compares the inversion results according to the change in various imple-
mentation parameters using a response misfit and a relative L2-error. The response misfit
Fm, as part of the objective functional J in Equation (8), can be written as

Fm =
1
2

L

∑
l=1

∫
ΓEl

(Ul −Um
l )2dΓ. (31)

The relative L2-error of electrical conductivity, ‖E‖L2 can be written as

‖E‖L2 =
1
A

∫
Ω

(
σinv − σtg

)2

σ2
tg

dΩ, (32)

where A is the total area of the domain, σtg is the target electrical conductivity, and σinv is
the reconstructed electrical conductivity.

4.1. Regularization Effect

For evaluating the regularization effect on the EIT, the TN and TV regularization schemes
are explored in the inversion for a three-layer heterogeneous medium. Figure 5 shows
the target electrical conductivity profile with three layers and an initial guess for inversion.
The target values of the electrical conductivity are 0.01 S/m for y ≥ −4 m, 0.03 S/m for
−7 m ≤ y < −4 m, and 0.05 S/m for y < −7 m. The values are typical of air-dried concrete
materials in various conditions [33]. Examples of the profile heterogeneity in Figure 5 include
fiber-reinforced composite sandwich plates and concrete specimens under curing. The initial
guess for the inversion σini = 0.03 S/m. 40 electrodes are arranged on all sides of the square
medium with equal spacing; thereafter, the current is injected into the electrodes attached on
the top and left sides of the structure, and then flows out through the electrodes on the right
and bottom sides. The magnitude of the current is uniform at 0.1 A.

Figure 6 shows the inversion results of the three-layer electrical conductivity profile
at 3000 iterations using TN and TV regularization schemes. When the TV scheme was
used, the target profile was reconstructed clearly and stably, especially at the interface
of the layers. This shows that the TV scheme performs well in the EIT framework when
reconstructing a sharply varying profile. Figure 7 shows the response misfit and the relative
L2-error ‖E‖L2 against iteration numbers. The misfit is reduced by 99.8% from its initial
value for the TN scheme, and by 99.9% for the TV at 1500 iterations. Figure 8 shows the
measured, initial, and calculated electric potentials in the inversion. After the inversion,
the calculated potential values nearly coincide with the measured values, indicating the
successful reconstruction of the target profile. Figure 9 shows the target and reconstructed
conductivity profiles at y = −7.5 m, y = −2.5 m, x = −3.0 m, and x = 3.0 m in the
domain. The results show that the recovered profile captures the variation of the target
conductivity values in both directions.
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Figure 9. Reconstructed conductivity profiles in the horizontal and vertical directions. (a) y = −2.5 m.
(b) y = −7.5 m. (c) x = −3.0 m. (d) x = 3.0 m.

As mentioned in Section 3.6, the regularization factor Rσ considerably affects the
reconstruction of the electrical conductivity profile. Figure 10 shows the change in the
regularization factor during the inversion using the regularization factor continuation
scheme. The value of the weight factor ε was assumed to be 0.5, 0.3, 0.1, and 0.05. The
higher the weight factor ε, the larger the Rσ value. It can also be seen that the value of Rσ
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fluctuates significantly in the latter part of the inversion as the inverted profile approaches
the target.
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For demonstrating the effectiveness of the regularization factor continuation scheme,
the inversion tried fixed regularization factors in the same setting. Figures 11 and 12
show the reconstructed three-layer electrical conductivity profiles using different fixed
regularization factors. The layer interfaces are not properly recovered when Rσ is large, but
the stratum is better reconstructed when the factor is small. Again, the TV scheme yielded
sharper profile reconstruction than the TN. Compared to using fixed regularization factors,
the continuation scheme determines the regularization factor adaptively at each inversion
iteration, making it possible to skip multiple inversion attempts to find the optimal fixed
regularization factor. Figure 13 shows the variation of the relative L2-error in Equation (32)
to iteration numbers. In the case of the continuous regularization factor, the relative L2-error
is similar to fixed regularization factor cases at the early inversion stage, but eventually
becomes smaller as the inversion progresses.
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4.2. Parametric Studies for Optimal EIT Result

In this study, three different analysis conditions were explored to derive optimal
parameters for performing the EIT in heterogeneous media. The conditions considered
are the number of electrodes, spatial current input pattern, and electrode arrangement.
Figure 14 shows the target electrical conductivity profile with two layers and the initial
guess for inversion. The target values of the electrical conductivity are 0.02 S/m for
y ≥ −5 m and 0.04 S/m for y < −5 m. The initial guess of the profile is homogeneous,
with σini = 0.03 S/m. The TV regularization with the regularization factor continuation
scheme is used in all parametric studies.
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4.2.1. Number of Electrodes

The number of electrodes is expected to significantly affect the inversion result because
it impacts the electric potential field and the amount of measured potential data. In this
work, 8, 20, 40, and 80 electrodes are tested for inversion, as shown in Figure 15. An equal
number of electrodes are placed on each side of the square medium. The current is supplied
into the electrodes attached to the top and left sides of the medium, and then flows out
from the electrodes on the right and bottom sides. The magnitude of the current is uniform
at 0.1 A.
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Figure 16 shows the reconstructed two-layer electrical conductivity profiles at
2000 inversion iterations using the presented number of electrodes. In the case of eight
electrodes, the target profile is not reconstructed properly compared to other cases because
the number of electrodes on the surface is significantly insufficient. In other cases, the
target profile is reasonably reconstructed. Figure 17a shows the variation of response misfit
to iteration numbers during the inversion. In the case of eight electrodes, the misfit Fm
changes extremely unstable, even for small iteration numbers. In other cases, Fm decreases
by a factor of 10−3 to 10−4. Figure 17b exhibits the variation of the relative L2-error to
iteration numbers. In the case of 20 electrodes, the error is smaller than 40 and 80 electrode
cases after about 750 iterations. Thus, a higher number of electrodes does not necessarily
increase the inversion quality. Figure 18 shows the measured, initial, and calculated electric
potentials in the inversion using four different electrode numbers. After the inversion,
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the calculated potential values coincide with the measured values. Figure 19 shows the
reconstructed electrical conductivity profiles at y = −7.5 m, y = −2.5 m, x = −3.0 m, and
x = 3.0 m after the inversion using four different electrode numbers. Except for the case of
eight electrodes, the calculated conductivity values capture the target sufficiently well in all
locations. Figure 20 presents the inverted profiles using TN and TV regularization schemes
in the case of eight surface electrodes. In comparison with the TV scheme, the inversion
result has been improved in the case of TN regularization. Therefore, it is more appropriate
to use TN regularization when the number of electrodes is small.
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4.2.2. Current Input Pattern

Uniform and cosine input patterns are investigated as the current input pattern for inver-
sion. The uniform pattern is the same as that used in Section 4.2.1. In the case of the cosine pat-
tern, this study introduced four current input phases to the inversion. Equations (33) and (34)
describe the uniform and cosine current input patterns, respectively.

Il =

{
0.1 A, 1 ≤ l ≤ L

2
−0.1 A, L

2 < l ≤ L
(Uniform), (33)

Il = cos
(

4πk
N
− α

)
A, α = 0,

π

4
,

π

2
,

3π

4
(Cosine). (34)
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Figure 19. Reconstructed electrical conductivity profiles at several locations of the domain after the 
inversion using four different electrode numbers. (a)  𝑦 = −2.5 m. (b)  𝑦 = −7.5 m. (c) 𝑥 = −3.0 m. 
(d)  𝑥 = 3.0 m. 
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Figure 20. Inverted two-layer conductivity profiles using TN and TV regularizations in the case of 
8 electrodes. (a) TN. (b) TV. 

  

Figure 19. Reconstructed electrical conductivity profiles at several locations of the domain after the
inversion using four different electrode numbers. (a) y = −2.5 m. (b) y = −7.5 m. (c) x = −3.0 m.
(d) x = 3.0 m.
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In Equation (34), N denotes the number of electrodes, and k is a specific electrode
number. In this numerical experiment, N is 40, as shown in Figure 15c. Figure 21 shows
the inverted two-layer electrical conductivity profiles at 2000 inversion iterations using the
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described current input patterns. Despite some differences in the results, especially at the
layer interface, all current patterns successfully reconstructed the target profile. Figure 22
shows the response misfit and relative L2-error to iteration numbers in the inversion using
the current input patterns. In all cases, the misfit is reduced by more than 99.9% from the
initial misfit at 500 iterations. Figure 22b shows that the relative L2-error in the case of the
uniform pattern is larger than that of the cosine patterns. The error is smallest when the
phase α = 0. Figure 23 shows the measured, initial, and calculated electric potentials in
the inversion using the current input patterns. Again, the calculated potential values are
almost identical to the measured values. Figure 24 shows the reconstructed conductivity
profiles at y = −7.5 m, y = −2.5 m, x = −3.0 m, and x = 3.0 m after the inversion using
the current input patterns. All patterns reconstruct the target electrical conductivity profile
fairly well.
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Figure 21. Reconstructed two-layer electrical conductivity profiles using uniform and cosine current 
input patterns. (a) Uniform. (b) Cosine, 𝛼 = 0. (c) Cosine, 𝛼 = ஠ସ. (d) Cosine, 𝛼 = ஠ଶ. (e) Cosine, 𝛼 =ଷ஠ସ . 

Figure 21. Reconstructed two-layer electrical conductivity profiles using uniform and cosine current
input patterns. (a) Uniform. (b) Cosine, α = 0. (c) Cosine, α = π

4 . (d) Cosine, α = π
2 . (e) Cosine,

α = 3π
4 .
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Figure 22. Variation of response misfit and the relative 𝐿ଶ-error to iteration numbers during the 
inversion using uniform and cosine current input patterns. (a) Misfit variation. (b) Relative 𝐿ଶ-error. 
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Figure 22. Variation of response misfit and the relative L2-error to iteration numbers during the
inversion using uniform and cosine current input patterns. (a) Misfit variation. (b) Relative L2-error.
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inversion using uniform and cosine current input patterns. (a) Misfit variation. (b) Relative 𝐿ଶ-error. 
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Figure 23. Measured, initial, and calculated electric potentials in the inversion using uniform and 
cosine current input patterns. (a) Uniform. (b) Cosine, 𝛼 = 0. (c) Cosine, 𝛼 = ஠ସ. (d) Cosine, 𝛼 = ஠ଶ. 
(e) Cosine, 𝛼 = ଷ஠ସ . 
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Figure 24. Reconstructed electrical conductivity profiles at several locations of the domain in the 
inversion using uniform and cosine current input patterns. (a)  𝑦 = −2.5 m. (b)  𝑦 = −7.5 m. (c) 𝑥 =−3.0 m. (d)  𝑥 = 3.0 m. 

  

Figure 23. Measured, initial, and calculated electric potentials in the inversion using uniform and
cosine current input patterns. (a) Uniform. (b) Cosine, α = 0. (c) Cosine, α = π

4 . (d) Cosine, α = π
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(e) Cosine, α = 3π
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Figure 24. Reconstructed electrical conductivity profiles at several locations of the domain in the 
inversion using uniform and cosine current input patterns. (a)  𝑦 = −2.5 m. (b)  𝑦 = −7.5 m. (c) 𝑥 =−3.0 m. (d)  𝑥 = 3.0 m. 

  

Figure 24. Reconstructed electrical conductivity profiles at several locations of the domain in the
inversion using uniform and cosine current input patterns. (a) y = −2.5 m. (b) y = −7.5 m.
(c) x = −3.0 m. (d) x = 3.0 m.

4.2.3. Electrode Arrangement

Figure 25 shows two different types of electrode arrangements used for the EIT. The
first arrangement type is to place electrodes on all sides of the medium, and the second is
to position them only on two sides. The total number of electrodes is 40. The uniform and
cosine (α = π

2 ) current input patterns are used for this case.
Figure 26 shows the inversion results at 2000 iterations using the two electrode ar-

rangements. The target profile has been reconstructed well for both current input patterns.
However, the quality of reconstruction at the layer interface is better for the all-side arrange-
ment. This happens when the electrodes are attached to only two sides of the structure,
and the inner information of the top and bottom parts cannot be sufficiently captured by
surface electrodes. Figure 27 shows the response misfit and the relative L2-error to iteration
numbers during the inversion using the two electrode arrangements. For all cases, the
misfit decreased by a factor of 10−3 to 10−4. As shown in Figure 27b, the relative L2-error
for the all-side arrangement is smaller than for the two-side arrangement. In addition,
the error for the cosine current pattern is smaller than for the uniform pattern. Figure 28
shows the measured, initial, and calculated electric potentials in the inversion using the two
electrode arrangements. The excellent agreement of the calculated and measured electric
potential values demonstrates the feasibility of the inversion. Figure 29 presents the target
and reconstructed electrical conductivity profiles at y = −7.5 m, y = −2.5 m, x = −3.0 m,
and x = 3.0 m. Overall, the all-side arrangement results in better reconstruction of the
target profile than the two-side arrangement.
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Figure 25. Configuration of two different types of electrode arrangement; For the uniform current
input pattern, the source electrode is #1 to #20, and receiver electrode is #21 to #40. For the cosine
input pattern with α = π/2, source and receiver electrodes are determined per Equation (34).
(a) All-side. (b) Two-side.
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Figure 26. Reconstructed two-layer electrical conductivity profiles using two electrode arrange-
ments. (a) All-side, uniform. (b) All-side, cosine, 𝛼 = గଶ. (c) Two-side, uniform. (d) Two-side, cosine, 𝛼 = గଶ. 
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Figure 27. Variation of response misfit and the relative 𝐿ଶ-error to iteration numbers during the 
inversion using two electrode arrangements. (a) Misfit variation. (b) Relative 𝐿ଶ-error. 

Figure 26. Reconstructed two-layer electrical conductivity profiles using two electrode arrangements.
(a) All-side, uniform. (b) All-side, cosine, α = π

2 . (c) Two-side, uniform. (d) Two-side, cosine, α = π
2 .
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Figure 27. Variation of response misfit and the relative L2-error to iteration numbers during the
inversion using two electrode arrangements. (a) Misfit variation. (b) Relative L2-error.
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Figure 28. Measured, initial, and calculated electric potentials in the inversion using two electrode 
arrangements. (a) All-side, uniform. (b) All-side, cosine, 𝛼 = గଶ. (c) Two-side, uniform. (d) Two-side, 
cosine, 𝛼 = గଶ. 
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Figure 28. Measured, initial, and calculated electric potentials in the inversion using two electrode
arrangements. (a) All-side, uniform. (b) All-side, cosine, α = π

2 . (c) Two-side, uniform. (d) Two-side,
cosine, α = π
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Figure 29. Reconstructed electrical conductivity profiles at several locations of the domain in the 
inversion using two electrode arrangements. (a)  𝑦 = −2.5 m. (b)  𝑦 = −7.5 m. (c) 𝑥 = −3.0 m. (d)  𝑥 = 3.0 m. 
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Figure 29. Reconstructed electrical conductivity profiles at several locations of the domain in the
inversion using two electrode arrangements. (a) y = −2.5 m. (b) y = −7.5 m. (c) x = −3.0 m.
(d) x = 3.0 m.

4.3. Optimal Choice of Implementation Parameters

Figure 30 shows the variation of ‖E‖L2 corresponding to the number of electrodes in
the inversion using the all-side electrode arrangement. The values of ‖E‖L2 were calculated
after 2000 inversion iterations. As the number of electrodes increases, the relative L2-error
tends to decrease. However, when the number of electrodes is 40 or more, there is a slight
difference in the error. In addition, the error reduces when the cosine current input pattern
is used, especially when α = 0 or α = π/2. A similar error trend can be observed in
the case of the two-side electrode arrangement. Figure 31 presents the variation of ‖E‖L2

corresponding to the number of electrodes in the inversion cases of different electrode
arrangement and current input pattern. The relative L2-error is smaller in the case of the
all-side electrode arrangement than in the two-side arrangement.

Tables 2 and 3 show the relative L2-error and the relative misfit (|Fm|opt/|Fm|ini) for
all cases of the number of electrodes, current input pattern, and electrode arrangement
discussed so far. The misfit, |Fm|opt, is the one immediately before the start of the misfit
oscillation, and |Fm|ini is the initial misfit. From the error values in the tables, one can
choose the optimal implementation parameters of the described EIT. The first parameter
set for which the value of ‖E‖L2 is minimal is 80 electrodes, cosine current input pattern
with α = π/2, and the all-side electrode arrangement. The second parameter set for which
the value of |Fm|opt/|Fm|ini is minimal is the same as the first set except for the number of
electrodes, which is 40. The minimum error values are shaded in the tables.
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Table 2. Relative 𝐿ଶ-error, ‖𝐸‖௅మ , for all the inversion cases of this study. 
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Cosine, 𝛼 = గଶ 4.48 × 10ିଶ 1.29 × 10ିଶ 6.07 × 10ିଷ 4.45 × 10ିଷ 1.50 × 10ିଵ 1.68 × 10ିଶ 1.42 × 10ିଶ 5.26 × 10଴ 
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Table 3. Relative misfit, |ℱ௠|୭୮୲/|ℱ௠|୧୬୧, for all the inversion cases of this study. 

Current Input 
Pattern 

Electrode Arrangement 
All-Side Arrangement Two-Side Arrangement 
Number of Electrodes Number of Electrodes 

8 20 40 80 8 20 40 80 
Uniform 1.21 × 10ିଷ 3.55 × 10ିହ 4.37 × 10ିହ 2.82 × 10ିହ 3.42 × 10ିସ 5.05 × 10ି଺ 3.01 × 10ିହ 3.36 × 10ିହ 
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Cosine, 𝛼 = గଶ 9.46 × 10ିଷ 1.37 × 10ିସ 4.84 × 10ି଺ 3.87 × 10ିହ 8.05 × 10ିସ 1.02 × 10ିସ 2.00 × 10ିସ 4.75 × 10ିସ 
Cosine, 𝛼 = ଷగସ  4.94 × 10ିହ 2.87 × 10ିସ 8.43 × 10ି଺ 1.33 × 10ିସ 7.18 × 10ିହ 2.80 × 10ିସ 3.01 × 10ିହ 1.23 × 10ିସ 

Figure 32 shows the reconstructed three-layer profiles using the optimal implemen-
tation parameters. The target and initial guess of the electrical conductivity profile are the 
same as those in Figure 5. The inverted profiles are obtained at 3000 iterations. The quality 
of profile reconstruction using the optimal parameter set is considerably better than the 
result shown in Figure 6, especially at the layer interface. Figure 33 shows the misfit and 
the relative 𝐿ଶ-error against iteration numbers in the inversion using the optimal param-
eter sets. The relative 𝐿ଶ-error decreased by 95.1% compared to the initial value when the 

Figure 31. Variation of ‖E‖L2 corresponding to the number of electrodes in the inversion cases
of different electrode arrangement and current input pattern; the ‖E‖L2 values were calculated at
2000 inversion iterations.

Table 2. Relative L2-error, ‖E‖L2 , for all the inversion cases of this study.

Current Input
Pattern

Electrode Arrangement

All-Side Arrangement Two-Side Arrangement

Number of Electrodes Number of Electrodes

8 20 40 80 8 20 40 80

Uniform 1.09× 10−1 1.57× 10−2 2.26× 10−2 2.49× 10−2 1.36× 10−1 1.98× 10−2 1.87× 10−2 2.72× 100

Cosine, α = 0 4.88× 10−2 1.24× 10−2 4.58× 10−3 5.21× 10−3 9.23× 10−2 1.86× 10−2 1.39× 10−2 3.58× 100

Cosine, α = π
4 5.49× 10−2 1.31× 10−2 9.66× 10−3 6.63× 10−3 1.18× 10−1 4.77× 10−2 2.62× 10−2 4.24× 100

Cosine, α = π
2 4.48× 10−2 1.29× 10−2 6.07× 10−3 4.45× 10−3 1.50× 10−1 1.68× 10−2 1.42× 10−2 5.26× 100

Cosine, α = 3π
4 9.41× 10−2 1.21× 10−2 9.02× 10−3 1.02× 10−2 9.52× 10−2 3.11× 10−2 3.04× 10−2 2.88× 100
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Table 3. Relative misfit, |Fm|opt/|Fm|ini, for all the inversion cases of this study.

Current Input
Pattern

Electrode Arrangement

All-Side Arrangement Two-Side Arrangement

Number of Electrodes Number of Electrodes

8 20 40 80 8 20 40 80

Uniform 1.21× 10−3 3.55× 10−5 4.37× 10−5 2.82× 10−5 3.42× 10−4 5.05× 10−6 3.01× 10−5 3.36× 10−5

Cosine, α = 0 5.22× 10−3 7.53× 10−5 4.94× 10−5 1.20× 10−4 1.26× 10−2 5.45× 10−5 1.26× 10−4 1.37× 10−4

Cosine, α = π
4 1.28× 10−4 9.16× 10−5 3.01× 10−5 1.69× 10−4 7.10× 10−4 2.57× 10−5 7.58× 10−6 2.12× 10−4

Cosine, α = π
2 9.46× 10−3 1.37× 10−4 4.84× 10−6 3.87× 10−5 8.05× 10−4 1.02× 10−4 2.00× 10−4 4.75× 10−4

Cosine, α = 3π
4 4.94× 10−5 2.87× 10−4 8.43× 10−6 1.33× 10−4 7.18× 10−5 2.80× 10−4 3.01× 10−5 1.23× 10−4

Figure 32 shows the reconstructed three-layer profiles using the optimal implementa-
tion parameters. The target and initial guess of the electrical conductivity profile are the
same as those in Figure 5. The inverted profiles are obtained at 3000 iterations. The quality
of profile reconstruction using the optimal parameter set is considerably better than the
result shown in Figure 6, especially at the layer interface. Figure 33 shows the misfit and
the relative L2-error against iteration numbers in the inversion using the optimal parameter
sets. The relative L2-error decreased by 95.1% compared to the initial value when the first
parameter set is used. It also decreased by 94.4% when using the second parameter set. The
reduction rate of ‖E‖L2 is slightly lower than in Figure 7b.

Sensors 2022, 22, 6667 26 of 29 
 

 

first parameter set is used. It also decreased by 94.4% when using the second parameter 
set. The reduction rate of ‖𝐸‖௅మ is slightly lower than in Figure 7b. 

  
(a) (b) 

Figure 32. Reconstructed three-layer electrical conductivity profiles using the optimal implementa-
tion parameters. (a) First parameter set. (b) Second parameter set. 

  
(a) (b) 

Figure 33. Response misfit and relative 𝐿ଶ-error against iteration numbers in the inversion using 
the optimal implementation parameters. (a) Misfit variation. (b) Relative 𝐿ଶ-error. 

5. Conclusions 
This study investigated optimal implementation parameters for a nonlinear EIT tech-

nique using the CEM. The EIT method is based on PDE-constrained optimization, which 
reconstructs the electrical conductivity profile by solving the KKT conditions iteratively. 
By applying various analysis conditions, the optimal set of parameters that minimize rel-
ative 𝐿ଶ-error or relative misfit in the EIT has been derived. The quality of the recon-
structed profile using the optimal implementation parameters is superior to the results 
using a conventional parameter set. 
1. The layered profile was reconstructed more clearly when using the TV regularization 

scheme than TN, especially at the interface of layers. The inversion result was im-
proved when using the regularization factor continuation scheme rather than the 
fixed method. 

Figure 32. Reconstructed three-layer electrical conductivity profiles using the optimal implementation
parameters. (a) First parameter set. (b) Second parameter set.

Sensors 2022, 22, 6667 26 of 29 
 

 

first parameter set is used. It also decreased by 94.4% when using the second parameter 
set. The reduction rate of ‖𝐸‖௅మ is slightly lower than in Figure 7b. 

  
(a) (b) 

Figure 32. Reconstructed three-layer electrical conductivity profiles using the optimal implementa-
tion parameters. (a) First parameter set. (b) Second parameter set. 

  
(a) (b) 

Figure 33. Response misfit and relative 𝐿ଶ-error against iteration numbers in the inversion using 
the optimal implementation parameters. (a) Misfit variation. (b) Relative 𝐿ଶ-error. 

5. Conclusions 
This study investigated optimal implementation parameters for a nonlinear EIT tech-

nique using the CEM. The EIT method is based on PDE-constrained optimization, which 
reconstructs the electrical conductivity profile by solving the KKT conditions iteratively. 
By applying various analysis conditions, the optimal set of parameters that minimize rel-
ative 𝐿ଶ-error or relative misfit in the EIT has been derived. The quality of the recon-
structed profile using the optimal implementation parameters is superior to the results 
using a conventional parameter set. 
1. The layered profile was reconstructed more clearly when using the TV regularization 

scheme than TN, especially at the interface of layers. The inversion result was im-
proved when using the regularization factor continuation scheme rather than the 
fixed method. 

Figure 33. Response misfit and relative L2-error against iteration numbers in the inversion using the
optimal implementation parameters. (a) Misfit variation. (b) Relative L2-error.



Sensors 2022, 22, 6667 26 of 28

5. Conclusions

This study investigated optimal implementation parameters for a nonlinear EIT tech-
nique using the CEM. The EIT method is based on PDE-constrained optimization, which
reconstructs the electrical conductivity profile by solving the KKT conditions iteratively. By
applying various analysis conditions, the optimal set of parameters that minimize relative
L2-error or relative misfit in the EIT has been derived. The quality of the reconstructed
profile using the optimal implementation parameters is superior to the results using a
conventional parameter set.

1. The layered profile was reconstructed more clearly when using the TV regulariza-
tion scheme than TN, especially at the interface of layers. The inversion result was
improved when using the regularization factor continuation scheme rather than the
fixed method.

2. A higher number of electrodes did not necessarily improve the inversion results. In
addition, the TN regularization scheme produced relevant results when the number
of electrodes was small.

3. The layered profiles were successfully reconstructed for all the presented current pat-
terns. The relative L2-error was smaller when the cosine pattern was used, especially
when the phase α = 0 or α = π

2 .
4. In the case of arranging electrodes on all sides of the square domain, the inversion

result was improved compared to the case of arranging them only on two sides.
5. The relative L2-error and the relative misfit are proper criteria for optimal implemen-

tation parameters. The relative L2-error was decreased by 95.1% from the initial value
when using the first set of optimal parameters. It was also reduced by 94.4% when
using the second set. The presented optimal parameter sets worked successfully in
reconstructing layered electrical conductivity profiles.

This study is expected to expand the applicability of the nonlinear EIT method for the
non-destructive evaluation of civil structures such as damage inspection, strength inspection
of concrete under curing, fiber content inspection of fiber-reinforced concrete, etc.
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Nomenclature

Alphabetic symbols
A Area of square domain
dk Search direction vector
El lth electrode
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el Length of lth electrode
F Force vector
gk Discrete reduced gradient at kth inversion iteration
H Hessian matrix
Il Magnitude of current injected at lth electrode
J Current density
K Stiffness matrix
L Number of electrodes
N Number of nodes in finite element mesh
nj Basis vector
Rσ Regularization factor
U Vector consisting of electric potential at each electrode
Ul Electric potential at lth electrode
Um

l Measured electric potential at lth electrode
u Solution vector
u Electric potential in domain
Vl Test value
v Test function
Wl Lagrange multiplier
w Lagrange multiplier
zl Contact impedance at lth electrode
Greek symbols
α Step length
αj Nodal value of u(x)
α Initial step length
α

adj
j Nodal value of w(x)

β Small parameter for TV regularization scheme
β j Unknown parameter for nj and Uh

β
adj
j Unknown parameter for nj and Wh

ΓEl Boundaryth electrode
ε Weight factor of Rσ

µ Small parameter for Armijo condition
ρ Parameter for reducing step length
σ Electrical conductivity
φi Legendre basis function
Ω Structural domain
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