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Abstract: In-network caching has evolved into a new paradigm, paving the way for the creation
of Named Data Networking (NDN). Rather than simply being typical Internet technology, NDN
serves a range of functions, with a focus on consumer-driven network architecture. The NDN
design has been proposed as a method for replacing Internet Protocol (IP) addresses with identified
content. This study adds to current research on NDN, artificial intelligence (AI), cloud computing,
and the Internet of Things (IoT). The core contribution of this paper is the merging of cloud IoT
(C-IoT) and NDN-AI-IoT. To be precise, this study provides possible methodological and parameter
explanations of the technologies via three methods: KITE, a producer mobility support scheme
(PMSS), and hybrid network mobility (hybrid NeMO). KITE uses the indirection method to transmit
content using simple NDN communication; the PMSS improves producer operation by reducing
handover latency; and hybrid NeMO provides a binding information table to replace the base
function of forwarding information. This study also describes mathematical equations for signaling
cost and handover latency. Using the network simulator ndnSIM NS-3, this study highlights producer
mobility operation. Mathematical equations for each methodology are developed based on the
mobility scenario to measure handover latency and signaling cost. The results show that the efficiency
of signaling cost for hybrid NeMO is approximately 4% better than that of KITE and the PMSS, while
the handover latency for hybrid NeMO is 46% lower than that of KITE and approximately 60% lower
than that of the PMSS.

Keywords: artificial intelligence; cloud internet of things; named data networking; network analysis
model

1. Introduction

Named data networking (NDN) is a new type of architecture based on the Internet
Protocol (IP) architecture that makes the Internet work [1]. To connect the various elements
of the network, the IP is used as the network layer, incorporating security and device-to-
device connectivity. In Internet hourglass architecture, the thin part is at the center of the
universal IP network layer. Recent NDN research adopted an adaptive forwarding strategy
based on deep reinforcement learning, maintaining the right data delivery equilibrium and
allowing users to pick and compete [2]. With its advantages of speed and reliability, NDN
is a highly appealing networking solution for Internet of Things (IoT) applications. The
goal of the IoT is to connect everyone and everything at any time and from any location.
The IoT is being adopted by an increasing number of users in enterprises and academic
sectors [3]. Many issues arise as a result of the rapid expansion of IoT devices on the
Internet because the current Internet was not designed to handle resource-constrained
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devices [4]. However, due to the peculiarity of this new method, a new paradigm for IoT
must go a step further [5]. This situation means that an alternative Internet design must be
investigated—one that takes the restrictions and quantity of devices into account. Other
research indicated that NDN is a crucial enabler of network and compute convergence,
upon the edge of which artificial intelligence (AI) should be built [6].

In NDN, a consumer sends an interest packet (I_packet) with a content prefix (pre-
fix) [7]. The router records the interest packet’s interface in the pending interest table (PIT)
and looks up the forwarding information base (FIB) for information about the content filled
by the name-based routing (NBR) protocol. Some routers or content providers send back
information to a consumer and store the content in the content store (CS).

Another aspect of NDN that still has no updated solution is mobility. A survey
paper [8] derives aspects of mobility that currently remain unresolved. This study discusses
NDN mobility methodologies and measures the performance evaluation for each producer
mobility operation: KITE [9], a producer mobility support scheme (PMSS) [10], and hybrid
network mobility (hybrid NeMO) [11].

Motivation: NDN technology comes with a new perspective as a blank-slate Inter-
net architecture under Information-Centric Networking (ICN). The major goal of NDN
technology is to address the existing Internet’s flaws by shifting the IP-based nature of
communication to content-transmission communication. Furthermore, NDN was created
to facilitate mobile content transmission. Nevertheless, with the rapid development of
networking and the proliferation of mobile devices, numerous academics, academic institu-
tions, and organizations have explored ways to manage the mobility of network-connected
mobile devices. Moreover, NDN has emerged as the future Internet method of address-
ing mobility issues. Mobility support enables mobile devices to move between various
points of attachment (PoAs) without interfering with content delivery and with minimal
handover delay. A PoA makes it possible for mobile nodes to connect to a network. There-
fore, mobility was separated into mobility for consumers and producers. According to
Saxena et al. [12], the consumer-driven nature of NDN is naturally supported by consumer
mobility. When a mobile user moves to a new PoA, the I_packets must be present for
transmission to continue normally or to resume after handoff. The mobility of content
producers has minimal issues when compared with those of IP architecture [13].

Producer mobility means that a content provider can move without causing problems
for consumers and intermediate routers, in terms of content availability and location, with
as little time as possible between moves. Consequently, on the basis of a new perspective
on mobility support for NDN, Zhu et al. determined that NDN does not support producer
mobility [14]. NDN faces a routing table size scaling issue. In addition, when providers
relocate to a different location, the naming structure introduces significant scalability
challenges [15]. In the same way, when an object moves, a new route must be announced
and spread to replace the old routing information.

Another problem that needs to be solved is the long handoff latency and unnecessary
I_packet losses during transmission to a producer’s old location [16,17]. When a producer
moves, the I_packets keep following the prefix trace in the FIB, which means the I_packets
do not reach the producer and are dropped. In addition, indirect points to support producer
mobility stretch the data path and cause a problem. Therefore, the circumstances cause a
long handoff time. Furthermore, producer mobility requires additional research to find
a concrete solution so that the NDN architecture can confidently be used to replace the
current Internet architecture, with a lack of problems.

In conclusion, a great deal of optimism has been expressed about NDN becoming a
future Internet architecture that is capable of incorporating other networks, without the
need for additional mechanisms. Cisco proposed incorporating hybrid ICN into the 5G
network [18], which prompted many researchers to improve the transmission of ICN into
the 5G network, NDN-5G-SDN support [19], and IoT networking [20,21]. Therefore, more
research is needed, especially when it comes to how NDN helps producers move around.
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Article Contribution: No recent review papers address the latest NDN mobility issues.
Previously, most NDN mobility assessments concentrated on NDN surface design and
quality, while ignoring NDN mobility methods and unresolved difficulties. This study
provides solutions to some of the questions and problems that remain about NDN mobility.
This study’s contributions are as follows: (1) It examines NDN technology, AI, cloud IoT
(C-IoT), and NDN-AI-IoT; (2) It provides an explanatory methodological and parameter
setup for KITE, the PMSS, and hybrid NeMO; (3) It constructs mathematical equations for
signaling cost and handover latency; and (4) It conducts a simulation experiment by using
NS3 for network performance analysis.

Article Organization: The study consists of four sections. Section 2 describes NDN,
NDN with AI, and NDN with C-IoT, in terms of features and technology applications.
Section 3 describes and compares the mobile operation methodology on mobile producer
operations that are integrated with AI and cloud services, i.e., KITE, the PMSS, and hybrid
operations. Section 4 provides a performance comparison, including the mathematical
equations for the NDN-AI-C-IoT mobility method based on signaling cost and handover
latency. Section 5 discusses the network performance for signaling cost and handover
latency. Section 6 provides the conclusions and recommendations for future research.

2. Background

This section briefly explains NDN technology, NDN with AI implementation technol-
ogy, NDN with embedded cloud technology, and NDN with IoT application. The current
Internet architecture follows the process of data transmission by referring to the open
systems communications (OSI) model, but new evolving data-centric technology uses the
data-centric NDN model to transmit content, as depicted in Figure 1. NDN transmission
focuses on layer 3 for content transmission, while for the OSI layer, the IP packet is used
in layer 3. A new NDN paradigm uses a centralized cloud-based strategy for deploying
AI techniques. Recently, NDN-AI has been claimed to be one of the primary enablers of
network and computer convergence. Other technologies include NDN embedded with IoT
technology, such as NDN C-IoT, as a new IoT technology that is aimed at fast data retrieval.
To obtain data, the IoT normally uses IP-based data delivery techniques. However, using
IP-based ways to achieve NDN C-IoT is difficult, because it introduces a new data-centric
paradigm with a distinct design and operation. Current IoT technology suffers from a
severe cascading bottleneck that affects network performance; the solution to this issue
was provided by Fu and Yang [22]. This study focuses on NDN-IoT to tackle issues that
have not been solved by current IoT applications.

2.1. Named Data Networking

NDN presents a high-level overview of the concept and associated approaches, in
which data are identified based on substance or content, rather than on geographical
location. Distributed computing is in high demand, as new technologies, such as big data,
data mining, and AI, emerge. Increasing numbers of articles are devoted to NDN. The next-
generation Internet is built on the foundation of NDN, which is a typical representation
and implementation of content-centric networking (CCN) [12]. A new architecture that can
allow large-scale deployment of content-based distribution is needed with the increasing
use of the Internet, which has shown the limitations of the TCP/IP protocol stack. NDN has
emerged as a game-changing alternative approach and a possible option for next-generation
Internet architecture. NDN combines several aspects for routing, security, and mobility.

As far as we know, very little research has considered multi-metric limitations on
routing techniques. Several methods have been proposed for routing NDN, one of which
is the ant colony optimization algorithm (ACO). The ACO has a better function than
other traditional NDN routing techniques, in terms of bandwidth, cost, and delay [23].
As shown in Figure 2 the forwarding strategy (FS) is part of routing in NDN, to process
content transmission in NDN communications. Another method, known as ant-colony-
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based extensible forwarding, was upgraded from the ACO strategy; it enhances sending
I_packets by automatically assigning each attribute’s weight [24].
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FS has been enhanced to improve quality of service (QoS) and to support data-centric
networking in NDN [25]. This approach improved performance significantly. In a dynam-
ically evolving network, current fixed rules have been set up inaccurately. FS, based on
Q-learning, has implemented a continuous and online learning method that ensures a rapid
response to network outages [26]. Caching strategies also provide several improvements
from the previous strategy, using the leave copy everywhere (LCE) strategy. The NDN
FS strategy has a function in which content is stored in the cache. However, the LCE
strategy uses an algorithm that compares two levels of cache nodes and then takes the node
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degree into account, decreasing the average number of hit hops, the frequency of cache
replenishment, and the throughput of content hits [27].

Another aspect of NDN that is being discussed in current research is handover per-
formance. Network mobility (NeMO) [28] has solved the mobility issues on NDN, but
no detailed discussion is available on evaluation performance, i.e., signaling cost and
handover latency. Other methods have been proposed, e.g., using IPv6 on mobility and
applying SINEMO architecture [29]. Although some problems with the NeMO method
have been solved, problems such as low efficiency and delay caused by triangular routing,
high handoff cost and latency, and a high level of packet droplet and signaling overhead
have not been addressed.

2.2. Named Data Networking and Artificial Intelligence

The current TCP/IP network’s security, mobility, and other issues are addressed by
NDN, which serves as a prototype for the future network by replacing the IP address with
the name of the content. NDN is considered a promising new Internet paradigm to replace
the TCP/IP hourglass model’s “thin waist.” A new solution has been obtained by merging
NDN technology with AI. With its low power consumption and rapid speed, AI is ideal for
IoT systems that require local real-time data analysis. Software implementation of noise
distribution normalization [5] adds Gaussian distributed noise, resulting in differential
privacy for edge AI. Traffic across the core network and inference latency can be reduced by
deploying AI at the edge of networks that are in close enough proximity to the extraction
of a large amount of information [30]. Several articles have embedded medical application
systems on the IoT, including smartwatches, and smart HVAC systems, with the aim
of reducing human effort [31]. A brief discussion was presented by Aman et al. [32],
elaborating on the use of the Internet of Medical Things using AI technology. Analyzing
local data in real time for the IoT systems is made possible by edge AI, which allows for
a low-level operation while protecting user privacy. AI technology has improved data
privacy access, based on a large number of data and mobility systems on NDN [33].

In the context of continuing network location changes, mobility refers to the capacity
to maintain a unified connection with network entities in AI. Existing host-dimension
solutions have exhausted all of the design options and are at a standstill when it comes
to new performance advances. Trajectory-driven reachability updating and topology-
driven intermediate placement have been proposed to improve overall mobility assistance
performance [34]. Figure 3 shows an example of an NDN application that is embedded
with AI mobility in e-health technology.
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In terms of security, NDN data caching, which is a significant aspect of the technology,
can be greatly reduced. Identifying a viable mitigation strategy when NDN routers are
exploited by attackers is difficult. ACO [35] has been proposed for probing a safety trans-



Sensors 2022, 22, 6668 6 of 20

mission path and adjusting content retrieval, gathering information about all routers on a
network, and bypassing bad routers, thereby preventing the bad routers from continuing
to disseminate illegal content and minimizing substance contamination by removing bogus
data packets from a cache store during the path traversal. A reactive attack uses content
fetch time to track down the items that people are looking for. A proactive attack [36]
caches an item before checking whether the victim requests that item.

2.3. Named Data Networking and Cloud Internet of Things

Cloud services are increasingly used in today’s networked and distributed applica-
tions. However, relying only on cloud services is not always the best option. This section
focuses on cloud IoT applications that collaborate with NDN. As a new paradigm tech-
nology, NDN has evolved as an element of the future Internet, enabling content delivery,
mobile, privacy, reliability, and access to data, regardless of geographic space. NDN has
various functionalities, i.e., cache management, device-naming schemes, regulations for
password protection, forwarding strategies, configuration management, and awareness
of NDN/CCN in the IoT [37]. NDN has also evolved in various IoT applications. The
IoT is a well-known idea that envisions the interconnection of several physical items to
facilitate the transmission of data between those items. IoT networks need to be designed
for performance in a heterogeneous environment with a high volume of data, for devices
with limited resources, and with a high degree of mobility. NDN-based content-forwarding
solutions have been proposed for usage in IoT applications in NDN-IoT scenarios, given
proper identification [38].

NDN IoT applications have also been used to ensure that rapid disease spread can
be handled more efficiently, using IoT applications for e-health. To address the limited
resources of IoT devices and the time-sensitive nature of the data transmitted, the smart
COVID-19 pandemic controlled eradication over NDN-IoT (SPICE-IT) method has been
used to reduce the problem of network congestion and cache overflow [39]. The NDN
secure remote health-monitoring system [40] is one of the e-health IoT applications that have
been developed to increase online communication among doctors and patients. An e-health
security application has been deployed to make sure NDN communication is secure [41];
this technology must be enhanced via NDN mobility technology. NDN IoT applications
have also been applied in emergency response cases. Currently, all disaster scenarios
apply in simulation-based situations only, but an NDN disaster-response system [42] has
been developed to monitor the probability of a disaster. That work [42] came up with
a new solution by applying edge infrastructure with cloud technology to achieve a fast
response for the handover process, ensure a quick exchange of information, and reduce
delays in transmission. Another work in disaster scenarios devised a new solution by
implementing a connection-oriented surveillance system [43]. That work [43] improved
the communication between the sender and the receiver by enhancing the transmission
rate of interest packets requested by the consumer.

New NDN ideas, such as those pertaining to security, in-network caching, hierarchical
naming or namespace, named content, and NBR, are used to meet IoT needs [38]. Some
of the ideas being proposed in IoT technology [44] by using clustering-based intrusion
detection for 5G have improved performance on IoT networks. Other aspects of energy-
saving on 5G, especially the computing paradigm on green IoT, have been proposed by Hu
et al. to improve communication overhead on the server cloud side [45]. This technique
can be used for applications on the NDN C-IoT service. NDN is also compatible with 6G
networks, because the sender and receiver are connected to each other. NDN has additional
features, such as in-network caching and hop-by-hop transmission. Hu et al. proposed
an efficient method that is suitable for NDN C-IoT implementation to improve energy in
network computing, to overcome higher latency and signaling costs [45].

Over NDN, hydra [46] automatically provides scalable and efficient data distribution
at large volumes and enables distributed control with great robustness. The traditional
approach is commonly used in the majority of NDN clouds, in which developers need to
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communicate with a central server. GitSync [47] can function even in the event of a network
partition or inconsistent connectivity, because it has no single point of failure. On the other
side of the vehicular perspective, vehicle-to-everything (V2X) networking’s full potential
can be realized, with several significant issues that must be resolved. The dual technique
of a combined blockchain and NDN framework [48] was developed to secure V2X. The
methodology of the NDN cloud is summarized in Table 1.

Table 1. NDN cloud application.

Reference Method Description

[49] ERDOS Integration of edge-native data flow and edge computing.

[50] NDN-based aVC framework (NVCF) Improve aVC data gathering success rates and lower the
cost of aVC data retrieval.

[51] NDN Genomics

With in-network caching of widely used datasets, NDN for
genomic information operations improves data insights,

accelerates extraction leveraging ubiquitous resources, and
enables society to create architecture.

[52] VC NDN By using the NDN’s benefits, it provides cost-effective and
value-based data retrieval.

[53] NDN Routing overlay
In addition to reducing network and cache burden, NDN
CSs that offer data aggregation and transformation also

enforce privacy naturally.

[54] VCCN Vehicle networks have the potential to spread new data
via multi-hop.

[55] NDN IoT Edge Cipher texts and signatures are used to ensure the security
of medical data transport and the advantages of NDN.

[56] VSN on NDN Routing data between virtual sensors is a solution to the
current paradigm.

[57] NDN Mixed Reality Real-Time
Based on NDN, an AR/VR computational architecture that
potentially addresses these issues is developed by utilizing

a hybrid edge-cloud model.

[58] NDN SGX-Based Data access control keys are distributed and maintained
efficiently and flexibly.

3. Mobility Methodology

KITE, the PMSS, and hybrid NeMo were selected due to the mobility support offered
and the need for producer mobility technology. KITE uses the indirection method to trans-
mit content using simple NDN communication; the PMSS improves producer operation by
reducing handover latency; and hybrid NeMO provides a BIT to replace the FIB function
by using the same cluster for indirection mobility. Thus, these three methods are compara-
ble in measuring network performance for handover latency and signaling cost. On the
basis of the NDN architecture, the ndnSIM simulator can be implemented on the network
protocol stack framework. The simulator works with any link layer protocol, including
point-to-point, CSMA, and wireless, as well as with the deployment of IPv4 and IPv6. The
advantage of the ndnSIM simulator is that it can implement heterogeneous scenarios, such
as NDN over IP. The ndnSIM simulator uses the C++ programming language to enable
several modules in the NDN to operate, including PIT, FIB, content storage, network and
application surface, and forwarding strategies. The use of this structured module enables
any component to be modified.

NS3 has been patented, using the GNU GPLv2 license to reduce the writing of model
procedures in simulations. The NS3 simulator uses the C++ library as its main program,
as no graphics version is provided. NS3 can be used on Windows operating systems by
adding MinGW modules. To capture the traffic log, the Wireshark app can be combined
with the NS3 simulator. Several methods are running for the NDN testbed, especially on
mobility perspectives, including KITE with C-IoT, PMSS with C-IoT, and hybrid NeMO
with C-IoT, which is the latest technology. Figure 4 shows the setup for these three methods,
which include a home router and a destination router; an AP that maintains the connection
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for mobile producers; and interaction between consumers with FIB to receive I_packets
and D_packets.
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Simulation is applied by researchers to implement new solution methods before
testing them in real situations. Simulation methods can improve performance and meet
performance expectations. Simulation combines elements of hardware and software. The
combination of these elements is important, because running the simulation process can
identify how some elements can communicate with each other and also identify the effect
of the use of certain elements on the simulation process [59]. The network simulation
process is unavoidable in the research article process, due to the use of open source model
systems. The advantage of using open source systems is that researchers can conduct
studies and find faults while the simulation process is in progress. With the use of network
simulation using open source methods, various applications with different protocols can be
run, such as FTP, TFTP, and Telnet. Network simulators can implement the methodological
process for a study without implementing it in real situations. They can be implemented in
different network topologies.

Various types of network simulators are available in today’s market. Different func-
tions of each network simulator are used, depending on the accuracy of the parameters, i.e.,
the difficulty level, the number of nodes, the type of traffic on the nodes, the level of CPU
usage, the memory usage, and the time rate calculation for the protocol used for a study.
Several studies have been conducted on network simulators, such as NS3 [60], OMNET
++ [61], QualNet [62], and NetSIM [63]. Some articles on NDN simulators start with a basic
setup to design a testbed for a preliminary test of NS3 [64].
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3.1. KITE of NDN with C-IoT and AI

KITE technology with cloud operation uses a server called the rendezvous server (RS),
which is located between the consumer and the mobility producer that uses IoT devices. The
RS can always be traced by an NDN producer known as KITE. As shown in Figure 5, KITE
operates between transmission I_packets from the consumer via accessing the producer
by storing the location through the RS. A single route prefix is assumed for simplicity.
KITE swaps the public keys to create confidence. It is signed by the mobile producer
and has a special trace tag in the name, containing AI technology. The RS acknowledges
the data interest for the location of the producer and returns signed tracing data to the
mobile producer via the same path as the TI. Intermediary forwarders establish or update
FIB entries for the mobile producer data prefix. When a mobile producer moves to other
locations, it stores all of the prefixes via cloud storage for any interest packet update. Table 2
explains the operation of KITE technology in cloud storage.
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Table 2. KITE operation.

Flow of Transmission Process Status Description

Process 1 Before handoff

Typically, a consumer sends an I_packet over an
NDN router to the network to request data. The
NDN router then determines if the material is

available; if not, then it sends an I_packet to the
NDN network.

Process 2 Initiate connection with a content router

The I_packet’s prefix data name traverses NDN
routers to reach the location of the producer. If the
data are cached by any router in the network, then
the router reacts promptly with the cached data. If
not, then the routers, along with the path, store the
interest information as entries in the PIT and FIB

tables, then forward it until it reaches the producer.
The producer then provides the data in breadcrumb

format to the consumer.
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Table 2. Cont.

Flow of Transmission Process Status Description

Process 3 Handoff started

The producer abruptly decides to switch from the
old PoA to the new PoA. After the connection, a new
content name prefix is generated, and the producer

prepares to notify the anchor router of the
new name.

Process 4 Update RS
The producer overwhelms the network with trace

I_packets destined for the immobile anchor router or
the RS to notify it of the new name prefix.

Process 5 Establish data trace from producer to
NDN router

Through intermediate routers, the anchor router or
RS responds with trace data packets and establishes
a trace between the mobile producer and the anchor

router or RS.
Process 6 Store PIT in RS The consumer saves PIT in the NDN router or RS.

Process 7 After the handoff operation The NDN router forwards the consumer I_packet
through data tracking at the mobile producer.

Process 8 Producer acknowledges The mobile producer replies to the D_packet to the
consumer through the NDN router.

3.2. The PMSS of NDN with C-IoT and AI

Several processes take place while using the PMSS with cloud to enhance producer
mobility, as shown in Figure 6. The SR element is added to maintain data packet transmis-
sion with add-on cloud storage for IoT implementation and AI technology for processing
data at mobile producers that use IoT devices as a transmission mechanism. Table 3 shows
the details of the transmission of the PMSS.

Table 3. The PMSS’s operation.

Flow of Transmission Process Status Description

Process 1 Before transmission

Before handover transmission between the producer
and the consumer, consumers transmit I_packets for
requesting data to the mobile producer. The mobile

producer checks the available content with SR1. If the
content is not available, then it searches with other SRs

in their neighborhood.

Process 2 Broadcast
Interest packet time is the time to retrieve the

requested content and the time it takes to send it from
the source to the destination.

Process 3 Processing data

The I_packet goes through the nearby RS until the
mobile producer is reached. Processing data from the

consumer to the mobile producer is similar to the
processing of data in KITE operation behavior. While
the handover process starts, the mobile producer cuts
off the connection with RS1 and tries to find a greater
signal with another RS from another zone. From the
RS, a new naming prefix and a new mobile interest

packet are created while reaching a new RS.

Process 4 FIB update

The next step is to broadcast the information to update
the FIB that contains the routing information of the

I_packet. Routing information is important to control
the broadcast domain to make sure that no collision of

I_packets occurs between the domain.

Process 5 Producer update

After this process is completed, the consumer resends
a new interest packet to obtain new information from
the producer. To maintain connectivity, NDN uses the
best route strategy to reduce collision and forward the

I_packet to the mobile producer’s new location.

Process 6 Cloud update

Cloud storage is used to update all transmission
information and to store it in case the current

connection is interrupted or fails. Thus, its advantage
is that transmission is maintained and not disrupted.
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3.3. Hybrid of NDN with C-IoT and AI

For hybrid NeMO with cloud operation, as shown in Figure 7, the mobile producer
moves from the current location under agent router 1 (AR 1) to the newest location on AR
2. The processing of data in the mobile producer using this hybrid technology uses AI
to speed up the transmission process. During this movement, all information of the data
packet and the interest packet is currently updated through FIB, but in this technology,
BIT reduces the functionality of FIB. AR 1 and AR 2 interact with each other on the NDN
network cloud. After BIT has been updated at AR 2, it sends the latest information to MR 2
and, finally, to the mobile producer. After this operation, which is called interNeMO, the
consumer obtains the data packet successfully. Table 4 explains the operation of hybrid
NeMo in cloud storage.
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Table 4. Hybrid Operation.

Flow of Transmission Process Status Description

Process 1 Exchanging information Movement occurs from MR 1 to MR 2, and
content is stored at MR2.

Process 2 Forwarding MR 2 sends a signaling packet to AR 2 when
AR 1 sends an alert on movement.

Process 3 Creating BIT
AR 2 and MR 2 create BIT for each entry of
I_packets. BIT consists of information on
consumer nodes, PoA, and face numbers.

Process 4 Matching BIT
BIT has a similar function to FIB, with
I_packets searching for FIB to create a

movement from the producer to the consumer.

Process 5 Forwarding I_packets
If the I_packet matches the information request
by the consumer, then the content is directed

without referring back to FIB.

4. Performance Comparison

As discussed in Section 3, each technology has its own advantages and a variety
of operations. All this technology varies their levels of network performance, such as
handover latency, signaling cost, and overhead cost.

This section will focus on handover latency and signaling cost on the perspective
mobility of NDN. Each operation producer has three well-known methods for mobility:
KITE, which is based on indirection technology; the PMSS, which is an evolution of
the KITE operation; and hybrid NeMO, which is the newest method for NDN mobility.
Handover delay, i.e., the time taken by a mobile producer that has received I_packets
before disconnecting from their current connection, continues as new I_packets arrive at
a new location. Handover latency is good when the value is smaller during the content
transmission. Signaling cost, i.e., the measurement of the number of transmission messages
from the node producer to the node consumer from NDN network communication, is good
when the value is smaller while the content transmission is in progress.

To confirm this statement, a mathematical equation for KITE, the PMSS, and hybrid
NeMO was designed to generate a formula for each network’s performance. For network
analysis, ndnSIM was used to compare the performance evaluation for each method. For
further setup in ndnSIM, several parameters were defined for each method to measure
the performance and impact of mobility on each producer mobility technique. This setup
measured the quality of network performance via each method by varying the number of
parameters. Each topology used the same network grid of 400 m × 400 m; the range from
the NDN router to AP was 100 m; the number of producers and mobility speeds varied
for each method; the I_packets’ transmission range used 100 ms; and the same benchmark
reference as that of the random waypoint mobility model was applied. Table 5 shows the
details of how the parameters were set, including the size of the network, the speed of
mobility, the mobility model used, and the simulation software on each testbed for different
NDN mobility perspectives. Figure 8 shows the number of nodes for the consumer and the
producer, which was used to measure the handover latency and signaling cost.

Table 5. Parameter simulation setup.

Mobility
Technique

Network
Size (m2)

Distance
Router NDN

from AP

Mobile
Producer
Quantity

Mobility
Speed (m/s)

Interest
Range (ms)

Segment
Size (bytes) Mobility Model Simulation

Software
Benchmark
Comparison

KITE 400 × 400 11
nodes/100 m 1 2 100 1024

Random waypoint
mobility
model

ndnSIM KITE

PMSS 400 × 400 100 m 2 50, 200,
350 ms 100, 200, 300 1024

Random waypoint
mobility
model

ndnSIM
MBMA,

CDBMA,
CDBMA,

IBMA

Hybrid
NeMO 400 × 400 100 m 5 100 ms 100, 200 1024

Random waypoint
mobility
model

ndnSIM KITE
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4.1. Signaling Cost

The signaling cost is the total traffic demand encountered while transmitting signaling
messages during content transmission. According to [65], the handover rate is defined
as the likelihood that the user crosses over to the next cell within one movement period.
For this purpose, we focused on several messages that can be sent through the network
during handover transmission. A low signaling cost corresponds to better performance of
the proposed methodology.

Signaling cost for KITE operation

Equation (1) describes the signaling cost for the KITE operation, while Table 6 shows
the parameter setup.

SCKite = CprodAR + Caccessrouter + Caccessrouter + CprodAR + CconsumerAR + Caccessrouter + Caccessrouter+ CprodAR
= SInterest/data × (2a + 2c) + SInterest × (2a + 2c)

(1)

Signaling cost for PMSS operation

Equation (2) describes the signaling cost for the PMSS operation, while Table 6 shows
the parameter setup.

SCPMSS = CprodAR + Caccessrouter + CconsumerAR + Caccessrouter + Caccessrouter+ CprodAR
= SmobilityInterest × (a + 2c) + SInterest × (a + c)

(2)

Signaling cost for hybrid NeMO operation

Equation (3) describes the signaling cost for the hybrid NeMO operation, while Table 6
shows the parameter setup.

SChybrid = CprodAR + Caccessrouter + CconsumerAR + CprodAR
= SmobilityInterest × (a + c) + SInterest × (a + c)

(3)
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Average signaling cost for each mobility operation

Equation (4) describes the average signaling cost for each method.

SCAVERAGE = (C10 + C20 + C30 + C40 +C50 + C60 +C70 + C80 + C90 + C100)/10 (4)

Table 6. Network analysis parameter setup.

Parameter Units Description Parameter/Value

Sdata bytes Size data packet 2000 bytes
SInterest bytes Size Interest packet 40 bytes

SInterest/SmobilityInterest bytes Size Interest packet 40 bytes

a bytes Packet transmission latency and cost
between consumer and producer 1

c bytes
Packet transmission latency and cost

between the old NDN router and the new
NDN router

5

Tp ms Paused time 0 ms, 100 ms

a bytes Packet transmission latency and cost
between the consumer and the producer 1

Lw ms Wired link delay 2 ms

d bytes
Packet transmission latency and cost

between the consumer and the producer
and the server

9

4.2. Handover Latency

Handover, or handoff, is a method of mobile communication in which cellular trans-
mission (voice or data) is transferred from one base station (cell site) to another without
compromising the cellular transmission link. Handover is an important part of mobile
transmission because it sets up data sessions or phone calls between always-mobile devices.
Handover latency and failure are major problems in mobile data networks that slow down
and stop service. We need lower latency to achieve better performance. Equation (5) refers
to [66] to measure the speed of latency by calculating the average hop count of content
transmission with a variety of mobile producer speeds.

Handover latency equation for KITE operation

Equation (5) describes the handover latency for the KITE operation, while Table 6
shows the parameter setup.

HLkite = ((TpTp + (l/v)) + (1 − (TpTp + (l/v)))) × (lpn + a × Lwlup + 2d × LwtrcgInt + a × LwltrcdInt + 2d × LwtrcdIntA2) (5)

Handover latency equation for PMSS operation

Equation (6) describes the handover latency for the PMSS operation, while Table 6 shows the
parameter setup.

HLpmss = ((TpTp + (l/v)) + (1 − (TpTp + (l/v)))) × (lpn + a × LwlmobInt + 2c × LwlmobInt + a × LWlint + c × LWintA2) (6)

Handover latency equation for hybrid NeMO operation

Equation (7) describes the handover latency for hybrid NeMO operation, while Table 6 shows
the parameter setup.

HLHybrid = ((TpTp + (l/v)) + (1 − (TpTp + (l/v)))) × (Lpn + a × Lwlhybrid + 2c × Lwlhybrid + a × Lwlint + c × LwintA2) (7)

Average handover latency equation for each mobility operation

Equation (8) describes the average handover latency for each method.

HLAVERAGE = (HL10 + HL20 + HL30 + HL40 + HL50 + HL60 + HL70 + HL80 + HL90 + HL100)/10 (8)

5. Discussion and Analysis
This section discusses the performance evaluation for KITE, the PMSS, and hybrid NeMO,

based on an IoT element embedded in the technology. Two types of performance evaluation were
compared: signaling cost and handover latency.
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5.1. Signaling Cost
Figure 9 shows how the signaling cost varied with mobile producer speed, starting from 0 ms to

100 ms after the simulation was run using the NS3 software based on the parameter sets.
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Figure 9. Signaling cost versus speed.

The results were encouraging, despite the broadcasting nature of the three methods for the
mobile producer and the domain restriction application. KITE and the PMSS had minimal handoff
signaling costs. However, the handoff signaling cost of hybrid NeMO was nearly equal to or less
than that of KITE and the PMSS, with about 4% of signaling cost, compared with those of KITE and
the PMSS. The result of hybrid NeMO was good, even though no significant improvement against
KITE and the PMSS was found at certain mobile producer speeds, such as 30 to 50 m/s, 50 to 60 m/s,
and 70 to 100 m/s.

With regard to hop-count performance, Figure 10 shows that the KITE operation sent a greater
number of messages than the PMSS or hybrid NeMO did. When the speed increased, the hybrid
operation increased the number of messages to be sent. Therefore, mobility speed did not affect the
performance of the transmission data packet and the interest packet to the consumer, because of the
stability of BIT. Message drop was also encountered, but message delay generally happened during
transmission.
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Figure 10 shows that the hybrid method had the highest number of transmitted messages,
compared with the PMSS and KITE. Even though a recent study stated that the PMSS and KITE have
minimal handover signaling overhead during transmission, compared with anchor and anchorless
producer mobility methods, the performance of the hybrid method in terms of signaling cost was
more efficient than that of these other two methods.

5.2. Handover Latency
Figure 11 shows the handover latency versus variation in mobile producer speed from 0 ms to

100 ms after the simulation was run using the NS3 software based on the parameter set.
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Figure 11. Handover latency (hop count) versus speed.

The handover latency of all schemes continued to increase, due to the increase in interest arrival
rate. In addition, for the hybrid NeMO scheme, the handover latency was higher than that of KITE
and the PMSS, because of the fast handover messages sent by the mobile producer as a pre-process
of handoff. Moreover, the signaling cost of KITE was between that of hybrid NeMO and the PMSS,
while hybrid NeMo had the lowest handover latency of 46% compared with KITE and 60% compared
with the PMSS.

On the basis of a mathematical equations that were constructed for cost signaling and handover
latency, a simulation was conducted by using the NS3 simulator to generate network performance
with the use of a certain parameter. The techniques were compared to determine the hop count over
speed. Figure 12 shows that while the mobile process increased the speed, the hop count to reach
data for hybrid NeMo was less than that for the PMSS and KITE, because BIT decreased the usage of
FIB, thereby reducing the hop count. This feature was an advantage of hybrid NeMO over the other
two methods.

Handover latency can be measured by the time a mobile producer requests I_packets that
were received from the last content router and the transmission of new I_packets after the handover
operation. When more content needs to be traversed, the latency is increased because of the long
distance from the consumer to the producer. The hop count between the consumer and the producer
was examined. Figure 12 shows that when the speed of mobile producers increased, the hybrid
method reduced the number of hops from the consumer to the producer. The average hop count for
hybrid NeMo was, at most, 4 per hop, compared with the average hop count for the PMSS, which was
10 per hop; KITE had a maximum of 8 per hop while the mobile producer speed increased. Hybrid
NeMO showed that having a lower average hop count could reduce handover latency, thus resolving
the issues of path stretching for KITE.
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6. Conclusions
This study adds comprehensively to current research on the merging of NDN, AI, and C-IoT

technologies. This paper’s main contribution is the combination of NDN-AI-IoT. It focused on
three selected methodological explanations for KITE, the PMSS, and hybrid NeMO. NDNs, rather
than being simply an Internet technology, serve a variety of functions, with a focus on consumer-
driven network architecture. KITE uses the indirection method to transmit content via simple NDN
communication; the PMSS improves producer operations by lowering handover latency; and hybrid
NeMO provides a binding information table to replace the base function of forwarding information.
In addition, mathematical equations for signaling cost and handover latency were described in this
study. The producer mobility operation was highlighted using the network simulator ndnSIM NS-3.
Based on the mobility scenario, mathematical equations were developed for each methodology to
measure handover latency and signaling cost. We concluded that the hybrid NeMO performs better
than KITE and PMSS in terms of handover latency and signaling cost. In the future, this work
will be expanded to include additional parameters with a larger network to support scalability and
multiple environments.
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