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Abstract: To improve the motion distortion caused by LiDAR data at low and medium frame rates
when moving, this paper proposes an improved algorithm for scanning matching of estimated
velocity that combines an IMU and odometer. First, the information of the IMU and the odometer
is fused, and the pose of the LiDAR is obtained using the linear interpolation method. The ICP
method is used to scan and match the LiDAR data. The data fused by the IMU and the odometer
provide the optimal initial value for the ICP. The estimated speed of the LiDAR is introduced as the
termination condition of the ICP method iteration to realize the compensation of the LiDAR data.
The experimental comparative analysis shows that the algorithm is better than the ICP algorithm and
the VICP algorithm in matching accuracy.
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1. Introduction

Exact pose estimation is the key technology for mapping, location, and navigation in
the field of the mobile robot [1], which can provide the message of the robot’s position and
gesture in real time. Sensors used to obtain robot pose estimates include LiDAR, cameras,
wheel encoders, IMUs, etc. According to the different sensors the robot is equipped with,
SLAM technology is divided into visual SLAM and laser SLAM. Although the sensor used
in visual SLAM has low cost and rich image information, it has a great impact on the normal
operation of the camera under weak- or no-light conditions. What is more, because the
image information is too rich, the algorithm requires high processor performance. Now, the
mainstream mobile robots are still dominated by laser sensors [2], such as the unmanned
delivery vehicle of JD and the “prime” unmanned delivery vehicle of Amazon.

A 2D LiDAR estimates the pose of the sensor by scan-matching two adjacent frames of
laser data [3]. However, only relying on 2D laser SLAM to estimate the pose of the robot has
many limitations. The frequency of the system output estimated pose is low, and the running
time becomes longer, which will generate a large cumulative error and eventually affects the
positioning and map construction of the robot. A cartographer algorithm [4] is developed
using a SICK radar, and the frame rate can reach more than 100 Hz. The motion distortion can
be ignored, so there is no distortion correction algorithm module. However, the frame rate
of most LiDAR is around 10 Hz. Without distortion correcting, there will be distortion error
appearing in LiDAR data, which is hard to eliminate through loopback detection and back-end
optimization, etc. The research on this issue has great practical significance. Many domestic
and foreign works have been conducted on removing motion distortion and false match of
LiDAR data in recent years. Yoon et al. [5] proposed an unsupervised parameter learning
in the Gaussian variational inference setting, which combines classical trajectory estimation
of mobile robots and deep learning on rich sensor data to learn a complete estimator via
the deep network. However, it requires a large amount of calculation, the captured laser
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data cannot complete feature extraction or matching when the environment is not clearly
structured, and the real-time and robustness are poor. Therefore, it is only suitable for small
indoor scenes with clear structure instead of open large outdoor scenes. Hyeong et al. [6]
proposed an ICP (Iterative Closest Points, iterative closest point) outlier rejection scheme to
compare the laser data of the scanned environment and select matching points and reject
the algorithm that does not match parts. The ICP algorithm needs to be provided with an
initial value, and the matching accuracy of the ICP algorithm directly depends on whether the
initial value is accurate. However, in the process of acquiring the surrounding environment,
the laser is often accompanied by the motion of the robot. Especially when the laser frame
rate is small, the captured laser data will produce motion distortion, and there will be a large
error with the real environment over time. Xue et al. [7] proposed a simultaneous fusion of
IMU, wheel encoder, and LiDAR to estimate the own motion of a moving vehicle. However,
this method does not propose a countermeasure for discontinuous laser scanning. Bazet and
Cherfaoui [8] proposed a method for correcting errors caused by time stamp errors during
sensor data acquisition, but this scheme assumes that the scanning angle of the laser is fixed
and the quadratic interpolation assumption is too simplistic, which cannot meet the complex
outdoor environment. Hong et al. [9] proposed a new approach to enhancing ICP algorithms
by updating speed, which estimates the speed of the LiDAR through ICP iterations, and uses
the estimated speed to compensate for scan distortion due to motion. Although it considers
the motion of the robot into consideration, its assumption of uniform motion is too ideal; for
low-frame rate LiDAR, the assumption of uniform motion does not hold.

Aiming at the above problems, this paper proposes an improved algorithm for esti-
mated speed scan matching that integrates an IMU and odometer. This algorithm is called
Iao_ICP (ICP that integrates IMU and Odometer) in this paper. The main contributions of
this paper are as follows: (1) The algorithm uses the linear interpolation method to obtain
the pose of LiDAR, which solves the alignment problem of the discontinuous laser scan
data. (2) The data fused by the IMU and the odometer provides a better initial value for the
ICP, and the estimated speed of the LiDAR is introduced as the iterative value of the ICP
method to realize the termination condition of LiDAR data compensation.

The rest of the paper is organized as follows: Firstly, the causes of motion distortion in
the traditional ICP algorithm are analyzed. Secondly, the incremental information of the
wheel odometer and the angular velocity information of the IMU are integrated into the
pose estimation. Finally, through data sets and physical experiments, the effectiveness of
the proposed algorithm in removing motion distortion and improving the accuracy of map
construction is demonstrated.

2. Causes of LiDAR Motion Distortion

The mechanical LiDAR is driven by an internal motor to rotate the radar ranging core
360◦ clockwise to obtain the surrounding environment data. Each frame of laser data is
encapsulated by the data information obtained by a certain number of discrete laser beams,
and the laser data of each frame is not obtained instantaneously. The data distortion of
LiDAR is related to the motion state of the robot which carries LiDAR. When laser scanning
is accompanied by the motion of the robot, the laser data of each angle is not obtained
instantaneously. When the scanning frequency of the LiDAR is relatively low, the motion
distortion of the laser frame caused by the motion of the robot cannot be ignored [10].

The current domestic LiDAR rotation frequency is about 5–10 Hz. When the robot
carrying the LiDAR is stationary, the measurement data of the LiDAR has no error, but in
the SLAM system, the robot is often in a state of motion. Take the environment shown in
Figure 1 as an example. It can be seen that the distance data of each laser beam are collected
in different poses, as shown in the pose of points A and B. Suppose the robot is moving
at a constant speed, the solid curved arrow indicates that the LiDAR rotation direction is
clockwise, and the solid long straight arrow indicates that the LiDAR moves from point A
to point B along the X direction. Then, in the case of no motion distortion correction during
this period, the LiDAR data will have a motion distortion error of ∆x.
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Figure 1. The acquisition process of one frame of LiDAR data.

As described above, when the robot obtained a frame of LiDAR data, the laser is obtained
at point A, and the laser is obtained at point B. However, when general LiDAR drives package
data, it is assumed that all laser beams of a frame of LiDAR data are obtained in the same
pose and instantaneously, that is, all laser beams are obtained from point A data. Its pose
actually produces motion changes, and each laser point is generated on a different reference
pose, which eventually causes the environmental distortion of the laser collection. As Figure 2
shows, the left picture is the actual environment, while the dotted line in the picture on the
right is the true value, and the solid line is the LiDAR data with motion distortion.

Figure 2. LiDAR motion distortion.

3. Principle of ICP Algorithm

The ICP algorithm [11] was first developed by Beals and McKay in 1992. The ICP
algorithm is essentially an optimal registration method based on the least-squares method.
ICP first matches each point of the target laser data with the closest point of the reference laser
data and finds the rotation matrix R and translation matrix p, which are used to convert the
two. Afterward, the laser matching is iteratively optimized by repeatedly generating pairwise
closest points until the convergence accuracy requirements for correct registration are met.
The ICP algorithm first needs to determine an initial pose, and the selected initial value will
have an important impact on the final registration result. The algorithm may fall into a local
optimum instead of a global minimum if the initial value is not chosen properly.

Given X = {x1, x2, · · · , xNx} as a frame of laser data, P =
{

p1, p2, · · · , pNp

}
as the

laser data of adjacent frames, and T = {T1, T2, · · · , Ti} as the transformation matrix of
laser data of adjacent frames, xi and pi indicate the coordinates of the laser spot, Nx and
Np indicate the number of laser dots, and i indicates the frame number of laser data. This
paper defined a minimizing objective Function (1) to transform P through the coordinates,
and cover the maximum to X [11].

E(R, p) =
1

Np
∑Np

i=1 ‖ xi − Rpi − t ‖2 (1)
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The resulting transformation matrix T can be described as (2):

T =

[
R p
0 1

]
(2)

The processing steps of the given objective function are shown as follows:
Step1: Solving the mean value of LiDAR data X and P:

Ux =
1

Nx
∑Nx

i=1 Xi, Up =
1

Np
∑Np

i=1 Pi;

Step2: Remove the translation of LiDAR data X and P to distributed laser data around
the mean value:

x′i = xi −Ux, p′i = pi −Up

Step3: Define matrix, and make SVD decomposition of it, where H is the matrix to be
decomposed by SVD, U and V are the two non-singular matrices decomposed, and σ1, σ2,
and σ3 are the three singular values decomposed, respectively:

H =
Np

∑
i=1

x′i p′Ti = U

σ1 0 0
0 σ2 0
0 0 σ3

VT

Step4: Calculate the solution of the objective function:

R = UVT, p = ux − Rup

Since the ICP algorithm uses the closest point as the corresponding point, the initial
result may be different from the real environment. However, the results converge to the
base environment by repeating this process. The LiDAR scan data for frame i, namely, X,
are shown in Figure 3a. The LiDAR scan data for frame i + 1, namely, P, are shown in
Figure 3b. The first step of ICP iteration is shown in Figure 3c. The closest point between
X and P is found as Figure 3d shows. The first matching estimated transformation and
updated P by p′i = T1 pi, which is shown in Figure 3e. The X and P matched after many
iterations, as Figure 3f shows. Final pose estimation is solved through the transformation
of T = TnTn−1 · · · T2T1(i = 1, · · · , n), namely:

xi = TnTn−1 · · · T2T1 pi = Tpi (3)

Figure 3. The principle of ICP algorithm. (a) Frame i (b) Frame i + 1 (c) Start matching (d) Find
adjacent (e) First match (f) After multiple iterations of matching.

4. Estimation Speed Scan Matching Algorithm Based on IMU and Odometer

A wheeled odometer and IMU are introduced to compensate for motion distortion
of laser data caused by robot moves. Direct measurement of displacement and angle
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information through a wheel odometer or direct measurement of angular velocity and
linear acceleration through an IMU [12], then integrate them, respectively, to obtain the
displacement and angle information. In the ideal conditions, the wheel odometer or IMU
has a high-precision local pose estimation ability because of the high pose update frequency
(higher than 200 Hz) of the above sensors, which can accurately reflect the motion of the
robot in real time [13]. What is more, these two types of sensors are completely decoupled
from the robot state estimation, which can prevent the introduction of errors. However,
on the one hand, during the actual movement of the robot, the wheels will slip and the
accumulated error will occur, which leads to a certain deviation in the obtained odometer
angle data when only the encoder is used, and the error increases with the running time
and the stroke increases. On the other hand, the linear acceleration accuracy of the IMU is
poor, though it has high angular velocity measurement accuracy, and the local accuracy
of the quadratic integral is still very poor, which leads to a certain deviation of obtained
displacement data. Therefore, this paper proposes the Iao_ICP algorithm, and the algorithm
framework is shown in Figure 4. First, the information of the IMU and the odometer is
fused, and the pose of the LiDAR is obtained using the linear interpolation method to
remove most of the motion distortion. Then, scan matching of LiDAR data is conducted
using the ICP method. Data fused by the IMU and odometer provide a better initial value
for ICP, and estimated speed is introduced as a termination condition for iteration of the
ICP method [14]. The matching result is used as the correct value, and the error value of the
odometer is obtained. The error value is evenly distributed to each point, and the position
of the laser point is corrected again, so as to further determine the pose of the laser point.

Figure 4. The architecture diagram of the Iao_ICP algorithm.

4.1. Pose Estimation with Fusion of IMU and Odometer

The chassis control system of the mobile robot reads the IMU data and the odometer
data. Each time the IMU data are read, the odometer data can also be obtained without
considering the problem of time synchronization. That means the IMU pose queue and
odometer pose queue maintain strict alignment, which can directly fuse both to generate
a new pose queue. However, the update frequency of low-cost LiDAR is generally only
5–10 Hz, which leads to the new pose queue after fusion cannot maintain strict alignment
with the pose queue of laser frames. Although there is no way to obtain the pose of the
laser frame directly from the fused pose queue since the pose queues of the two are not
strictly aligned, the pose of the laser frame can be obtained by linearly interpolating the
fused pose queue. Below are the detailed steps to obtain the estimated pose based on the
linear interpolation method by fusing the IMU and odometer data:

Step1: As the start time of the current laser frame, the end time of the current laser
frame, and the time interval between two laser beams have been known. Odometer data
and IMU data are stored in a queue in the same chronological order, and the team leader is
the earliest. There are oldest odometer and IMU data timestamps, and latest odometer and
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IMU data timestamps. First, solve the new queue generated by fusing odometry and IMU
data within the above timestamps. The fusion expressions are shown below:

Odom_Imu_List[i].x = OdomList[i].x
Odom_Imu_List[i].y = OdomList[i].y
Odom_Imu_List[i].θ = ImuList[i].θ

(4)

In the formula, Odom_Imu_List [i] is the fused pose data at the ti moment, OdomList [i]
is the odometer pose data at the ti moment, ImuList [i] is the IMU pose data at the ti moment,
and x, y, and θ are the X-axis data, Y-axis data, and angle data in the pose data, respectively.

Step2: Solve the emission pose corresponding to each laser in the current frame of
laser data, namely, to solve the robotic pose at the time of {ts, ts + ∆t, · · · ts + i∆t · · · te}. It
is reasonable to assume that the robot moves at a uniform speed during the data update of
the fusion of two adjacent frames due to the high update frequency of odometer data and
IMU data. Linear interpolation can be used on this assumption, as shown in Figure 5.

Figure 5. Linear interpolation of laser pose.

Suppose there are corresponding fused pose queues at the time of l, k for laser data,
but not at the time of s, and the value of s is greater than l, and less than k. Then, solve the
pose of robot ps, pm, pe corresponding to the three moments ts, tm, te (ts < tm < te). The
pose of the first laser beam can be calculated with the Formula (5). In the same way, the
emission pose of the last laser beam and the laser beam at the middle time can be obtained.

pl = Odom_Imu_List[i]
pk = Odom_Imu_List[k]
ps = pl +

pk−pl
k−l (s− l)

(5)

Step3: Following the method in the Step2, pm and pe can be solved. Further as-
sumed, the robot performs uniform acceleration motion during a frame of laser data. Thus,
the pose of the robot is a quadratic function of time, as Figure 6 shows. Thus, using
the known robot pose ps, pm, pe as the independent variable, a quadratic curve function
P(t) = At2 + Bt+C(ts < t < te) can be obtained by interpolation, and A, B, C are the coef-
ficients of the quadratic function. Next, the value of every time {ts, ts + ∆t, · · · ts + i∆t · · · te}
can be substituted into a curve, and the pose of each laser point data in global coordinate
system {pts , pts+∆t, · · · pts+i∆t · · · pte} can be obtained.

Figure 6. Pose function graph.

Step4: The relative pose (array form) of the laser point in the global coordinate
system is converted into a pose change matrix. Then, convert the coordinate information
in the radar coordinate system xi to the coordinates in the global coordinate system, as
Formula (6) shows.

x′i = V2T(pi)xi (6)
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In the above Formula (6), function V2T (pi) is a whole, indicating that the relative
pose in the form of an array pi is converted into a pose transformation matrix in the
form of a matrix. By the coordinate information in radar system xi left multiplication
corresponding matrix pi, the coordinate of the radar coordinate system xi can be translated
into the coordinate in the global coordinate system x′i , because pi is the pose in the global
coordinate system.

Step5: According to the coordinates of the scanning point corresponding to each laser
beam in the global coordinate system x′i , the laser data of the laser scan point in the LiDAR
coordinate system can be solved with Formula (7).

x′i =
(

px, py
)

range =
√

px·px + py·py
angle = atan2

(
py, px

) (7)

For the first equation above, px, py are the coordinates of the ith frame of laser data in
the LiDAR coordinate system on the X- and Y-axis, respectively.

For the second equation above, the coordinates px and py on the x and y axes of the
laser xi frame in the laser coordinate system are known. The distance point xi from the
origin of the laser coordinate system can be found according to the “Pythagorean Theorem”.

For the third equation above, px and py have been found, and the angle between point
xi and X-axis can be solved according to inverse trigonometric functions. The specific
implementation process of the algorithm is shown in Algorithm 1.

Algorithm 1: A Pose Estimation Algorithm Based on IMU and Odometer

Input: Odometer pose queue OdomList[i], IMU pose queue, and laser pose queue xi
Output: laser pose queue Xn

1: for i = 1:n do

2: Odom_Imu_List[i].x = OdomList[i].x;
Odom_Imu_List[i].y = OdomList[i].y;
Odom_Imu_List[i].θ = ImuList[i].θ; //fuse the data of odometer and IMU pose queue, then
put into Odom_Imu_List[i]

3: end for

4: ps = LinerInterp(Odom_Imu_List[ts]);
pm = LinerInterp(Odom_Imu_List[tm]);
pe = LinerInterp(Odom_Imu_List[te]); //Perform linear interpolation on the fusion pose of the

start, end and intermediate moments, LinerInterp() is function used to make linear interpolation

5: P(t) = P(t) = At2 + Bt + C; //Substitute ps, pm, pe into above formula in order, and the
coefficients of quadratic curve functions A, B, C can be solved.

6: for i = 1:n do

7: pi = Ai2 + Bi + C; //solve the pose of each laser point in global coordinate system pi

8: x′ i = V2T(pi)xi =
(

px, py
)
; //obtain the pose of each laser point in the global coordinate system x′ i

9: Xn = (range, angle) =
(√

px ∗ px + py ∗ py, atan2
(

py, px
))

; //compose a new laser point set Xn

10: end for

4.2. Estimated Velocity and Laser Data Pose Compensation

To remove the motion distortion of the laser point cloud data, the speed of the robot
needs to be estimated. Since the scanning period of LiDAR is about 0.1 s, it can be assumed
that the speed of the robot is constant during this scanning period, and Vi is used to indicate
the velocity in the LiDAR coordinate system at ti time. Firstly, estimate the velocity Vi from
the relative motion transformation between two adjacent frames of laser data Xi and Xi−1,
supposing that n indicates the number of laser points of laser data Xi. The time interval
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between two adjacent frames of laser points is ∆t. x0 , x1 , · · · , xn is the laser point of laser
Xi, txj − txj−1 = ∆ts (j = 0, 1, · · · , n− 1).

Therefore, the estimated velocity Vi is:

Vi =
T2V

(
T−1

i−1Ti

)
∆t

≈ 1
∆t

lg T−1
i−1Ti (8)

In Formula (8), T−1
i−1Ti is a whole, indicating the pose difference of the robot from i−1

time to i time in the radar coordinate system, and T2V
(

T−1
i−1Ti

)
indicates a way to convert

the pose difference from matrix form to array form.
The pose of frame i and laser point j is:

T(ti + j∆ts) = Ti·V2T(Vi·j∆ts)= Tiej∆ts Vi (9)

In Formula (9), j∆ts is the duration of laser point cloud data in frame i from laser point
0th to laser point j.

Vi is the origin velocity of laser point data in frame i.
Vi·j∆ts is the pose difference of frame i laser data cloud from laser point 0th to laser

point k.
V2T(Vi·j∆ts) is the conversion of relative pose difference from array form to matrix form.
Ti·V2T(Vi·j∆ts) is to obtain the pose of laser point j in frame i by using frame i of laser

point cloud data right-multiplied by the pose difference from the initial pose of the 0th
laser point.

Substitute the above Formula (9) into Formula (3), the laser point cloud data collec-
tion Xi is converted into X∗, and X∗ is the laser point cloud data collection after speed
compensation.

X∗ =
{

ej∆tsVi pj | j = 0, 1, · · · , n
}

(10)

For some types of LiDAR, it takes 100 ms to perform a scan with a scan angle of 360◦,
which takes the estimation of robot motion later than the actual movement. To prevent this
kind of delay, a backward compensation scheme can be used. Take the time corresponding
to the last laser point as the reference time, the corresponding time of each laser point can
be converted. With the above conditions, Formula (9) can be revised into:

T[ti − (n− j)∆ts] = Tie(n−j)∆ts(−Vi) (11)

Formula (10) can be revised into:

X =
{

e(n−j)∆s(−Vi)xj | j = 0, 1, · · · , n
}

(12)

The specific implementation process of the algorithm is shown in Algorithm 2.
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Algorithm 2: Estimating velocity and removing motion distortion from laser point cloud data
combined with ICP

Input: the queue of laser pose Xn
Output: motion transformation matrix of adjacent laser frames T

1: V = Vi //speed initialization

2: do

3: T∆ts = e∆ts(−Vi) //the motion transformation matrix T is estimated by the speed of the two
adjacent frames of laser light

4: for j = 1 : n do //traverse all laser points in the current laser frame

5: Tj∆ts = T(j−1)∆tsT∆ts //calculate the motion transformation matrix of each laser point

6: xij = Tj∆tsxij //Motion transformation for each laser point

7: end for

8: T = ICP
(

X−1, Xi, T
)

//iterative matching via ICP

9: V = Vi //renew the value of velocity

10: Vi = 1/∆lg T //do the next round of speed estimation

11: While ||V −Vi|| > e //when the speed error value is greater than the threshold e, execute the
loop

5. Positioning Accuracy Evaluation of Laser Odometry after Motion Distortion Calibration

This experiment utilizes the sequences b0_2014_07_11_10_58_16 (denoted as 1©),
b0_2014_07_11_11_00_49 (denoted as 2©), and b0_2014_07_21_12_42_53 (denoted as 3©) in
the Cartographer public dataset. The laser odometry accuracy of the Iao_ICP algorithm and
the original Cartographer algorithm is quantitatively evaluated by executing this. Figure 7
shows the mapping effect of the Iao_ICP algorithm on the sequence. The processor of the
test equipment is Intel (R) Core (TM) i5−5200 CPU 2.20 GHz and it has 8 GB RAM.

Figure 7. Mapping based on the b0_2014_07_11_11_00_49 sequence.

The analysis is performed by comparing the data calculated by the Iao_ICP algorithm
with the Cartographer data set. Table 1 lists the absolute trajectory errors calculated by
these two algorithms [15]. In addition, the Iao_ICP algorithm was used to calculate the
relative trajectory error and compared with the relative trajectory error of the original
Cartographer algorithm.
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Table 1. Comparison results of absolute trajectory error between Iao_ICP algorithm and Cartographer
algorithm.

Sequence Algorithm RMSE (m) Average (m) Maximum (m) Minimum (m)

1© Iao_ICP 0.0179 0.0103 0.01356 0.0011
Cartographer 0.023 0.0147 0.01428 0.0024

2© Iao_ICP 0.0166 0.0091 0.1510 0.0008
Cartographer 0.0197 0.0096 0.1663 0.0011

3© Iao_ICP 0.0158 0.0089 0.1233 0.0003
Cartographer 0.0193 0.0092 0.1349 0.0012

Using sequence 1© for testing, the comparison of the relative trajectory error results
obtained is shown in Figure 8.

Figure 8. Comparison of relative trajectory errors of sequence 1©. (a) Cartographer, improvement
scheme, and real trajectory comparison (b) Local trajectory map (c) Absolute trajectory error of
Cartographer (d) Absolute trajectory error of the improved scheme.

The obtained comparison of relative trajectory error results is shown in Figure 9 by
using a sequence for testing.
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Figure 9. Comparison of relative trajectory errors of sequence 2©. (a) Cartographer, improvement
scheme, and real trajectory comparison (b) Local trajectory map (c) Absolute trajectory error of
Cartographer (d) Absolute trajectory error of the improved scheme.

The obtained comparison of relative trajectory error results is shown in Figure 10 by
using a sequence for testing.

Figure 10. Comparison of relative trajectory errors of sequence 3©. (a) Cartographer, improvement
scheme, and real trajectory comparison (b) Local trajectory map (c) Absolute trajectory error of
Cartographer (d) Absolute trajectory error of the improved scheme.
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From the sequence 1© test results, it can be seen that, from the RMSE index, the
root-mean-square error of the Iao_ICP algorithm is 0.0179 m, and the root-mean-square
error of the original Cartographer algorithm is 0.0230 m. Compared with the original
Cartographer algorithm, the root-mean-square error of the Iao_ICP algorithm is reduced
by 22.06%. The average error of the Iao_ICP algorithm is 0.0044 m smaller than that of the
original Cartographer algorithm. The maximum absolute trajectory error of the original
Cartographer algorithm is 0.1428 m in this sequence, and the maximum absolute trajectory
error of the Iao_ICP algorithm is 0.1357 m. The minimum absolute trajectory error of the
Cartographer original algorithm is 0.0024 m, and the minimum absolute trajectory error
of the Iao_ICP algorithm is 0.0011 m. It can be seen from the above data that the Iao_ICP
algorithm has a smaller relative trajectory error than the original Cartographer algorithm
in sequence 1©.

6. Physical Experiment Analysis

This experiment uses a small wheeled differential car as the mobile robot platform.
As shown in Figure 11, the platform configuration is as follows: wheeled robot,

embedded development board, 16-line RS-LIDAR-16 scanner, IPMS-IG IMU. Among them,
the wheeled robot is driven by four wheels and two motors. The embedded development
board uses STM32f103 as the main controller, and it is also equipped with a motor driver
module and an MPU6050 module. RS-LiDAR-16 adopts a hybrid solid-state LiDAR,
which integrates 16 laser transceiver components. The measurement distance is up to
150 m, the measurement accuracy is within ±2 cm, the number of output points is up to
300,000 points/s, the horizontal angle is 360◦, the vertical measurement is 360◦, and the
angle is ±15◦. IMU integrates three-axis acceleration and angular velocity sensors, which
can measure the real-time pose of the robot, and has the advantages of high precision, high
frequency, low power consumption, and strong real-time performance. This experiment
realizes the conversion of 3D LiDAR to 2D LiDAR by projecting the 16-line data of 3D
LiDAR onto a fixed plane. Since the real motion trajectory of the robot cannot be accurately
obtained in the real scene, this experiment judges and tests the cumulative error of the
robot pose during the mapping process of the Iao_ICP algorithm according to the loopback
effect. The movement of the robot is controlled by the handle in this experiment.

Figure 11. Mobile experiment platform.

The real environment is a rectangular hall corridor with a length of about 43 m, a width
of about 51 m, and a building area of about 2193 m2, as shown in Figure 12 above. It is easy
to measure the actual size of the object and compare the data with the mapping accuracy
of the test algorithm. Due to the cabinets, building supports, stair entrances, elevator
entrances, and other objects in the environment have a strong structure, the effectiveness
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and robustness of the algorithm for eliminating laser motion distortion and mapping
accuracy can be tested in the above environment. There are also the following reasons:
the test scene is relatively large, and there are long straight corridors, transparent glass,
flowing crowds, and other factors in the environment that may easily interfere with the test
of mapping. The smooth marble floor increases the accumulation of pose errors during the
movement of the robot.

Figure 12. Experimental real scene.

To compare the mapping accuracy of the Iao_ICP algorithm and the original Cartogra-
pher algorithm, 10 highly structured objects were selected in the test scene for measurement
and analysis. Figures 13 and 14 are the mapping effect of the original Cartographer algo-
rithm and the mapping effect of the Iao_ICP algorithm. First, the actual size of the object is
measured by a handheld laser rangefinder. The map measurements displayed in the rviz
plugin for algorithmic mapping are measured. Finally, the relative error and absolute error
of the two algorithms are calculated. The measurement data and error values of the above
two algorithms are shown in Tables 2 and 3 below. Figure 15 is a comparison chart of the
relative error of the two algorithms.

It can be seen from Figures 13 and 14 that the original Cartographer algorithm has a
large pose error product in this experimental scene. Although a loop can be formed, the
effect of eliminating local errors on the map is not good. The Iao_ICP algorithm removes
motion distortion from most laser data by fusing wheel odometer and IMU information.
At the same time, the laser scan data are compensated by estimating the speed of the robot
and ICP algorithm. The Iao_ICP algorithm not only effectively removes motion distortion,
but also eliminates the accumulation of pose errors caused by tire slippage during robot
motion. Figure 14 shows that the map constructed by the Iao_ICP algorithm has no
confusion, no burrs, and clear structural features. It can clearly express the surrounding
environment information, and the map ghost is small. It can be seen that the mapping
effect of the Iao_ICP algorithm is better than that of the original Cartographer algorithm.
Combined with the error data analysis in Tables 2 and 3, and Figure 15, it can be seen that
the average relative error of the Iao_ICP algorithm is much smaller than that of the original
Cartographer algorithm, and the relative error is mostly concentrated below 1%. The error
is stable, and there is no mutation.
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Figure 13. Mapping effect of Cartographer.

Figure 14. Mapping effect of Iao_ICP.

Table 2. Cartographer original algorithm mapping error table.

Measuring Point Measured Value
(cm)

Figure Measured
Values (cm)

Absolute Error
(cm) Relative Error (%)

1 284.700 288.074 −3.374 −1.185107
2 195.000 186.400 8.600 4.410256
3 712.200 709.709 2.491 0.349761
4 812.000 803.200 8.800 1.083743
5 271.000 263.200 7.800 2.878228
6 136.300 130.840 5.460 4.005869
7 272.300 264.320 7.980 2.930591
8 76.500 85.895 −9.395 −12.281045
9 629.200 627.426 1.774 0.281945
10 402.700 397.230 5.470 1.358331
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Table 3. Iao_ICP algorithm mapping error table.

Measuring
Point

Measured Value
(cm)

Figure Measured
Values (cm)

Absolute
Error (cm)

Relative Error
(%)

1 284.700 283.700 1.000 0.351246
2 195.000 197.540 3.460 1.774358
3 712.200 712.363 −0.163 −0.022886
4 812.000 819.340 −7.340 −0.903940
5 271.000 270.928 0.072 0.026568
6 136.300 133.549 2.751 2.018341
7 272.300 270.116 2.184 0.802056
8 76.500 77.744 −1.244 −1.626143
9 629.200 626.829 2.371 0.376827

10 402.700 404.365 −1.665 −0.413459

Figure 15. Line chart of relative error comparison of two algorithms.

7. Conclusions

For the problem of removing laser motion distortion, in the case of wheel slippage and
accumulated error, the traditional method of directly measuring displacement and angle
information based on the wheel odometer, and the odometer angle data obtained by the
encoder, will have a certain deviation. In addition, with the traditional method of directly
measuring the angular velocity and linear acceleration based on the inertial navigation unit,
and then integrating the displacement and angle information, due to the poor accuracy of
the linear acceleration of the IMU, the local accuracy of the quadratic integration is still
very poor. Therefore, the displacement data obtained will also have a certain deviation.
The Iao_ICP algorithm proposed in this paper uses the linear interpolation method to
obtain the pose of the LiDAR, which solves the alignment problem of discontinuous laser
scan data. Data fused by IMU and odometer provide a better initial value for ICP. The
estimated speed is introduced as the termination condition of the ICP method iteration to
realize the compensation of the LiDAR data. The experiment uses a small wheeled mobile
robot to collect data and compare and analyze results in a corridor environment to verify
the original Cartographer algorithm and the Iao_ICP algorithm. Finally, the experimental
data show that the algorithm proposed in this paper can effectively remove laser motion
distortion, improve the accuracy of mapping, and reduce the cumulative error.
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