
Citation: Qi, X.; Yang, J.; Zhang, Y.;

Xiao, B. BIOS-Based Server Intelligent

Optimization. Sensors 2022, 22, 6730.

https://doi.org/10.3390/s22186730

Academic Editor: Antonio Puliafito

Received: 29 July 2022

Accepted: 1 September 2022

Published: 6 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

BIOS-Based Server Intelligent Optimization
Xianxian Qi, Jianfeng Yang * , Yiyang Zhang and Baonan Xiao

School of Electronic Information, Wuhan University, Wuhan 430072, China
* Correspondence: yjf@whu.edu.cn; Tel.: +86-135-0719-1603

Abstract: Servers are the infrastructure of enterprise applications, and improving server performance
under fixed hardware resources is an important issue. Conducting performance tuning at the
application layer is common, but it is not systematic and requires prior knowledge of the running
application. Some works performed tuning by dynamically adjusting the hardware prefetching
configuration with a predictive model. Similarly, we design a BIOS (Basic Input/Output System)-
based dynamic tuning framework for a Taishan 2280 server, including dynamic identification and
static optimization. We simulate five workload scenarios (CPU-instance, etc.) with benchmark tools
and perform scenario recognition dynamically with performance monitor counters (PMCs). The
adjustable configurations provided by Kunpeng processing reach 2N(N > 100). Therefore, we
propose a joint BIOS optimization algorithm using a deep Q-network. Configuration optimization is
modeled as a Markov decision process starting from a feasible solution and optimizing gradually. To
improve the continuous optimization capabilities, the neighborhood search method of state machine
control is added. To assess its performance, we compare our algorithm with the genetic algorithm
and particle swarm optimization. Our algorithm shows that it can also improve performance up to
1.10× compared to experience configuration and perform better in reducing the probability of server
downtime. The dynamic tuning framework in this paper is extensible, can be trained to adapt to
different scenarios, and is more suitable for servers with many adjustable configurations. Compared
with the heuristic intelligent search algorithm, the proposed joint BIOS optimization algorithm can
generate fewer infeasible solutions and is not easily disturbed by initialization.

Keywords: reinforcement learning; BIOS; server; performance optimization

1. Introduction

Driven by the strong demand of the internet industry, more traditional industries have
undergone digital transformation, and servers are also widely used by enterprises to build
network applications. For server buyers, high-performance servers can provide their users
with a better experience and meet business needs. However, the performance of the server
mainly depends on its hardware configuration. The better the configuration is, the higher
the performance, and the corresponding cost will also increase. Therefore, it is necessary to
improve server performance based on inherent hardware devices. Server users can conduct
performance tuning at the operating system layer or at the application layer according to the
specific application. For example, Li et al. implemented dynamic performance optimization
of the Apache Web Server by tuning some important parameters, such as ‘MaxClients’ and
‘KeepAlive’ [1]. For database application servers, SQL queries always have an optimization
space. Reference [2] investigated a series of query optimization techniques for improving
the energy efficiency of relational databases and NoSQL databases.

Another effective technique is to improve the performance of a single server through
a reasonable hardware configuration. Reference [3] showed that hardware data prefetching
could improve server application performance, but it did not provide a detailed description
of how to configure it. References [4–6] produced a remarkable performance improvement
by adjusting the hardware configuration on Intel and POWER8 servers. Nevertheless, these

Sensors 2022, 22, 6730. https://doi.org/10.3390/s22186730 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22186730
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2002-9073
https://doi.org/10.3390/s22186730
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22186730?type=check_update&version=2

Sensors 2022, 22, 6730 2 of 17

are all hardware prefetching configurations. On the Taishan 2280 server, the Kunpeng 920
processor [7] also provides a large number of adjustable configurations, such as L3 cache
prefetch configurations and HHA (HCCS Home Agent) [7] related configurations. The
Basic Input/Output System (BIOS) [8] on the server can control the underlying registers
to set these configurations. For example, the L3T_PREFECTH register can control the
“prefetch_utl_ddr_en” function, which represents “whether to allow automatic threshold
reduction according to the utilization of DDR”. For more registers and configurations,
please refer to [9]. The configurable register bits can be regarded as BIOS switch control
items. Reasonable configuration can improve the performance of a multicore server system.
Since there are only four configuration items [4,5], exhaustive search methods were used
to find the best configuration for a specific application. Reference [6] considered the con-
figuration optimization of 25 bits, but they only filtered out the parts that had substantial
performance gains and did not fully consider the possible nonlinear relationship between
configurations. In this paper, the number of BIOS configuration items is larger, and it is
impossible to manually select a configuration representing near-optimal performance out
of such a huge search space. Therefore, it is necessary to resort to intelligent optimiza-
tion algorithms. Evolutionary algorithms and local search algorithms based on swarm
intelligence are common approaches for solving this type of problem. Genetic algorithm
(GA) [10,11], particle swarm optimization (PSO) [12–14], whale optimization algorithm
(WOA) [15], gray wolf optimization (GWO) [16,17] and other intelligent algorithms are
widely used for parameter optimization, and there are versions for discrete parameters.
These methods are iterative optimization algorithms that cannot learn the configuration
process and may have a higher probability of causing server instability. Since the process of
optimizing configuration can be modeled as a sequential decision-making process, we can
also adopt reinforcement learning methods. With the development of artificial intelligence
technology, deep reinforcement learning has shown great research potential on sequential
decision-making problems [18,19].

It can be seen from the literature [4–6] that a fixed configuration does not help perfor-
mance in many cases, and in fact, it may degrade performance due to useless bus bandwidth
consumption and cache pollution. Similarly, it is also not appropriate to set a fixed BIOS
configuration for the server because servers may run under different workloads, such
as CPU-intensive, disk-intensive, memory-intensive, network-intensive, etc. Due to the
different performance indicators of various workload scenarios, the optimal hardware con-
figuration is also different. When the server workload is frequently switched, to avoid
the trouble of manually checking and adjusting the configuration, this paper proposes a
dynamic tuning framework for dynamically adjusting the configuration. First, the workload
scenario is dynamically identified through the server performance monitor counter (PMC)
data [20], and then, the optimal configuration can be switched for the identified scenario.
Server workload monitoring has been discussed in many works [21,22], but these monitor-
ing data come from operating systems, such as CPU utilization and disk read and write rates.
Similar to our work, [4–6] use PMCs as inputs for machine learning strategies to select the
best configuration, but due to the few configuration items, their machine learning strategy
directly outputs the optimal configuration, not the workload scenario. When there are many
configurations, this method is not suitable. Therefore, this paper uses the workload scenario
as the label of the machine learning strategy. BIOS can also collect hardware PMCs by
accessing the underlying event register, including cycles, iTLB-loads, branch-load-misses,
dTLB-loads, and other event-counting data [23]. To the best of our knowledge, there has
been little research on optimizing server performance by dynamically adjusting the BIOS
hardware configuration. Therefore, this study makes the following contributions:

(1) To improve the performance of Kunpeng processor-based servers, we proposed a
performance tuning framework for dynamically adjusting the BIOS configuration. It
monitors the server workload information to identify scenarios and implements per-
formance optimization based on the results of static tuning or empirical configuration.

Sensors 2022, 22, 6730 3 of 17

(2) At the static configuration tuning stage, finding a near-optimal BIOS configuration
is modeled as starting from a feasible initial configuration and adjusting the BIOS
configuration to obtain an improvement. Based on this model, we propose a joint BIOS
optimization algorithm using a deep Q-network combining reinforcement learning
and nearest neighbor search.

(3) With the proposed optimization algorithm, we significantly improve the memory
bandwidth rate in memory-intensive scenarios. To further evaluate the proposed static
tuning method, we compare it with two metaheuristic methods: genetic algorithm
and particle swarm optimization algorithm. The algorithm in this paper is more stable
and has a lower probability of server downtime.

(4) We have also carried out optimization work in other load scenarios and found that in
some scenarios, performance indicators are no longer critical optimization indicators.

The remainder of the paper is organized as follows. Section 2 describes the dynamic-
tuning framework. Sections 3 and 4 discuss methods for load scenario identification and
optimization, respectively. Section 5 presents the results of operating scenario recognition
and optimization. Finally, this paper is summarized in Section 6.

2. Dynamic Tuning Framework

In this section, we describe the dynamic-tuning framework, which is separated into
three stages: an offline training stage, an offline static configuration tuning stage, and an
online dynamic-tuning stage, as depicted in Figure 1.

Sensors 2022, 22, x FOR PEER REVIEW 3 of 19

(1) To improve the performance of Kunpeng processor-based servers, we proposed a

performance tuning framework for dynamically adjusting the BIOS configuration. It

monitors the server workload information to identify scenarios and implements per-

formance optimization based on the results of static tuning or empirical configura-

tion.

(2) At the static configuration tuning stage, finding a near-optimal BIOS configuration is

modeled as starting from a feasible initial configuration and adjusting the BIOS con-

figuration to obtain an improvement. Based on this model, we propose a joint BIOS

optimization algorithm using a deep Q -network combining reinforcement learning

and nearest neighbor search.

(3) With the proposed optimization algorithm, we significantly improve the memory

bandwidth rate in memory-intensive scenarios. To further evaluate the proposed

static tuning method, we compare it with two metaheuristic methods: genetic algo-

rithm and particle swarm optimization algorithm. The algorithm in this paper is

more stable and has a lower probability of server downtime.

(4) We have also carried out optimization work in other load scenarios and found that

in some scenarios, performance indicators are no longer critical optimization indica-

tors.

The remainder of the paper is organized as follows. Section 2 describes the dynamic-

tuning framework. Sections 3 and 4 discuss methods for load scenario identification and

optimization, respectively. Section 5 presents the results of operating scenario recognition

and optimization. Finally, this paper is summarized in Section 6.

2. Dynamic Tuning Framework

In this section, we describe the dynamic-tuning framework, which is separated into

three stages: an offline training stage, an offline static configuration tuning stage, and an

online dynamic-tuning stage, as depicted in Figure 1.

Figure 1. The dynamic tuning framework and workflow.

Online dynamic-tuning stage. This paper applies machine learning to predict server

workload scenarios and periodically sets the corresponding optimal hardware configura-

tion during the online dynamic-tuning stage. It collects PMCs periodically and feeds them

Figure 1. The dynamic tuning framework and workflow.

Online dynamic-tuning stage. This paper applies machine learning to predict server
workload scenarios and periodically sets the corresponding optimal hardware configuration
during the online dynamic-tuning stage. It collects PMCs periodically and feeds them into
a classifier after a fixed time to identify the current workload scenario. Once it recognizes
that the scenario changes, the near-optimization configuration is switched in real-time.

Offline training stage. The training data for machine learning are prepared offline. We
simulate workload scenarios with benchmark software to collect training data in Section 3.
Similar to [5], we measure all performance events supported by our processor and perform
feature selection. The final dataset is a matrix, and each row consists of performance
counter data and scenario labels. The performance counter data are the values of the
specific scenario fixed time. Then, we build a classifier using machine learning strategies.

Sensors 2022, 22, 6730 4 of 17

Offline static configuration tuning stage. To find better configurations from the inex-
haustible configuration, we do not use iterative search methods. Instead, we use reinforce-
ment learning to gradually optimize the initial configuration to find a better configuration.
This is the main part of the article. The details are provided in Section 4.

3. Workload Scenario Recognition
3.1. Scenario Preparation

Scenario identification of the server load is a prerequisite for dynamic optimization.
However, it is impossible to simulate all workload scenarios, and the load scenarios running
on real servers are relatively fixed. Therefore, in this paper, a coarse-grained division of load
scenarios is made. Because of the scalability of the proposed dynamic monitoring algorithm,
users can train fine-grained classifiers according to the actual server usage. According
to different workload conditions, server workload scenarios can be roughly divided into
CPU-intensive scenarios, memory-intensive scenarios, disk-intensive scenarios, network-
intensive scenarios, and idle scenarios. The difference in load is mainly due to the different
tasks currently running on the server. By running the benchmark tool on the server, various
scenarios can be simulated, as seen in Table 1. FIO [24] is a benchmark software used to
test hard disk IO, which can stress test hard disks, including sequential read and write
and random read and write. IOzone [25] is a file system benchmark tool that provides a
variety of IO operations that can comprehensively test the performance of the file system.
Sysbench [26] is a multithreading and multifunctional benchmarking tool commonly used
to test databases, CPUs, etc. The STREAM [27] benchmark is a comprehensive memory test
that is widely used in the testing and server market industries. It supports four operation
modes, copy, scale, add, and triad, to test the memory bandwidth performance. Iperf3 [28]
is a widely used network bandwidth testing tool that supports IPv4 and IPv6 and can run
on Windows, Linux, Android, and other platforms.

Table 1. Scenario simulation tools.

Scenario Type Benchmarking Tools

I/O-intensive scenario FIO, IOZone
Network-intensive scenario iPerf3

CPU-intensive scenario Sysbench-CPU
Memory-intensive scenario STREAM

Idle scenario None

3.2. Data Processing and Scenario Recognition

A typical multiclass supervised learning problem generally follows four steps: data
collection, feature selection, model training, and model evaluation. In various load scenarios
simulated by the benchmark test, the BIOS is used to collect PMC data per second. There
is redundancy in the original data, and feature correlation analysis can be performed to
eliminate some features. The next step is to use traditional machine learning methods for
training, such as decision trees (DT) [29], logistic regression (LR) [30], K-nearest neighbors
(KNN) [31], and deep neural networks (DNN). In recent studies, DNN can handle complex
classification problems well [32,33]. To judge the quality of the final classification model, some
common evaluation indicators can be used for evaluation, such as accuracy and precision.

4. Workload Scenario Optimization
4.1. Markov Model for BIOS Control Optimization

In a specific scenario, the problem of finding a near-optimal BIOS configuration is
modeled as starting from a feasible initial configuration and adjusting the BIOS config-
uration to obtain an improvement. When the BIOS controls the optimization, the state
is characterized by the current server’s absolute BIOS configuration and performance
evaluation. BIOS configuration can be divided into two categories: integer type, and binary
type. There are very few configurations of integer types, so we treat them as multiple

Sensors 2022, 22, 6730 5 of 17

binary configuration items by converting them to binary. Therefore, all configurations
can be regarded as configuration switch items. The number of BIOS configuration switch
items is N (N > 100), and M performance indicators are used for the server’s performance
evaluation; thus, the state is represented with an (N + M)-dimensional vector. With the
definition of the environment state, the action space can be obtained naturally. Actions can
be defined as the flip of N BIOS configuration items and represented by an N-dimensional
vector. It shows the BIOS register configuration items that need to be flipped. The position
that needs to be flipped is set to 1, and the position that does not need to be flipped is set
to 0. It can be seen that the action space is large and reaches 2N . To narrow the scope of
the action space, we make conventions on actions. Given the state s, the optional action
can only be to flip a single configuration item. In this way, the configuration optimization
problem can be abstracted into multistep tuning rather than one-step tuning. Additionally,
the state at the next moment is only related to the current state and the action and has
nothing to do with the state of the earlier moment, which satisfies the Markov properties.
Therefore, this paper uses the Markov decision process (MDP) [34] to complete the BIOS
control optimization model design. The BIOS control optimization model based on MDP is
defined as follows:

Definition 1. BIOS control optimization is based on MDP (MDP-BIOSCO). An MDP-BIOSCO
can be defined as a tuple: MDP− BISOCO =< S, A, P, R, γ >. S is a set of data describing the
server state, which is expressed above; A(s) is the restricted set of actions that can be performed in
the state s ∈ S. R is a reward function, and when an action is performed, the server changes from s
to s′. With the state change, the server performance also changes. Based on this change, an instant
return r is fed back, and its expected value is r = E(R(s′|s, a)) ; γ ∈ [0, 1] is a discount factor to
distinguish the importance of future rewards and immediate rewards.

4.2. Deep Q-Network

Deep reinforcement learning (Deep RL) is a combination of deep learning (DL) and
reinforcement learning (RL), which is mainly used to deal with high-dimensional states
and action spaces [35]. In [36], Mnih et al. proposed a structure named DQN, which could
learn to play a range of Atari 2600 video games at a superhuman level. In this study, we
employ a DQN because the state-action space is considerably large.

In the high-dimensional state or action space, traditional Q-learning cannot estimate
the Q value corresponding to each large state and action space [37]. In DQN, a deep
convolutional neural network is used to approximate the optimal action-value function.
Nevertheless, when a nonlinear function approximator, such as a neural network, is used
to represent the action-value function, RL is unstable or even divergent. To address this
problem, Mnih et al. proposed an experienced pool and target network. As illustrated in
Figure 2, replay memory is used to store samples (s, a, r, s′) and perform random replay,
thereby eliminating serial data correlation. The target Q network is used to assist in
calculating the following loss function equation:

Li(θi) = E(r + γ max
a′

Q(s′, a′; θ−i)−Q(s, a; θi))
2 (1)

where i is the number of iterations, s and a represent the current state and action, respec-
tively. s′ and s′ represent the next state and action, respectively. θi are the parameters of
the estimation Q-network at iteration i, and θ−i are the target Q-network parameters at
iteration i. r + γ max

a′
Q(s′, a′; θ−i) is the target value. The parameters θ−i are updated at

every C step from the estimation Q-network.

Sensors 2022, 22, 6730 6 of 17

Sensors 2022, 22, x FOR PEER REVIEW 6 of 19

In the high-dimensional state or action space, traditional Q -learning cannot estimate

the Q value corresponding to each large state and action space [37]. In DQN, a deep

convolutional neural network is used to approximate the optimal action-value function.

Nevertheless, when a nonlinear function approximator, such as a neural network, is used

to represent the action-value function, RL is unstable or even divergent. To address this

problem, Mnih et al. proposed an experienced pool and target network. As illustrated in

Figure 2, replay memory is used to store samples (, , , ')s a r s and perform random replay,

thereby eliminating serial data correlation. The target Q network is used to assist in cal-

culating the following loss function equation:

' ' 2

'
() ((, ;) (, ;))i i i i

a
L E r maxQ s a Q s a   −= + − (1)

where i is the number of iterations, s and a represent the current state and action,

respectively. 's and 'a represent the next state and action, respectively.
i are the pa-

rameters of the estimation Q -network at iteration i , and i
− are the target Q -network

parameters at iteration i . ' '

'
(, ;)i

a
r maxQ s a  −+ is the target value. The parameters i

−

are updated at every C step from the estimation Q -network.

Figure 2. Principle of DQN.

4.3. Joint BIOS Optimization Algorithm Using DQN

To optimize BIOS control in a real server, a joint BIOS optimization algorithm using

DQN is proposed based on the above MDP-BIOSCO model. The overall structure is illus-

trated in Figure 3. The first part involves the training phase and includes three subparts:

environment, agent, and experience replay. The second part is designed for continuous

optimization during the testing phase.

Figure 2. Principle of DQN.

4.3. Joint BIOS Optimization Algorithm Using DQN

To optimize BIOS control in a real server, a joint BIOS optimization algorithm using
DQN is proposed based on the above MDP-BIOSCO model. The overall structure is
illustrated in Figure 3. The first part involves the training phase and includes three subparts:
environment, agent, and experience replay. The second part is designed for continuous
optimization during the testing phase.

Sensors 2022, 22, x FOR PEER REVIEW 7 of 19

Figure 3. Structure of the BIOS optimization algorithm.

4.3.1. Environment Design

The environment is the object of agent interaction in a reinforcement learning system.

The design of the environment mainly includes two parts: an interactive data record and

a function, step().

It takes a few minutes to configure the BIOS and test the performance data on the

server. The bios.txt and score.txt files shown in Figure 3 store the BIOS absolute configu-

ration and the corresponding performance score data, respectively.

The core of the environment is the step() function, which contains the contents of the

entire environment in Figure 3. The input of the step() function is the action, and the out-

put is the state at the next moment, the reward of the current action, and whether to ter-

minate the training episode. This function directly controls the server to conduct field

measurements and calculate the state at the next moment.

A. The state of the system is obtained at the next moment. The state at the next moment

is obtained through end-to-end testing. First, we calculate the absolute BIOS config-

uration at the next moment from the predicted action at the current time, and then

we test the server to obtain the performance evaluation. Finally, the two parts are

merged to form a state.

B. An instant reward is obtained. In contrast to the general reinforcement learning task,

BIOS control optimization has no specific target, and the desired effect is that the

algorithm can obtain better server performance quickly while ensuring the ability to

jump out of local optimization. For the STREAM test scenario, the goal is to adjust

the configuration, ensuring that the memory scores can increase rapidly and have the

ability to find higher scores. Therefore, the reward function is set as follows:

Setting reward,
1r . The action of BIOS configuration modification causes the perfor-

mance scores to rise or fall, and
1r provides feedback for the current action. There is a

large gap in performance evaluation for different servers and operating scenarios. To en-

sure scalability, this reward adopts the baseline design method. The baseline is the known

maximum difference of automated test acquisitions in the initial pre-experimental stage

as follows:

1 1() / *i ir score score baseline scale+= − (2)

Figure 3. Structure of the BIOS optimization algorithm.

4.3.1. Environment Design

The environment is the object of agent interaction in a reinforcement learning system.
The design of the environment mainly includes two parts: an interactive data record and a
function, step().

Sensors 2022, 22, 6730 7 of 17

It takes a few minutes to configure the BIOS and test the performance data on the server.
The bios.txt and score.txt files shown in Figure 3 store the BIOS absolute configuration and
the corresponding performance score data, respectively.

The core of the environment is the step() function, which contains the contents of
the entire environment in Figure 3. The input of the step() function is the action, and the
output is the state at the next moment, the reward of the current action, and whether to
terminate the training episode. This function directly controls the server to conduct field
measurements and calculate the state at the next moment.

A. The state of the system is obtained at the next moment. The state at the next moment
is obtained through end-to-end testing. First, we calculate the absolute BIOS configu-
ration at the next moment from the predicted action at the current time, and then
we test the server to obtain the performance evaluation. Finally, the two parts are
merged to form a state.

B. An instant reward is obtained. In contrast to the general reinforcement learning task,
BIOS control optimization has no specific target, and the desired effect is that the
algorithm can obtain better server performance quickly while ensuring the ability to
jump out of local optimization. For the STREAM test scenario, the goal is to adjust
the configuration, ensuring that the memory scores can increase rapidly and have
the ability to find higher scores. Therefore, the reward function is set as follows:

Setting reward, r1. The action of BIOS configuration modification causes the performance
scores to rise or fall, and r1 provides feedback for the current action. There is a large gap in
performance evaluation for different servers and operating scenarios. To ensure scalability, this
reward adopts the baseline design method. The baseline is the known maximum difference of
automated test acquisitions in the initial pre-experimental stage as follows:

r1 = (scorei+1 − scorei)/baseline ∗ scale (2)

scorei and scorei+1 represent the performance scores of the current moment and the
next moment, respectively. Since the score gap may be small compared to the baseline in
the actual experiment, we have incorporated a scaling factor scale. By default, scale = 100.

Setting a fixed reward, r2, when performance scores are higher than the record in
this episode. This reward, r2, is mainly to drive the algorithm to find higher scores and
maintain the ability to jump away from the local optima.

Setting reward, rdown, when the server is down or works unstably. Taking all of the
above into consideration, the instant reward module is described as follows:

r =

{
r1 + r2 other
rdown if server down

(3)

Moreover, the generated samples (s, a, r, s′) are stored in an experience replay memory.
These samples are then retrieved randomly from the experience replay and fed into the
training process. If it is a downtime sample, repeat the storage k times to increase the
proportion of downtime samples.

4.3.2. Agent Decision-Making and Learning

The agent is the main actor in strategy learning. It finds the optimal action strategy
through continuous trial and error learning, which mainly includes two aspects: action
selection and strategy learning.

Figure 4 is the Q-network structure, the input is the BIOS configuration, and the
output is the Q value for different actions. For instance, Q(s, aj) represents the Q value for
selecting the jth action at state s. In Section 4.1, we define and restrict actions. Action a
means to modify only one configuration, and thus, the output dimension of the Q network
is the same as that of the configuration item. At state s, to choose the best action in the
set of alternative actions, the decision-maker will use a greedy strategy to take the action

Sensors 2022, 22, 6730 8 of 17

with the largest Q value. However, adopting the greedy strategy alone will cause missing
the optimal action, so this paper uses the ε greedy policy to ensure a certain probability of
exploration. At the same time, to make up for the low intensity initial search problem, a
large value of εmax is set at the beginning of the training of the algorithm, and it decreases
according to the decline coefficient εdecay, as the training goes on until it drops to the
minimum value, ε as follows:

ε = max(ε ∗ εdecay, εmin) (4)

Sensors 2022, 22, x FOR PEER REVIEW 9 of 19

Figure 4. Schematic illustration of the q-network.

Algorithm 1 BIOS optimization algorithm based on DQN (Part 1).

Input: N Initial capacity of the playback pool,

 M Number of final exploration frames for optimization,

 T Number of optimization steps per iteration process,

initials State corresponding to the initial configuration

1 Initialize replay memory (D) to capacity N;

2 Initialize Q-network with random weights  ;

3 Initialize environment;

4 For episode = 1, M do

5 Initialize environment state initials s= ;

6 For t = 1, T do

7 Calculate (, ;)Q s a  in state s ;

8 With probability  select a random action a ,

Otherwise, select argmax ((, ;))aa Q s a = ;

9 Execute action a in the environment,

obtain a reward r , next state
's , and whether server downtime;

10 If server downtime: store the same transition in D k times;

11 else: store one transition in D;

12 Sample random minibatch of transitions from D

13 Update parameters  in Q-network with Formula (5)

14 Every C steps reset  − =

15 End For

16 End For

4.3.3. State Control Optimization Algorithm

In Part 2 of Figure 3, state machine control is added to obtain a model-assisted joint

optimization method. The state machine can record the good performance state. Based on

the optimized model and the state machine, the joint optimization method can realize the

continuous optimization of the server to improve global optimization.

After the first part of the algorithm is executed, some better-performing configura-

tions are obtained, as well as a trained and tuned model. These contents will be used to

guide subsequent state-controlled neighborhood searches. As depicted in Figure 5, the

two experience pools that continue to update come from the data of the training process.

There are three states: steady state, random state, and low-performance state. In the steady

state, it uses the model trained above to select an action. In the random state, it will find

Figure 4. Schematic illustration of the q-network.

During the policy update phase, the parameters of the Q-network are updated as follows:

θi+1 = θi + α[r + γmaxa′Q(s′, a′; θ−i)−
Q(s, a; θi)]5Q(s, a; θi)

(5)

where i is the number of iterations, s and a represent the current state and action, respec-
tively. s′ and a′ represent the next state and action, respectively. θi are the parameters of
the estimation Q-network at iteration i, and θ−i are the target Q-network parameters at
iteration i. α and γ represent the learning rate and discount factor.

In summary, the BIOS optimization algorithm (PART 1) is applied to the server BIOS
control optimization problem, as shown in Algorithm 1.

Algorithm 1 BIOS optimization algorithm based on DQN (Part 1).

Input: N Initial capacity of the playback pool,
M Number of final exploration frames for optimization,
T Number of optimization steps per iteration process,
sinitial State corresponding to the initial configuration

1 Initialize replay memory (D) to capacity N;
2 Initialize Q-network with random weights θ;
3 Initialize environment;
4 For episode = 1, M do
5 Initialize environment state s = sinitial ;
6 For t = 1, T do
7 Calculate Q(s, a; θ) in state s;
8 With probability ε select a random action a,

Otherwise, select a = argmaxa(Q(s, a; θ));
9 Execute action a in the environment,

obtain a reward r, next state s′, and whether server downtime;
10 If server downtime: store the same transition in D k times;
11 else: store one transition in D;
12 Sample random minibatch of transitions from D
13 Update parameters θ in Q-network with Formula (5)
14 Every C steps reset θ− = θ

15 End For
16 End For

Sensors 2022, 22, 6730 9 of 17

4.3.3. State Control Optimization Algorithm

In Part 2 of Figure 3, state machine control is added to obtain a model-assisted joint
optimization method. The state machine can record the good performance state. Based on
the optimized model and the state machine, the joint optimization method can realize the
continuous optimization of the server to improve global optimization.

After the first part of the algorithm is executed, some better-performing configurations
are obtained, as well as a trained and tuned model. These contents will be used to guide
subsequent state-controlled neighborhood searches. As depicted in Figure 5, the two
experience pools that continue to update come from the data of the training process. There
are three states: steady state, random state, and low-performance state. In the steady state,
it uses the model trained above to select an action. In the random state, it will find the past
n high-performance experiences based on memory and then perform neighbor searching
based on Hamming Distance. In the low-performance state, it will find the first n high-
performance experiences from pool B and then search nearby. The process of generating a
new configuration for neighbor searching is as follows: (1) Randomly generate a candidate
configuration. (2) Calculate the Hamming distance between the candidate configuration
and n reference configurations. In the random state, the reference configuration is the past
n high-performance experiences. (3) Determine whether more than half of the n distances
are lower than the set distance threshold, and if so, generate a new solution; otherwise,
repeat (1). At the beginning of the algorithm, the last 5% of the first stage and the downtime
configuration are filled into experience pool A, and the first 1% of the configuration is filled
into B. The initial configuration is set the same as the first stage and defined as a stable
state. Then, state switching is performed according to Figure 5, and each state transition is
an iterative process. If the resulting new solution performance is lower than the maximum
value of A, it is added to A, and if it is higher than the minimum value of B, it is added to B.

Sensors 2022, 22, x FOR PEER REVIEW 10 of 19

the past n high-performance experiences based on memory and then perform neighbor

searching based on Hamming Distance. In the low-performance state, it will find the first

n high-performance experiences from pool B and then search nearby. The process of gen-

erating a new configuration for neighbor searching is as follows: (1) Randomly generate a

candidate configuration. (2) Calculate the Hamming distance between the candidate con-

figuration and n reference configurations. In the random state, the reference configuration

is the past n high-performance experiences. (3) Determine whether more than half of the

n distances are lower than the set distance threshold, and if so, generate a new solution;

otherwise, repeat (1). At the beginning of the algorithm, the last 5% of the first stage and

the downtime configuration are filled into experience pool A, and the first 1% of the con-

figuration is filled into B. The initial configuration is set the same as the first stage and

defined as a stable state. Then, state switching is performed according to Figure 5, and

each state transition is an iterative process. If the resulting new solution performance is

lower than the maximum value of A, it is added to A, and if it is higher than the minimum

value of B, it is added to B.

Figure 5. State machine process in optimization.

5. Experimental Results

5.1. Workload Scenario Recognition Results

In each scenario, a similar amount of data is collected, with a total of 497,640 com-

bined data. With the help of the Pearson correlation coefficient [38] for feature screening,

the features with high correlation are removed, and finally, 38 features remain in Table

A1. After dividing the dataset, there are 338,396 pieces of data in the training set, 59,716

pieces of data in the validation set, and 99,528 pieces of data in the test set. As seen in

Figure 6, each classifier after training is evaluated using the test set. It was found that the

performance of the decision tree is the worst. Its classification ability for hard disk-inten-

sive scenarios, idle scenarios, and CPU-intensive scenarios is too poor, resulting in low

accuracy. The other three algorithms have good classification capabilities for CPU-inten-

sive scenarios, memory-intensive scenarios, and network-intensive scenarios and can

achieve close to 100% accuracy. The performance difference between these four algo-

rithms is mainly reflected in the classification ability of hard disk-intensive scenarios and

Figure 5. State machine process in optimization.

5. Experimental Results
5.1. Workload Scenario Recognition Results

In each scenario, a similar amount of data is collected, with a total of 497,640 combined
data. With the help of the Pearson correlation coefficient [38] for feature screening, the

Sensors 2022, 22, 6730 10 of 17

features with high correlation are removed, and finally, 38 features remain in Table A1.
After dividing the dataset, there are 338,396 pieces of data in the training set, 59,716 pieces of
data in the validation set, and 99,528 pieces of data in the test set. As seen in Figure 6, each
classifier after training is evaluated using the test set. It was found that the performance
of the decision tree is the worst. Its classification ability for hard disk-intensive scenarios,
idle scenarios, and CPU-intensive scenarios is too poor, resulting in low accuracy. The
other three algorithms have good classification capabilities for CPU-intensive scenarios,
memory-intensive scenarios, and network-intensive scenarios and can achieve close to 100%
accuracy. The performance difference between these four algorithms is mainly reflected in
the classification ability of hard disk-intensive scenarios and idle scenarios. According to
the results, DNN has the best classification ability, with an accuracy rate of 99.7%.

Sensors 2022, 22, x FOR PEER REVIEW 11 of 19

idle scenarios. According to the results, DNN has the best classification ability, with an

accuracy rate of 99.7%.

Figure 6. Comparison of classification accuracy.

5.2. Operating Scenario Performance Optimization Experiment

According to prior knowledge, the server does not work if some BIOS switch config-

uration items change. Therefore, these configuration items will be directly removed. The

final configuration items are shown in Table 2, and 104 switch configuration items are

reserved for the experimental STREAM scenario.

Table 2. Configuration register [9].

Register Name
Number of Configuration Bits Selected for

Optimization

L3T_STATIC_CTRL 8

L3T_DYNAMIC_CTRL 16

L3T_DYNAMIC_AUCTRL0 8

L3T_DYNAMIC_AUCTRL1 21

L3T_PREFECTH 8

HHA_DIR_CTRL 15

HHA_FUNC_DIS 17

HHA_TOTEMNUM 11

5.2.1. Simulation

To verify the effectiveness of the optimization algorithm detailed in Section 3 and to

find a good parameter design scheme promptly, the algorithm simulation experiment is

designed before the experiment.

The BIOS on the server is configured dynamically, and the STREAM benchmark tool

is run to collect simulation model training data. STREAM uses four memory operations,

copy, scale, add, and triad, to test the bandwidth performance of the system memory.

These four rates are used as indicators to measure the server’s performance. From the

collected data, the minimum average memory rate of the server in the experiment is close

to 150,000 MB/s. Then, a performance score regression model is established based on the

collected data.

Figure 6. Comparison of classification accuracy.

5.2. Operating Scenario Performance Optimization Experiment

According to prior knowledge, the server does not work if some BIOS switch con-
figuration items change. Therefore, these configuration items will be directly removed.
The final configuration items are shown in Table 2, and 104 switch configuration items are
reserved for the experimental STREAM scenario.

Table 2. Configuration register [9].

Register Name Number of Configuration Bits Selected for
Optimization

L3T_STATIC_CTRL 8

L3T_DYNAMIC_CTRL 16

L3T_DYNAMIC_AUCTRL0 8

L3T_DYNAMIC_AUCTRL1 21

L3T_PREFECTH 8

HHA_DIR_CTRL 15

HHA_FUNC_DIS 17

HHA_TOTEMNUM 11

Sensors 2022, 22, 6730 11 of 17

5.2.1. Simulation

To verify the effectiveness of the optimization algorithm detailed in Section 3 and to
find a good parameter design scheme promptly, the algorithm simulation experiment is
designed before the experiment.

The BIOS on the server is configured dynamically, and the STREAM benchmark tool is
run to collect simulation model training data. STREAM uses four memory operations, copy,
scale, add, and triad, to test the bandwidth performance of the system memory. These four
rates are used as indicators to measure the server’s performance. From the collected data,
the minimum average memory rate of the server in the experiment is close to 150,000 MB/s.
Then, a performance score regression model is established based on the collected data.

Experiments with different hyperparameters are conducted based on the optimization
algorithm in this paper, and the parameter setting scheme is selected by comparison. The
influence of some hyperparameter settings on training is shown in Figure 7. When the
learning rate or discount coefficient is too large, the average return shows a downward
trend. The final hyperparameter design scheme is shown in Table 3. The model is used for
optimization from the initial BIOS configuration, as seen in Figure 8. Moreover, the model
can quickly optimize from a low-score state to a high-score state.

Sensors 2022, 22, x FOR PEER REVIEW 12 of 19

Experiments with different hyperparameters are conducted based on the optimiza-

tion algorithm in this paper, and the parameter setting scheme is selected by comparison.

The influence of some hyperparameter settings on training is shown in Figure 7. When

the learning rate or discount coefficient is too large, the average return shows a downward

trend. The final hyperparameter design scheme is shown in Table 3. The model is used for

optimization from the initial BIOS configuration, as seen in Figure 8. Moreover, the model

can quickly optimize from a low-score state to a high-score state.

Figure 7. The average reward curves of the training process for different hyperparameter settings.

(The results of simulation experiments).

Figure 7. The average reward curves of the training process for different hyperparameter settings.
(The results of simulation experiments).

Table 3. List of hyperparameters and their values.

Hyperparameters Value

minibatch size 32
replay memory size 10,000

discount factor γ 0.90
learning rate α 0.005

initial exploration εmax 1
exploration decay εdecay 0.995

final exploration εmin 0.1
final exploration frame M 2000

final step T 100

Sensors 2022, 22, 6730 12 of 17Sensors 2022, 22, x FOR PEER REVIEW 13 of 19

Figure 8. Optimization result from the initial configuration. (The results of simulation experiments).

Table 3. List of hyperparameters and their values.

Hyperparameters Value

minibatch size 32

replay memory size 10,000

discount factor  0.90

learning rate  0.005

initial exploration
max 1

exploration decay decay 0.995

final exploration
min 0.1

final exploration frame M 2000

final step T 100

5.2.2. Measured Experiment

We refer to the parameter setting plan of the simulation experiment and make minor

modifications to it. The actual training requires a test server, which takes a long time, thus

reducing the capacity of the experience pool and the final step 40T = . The performance

score for the initial training state is 202,000 MB/s. The average reward is used to evaluate

the effect of the algorithm training on the actual server.

In Figure 9, as the number of iterations increases, the average return obtained by the

algorithm continues to increase, but the shock is greater than the simulation result. In an

actual server environment, some BIOS configuration items and configuration progress

cause the server to crash or work unstably. When this happens, the cumulative return of

the round drops considerably, and then the reward curve exhibits a sudden drop. Addi-

tionally, the trained model is used to optimize the initial BIOS configuration in Figure 10.

Figure 8. Optimization result from the initial configuration. (The results of simulation experiments).

5.2.2. Measured Experiment

We refer to the parameter setting plan of the simulation experiment and make minor
modifications to it. The actual training requires a test server, which takes a long time, thus
reducing the capacity of the experience pool and the final step T = 40. The performance
score for the initial training state is 202,000 MB/s. The average reward is used to evaluate
the effect of the algorithm training on the actual server.

In Figure 9, as the number of iterations increases, the average return obtained by the
algorithm continues to increase, but the shock is greater than the simulation result. In
an actual server environment, some BIOS configuration items and configuration progress
cause the server to crash or work unstably. When this happens, the cumulative return of the
round drops considerably, and then the reward curve exhibits a sudden drop. Additionally,
the trained model is used to optimize the initial BIOS configuration in Figure 10.

The state machine control of the BIOS optimization algorithm (Part 2) is added to
realize continuous optimization. Table 4 shows the comparison of this paper’s joint opti-
mization algorithm and other traditional heuristic algorithms, in which popsize represents
the number of individuals in the population, and iter represents the number of iterations.
The experience configuration is provided by the cooperative server manufacturer unit,
which is obtained by a large number of manually automated tests. The optimal configu-
ration performance of the three algorithms is all higher than the empirical configuration,
but the BPSO algorithm has the worst optimization effect and the highest probability of
downtime. This is because BPSO, despite having a strong global search capability, becomes
more random with the iterative search of the algorithm, resulting in an increased probability
of generating downtime configurations. Since too many downtimes will damage the server,
the BPSO optimizations are all manually terminated in about 30 iterations, leading to the
worst optimization effect. Different population sizes in the genetic algorithm also affected
the downtime probability and optimization effect. When the number of individuals in
the population is larger, the difference between populations will be larger, and the global
optimization ability will also be stronger. Therefore, the performance optimization effect
of popsize = 100 is better than that of popsize = 20. Moreover, individuals with greater
differences are more likely to cause downtime when performing crossover operations. In

Sensors 2022, 22, 6730 13 of 17

addition, both algorithms need to initialize the population, which also brings some down-
time configuration due to the random initialization. Although the algorithm proposed
in this paper limits the number of tuning steps, the search space is also large enough, so
the performance optimization effect can be close to that of the genetic algorithm. More
importantly, the algorithm is based on reinforcement learning with a learning mechanism
and is not disturbed by the initialization process; thus, the performance is more stable
with a smaller downtime probability. After analyzing the downtime configurations, it was
found that the server being down not only depends on the BIOS configuration but also on
the configuration process. For example, configuration-A and configuration-B do not cause
server downtime, but adjusting to configuration-B from configuration-A can cause server
downtime. However, the GA algorithm has no memory of the configuration process.

Sensors 2022, 22, x FOR PEER REVIEW 14 of 19

Figure 9. The average reward curves of the training process in the STREAM scenario. (The results

of the measured experiments).

Figure 10. Optimization results from the initial configuration. (The results of the measured experi-

ments).

The state machine control of the BIOS optimization algorithm (Part 2) is added to

realize continuous optimization. Table 4 shows the comparison of this paper’s joint opti-

mization algorithm and other traditional heuristic algorithms, in which popsize repre-

sents the number of individuals in the population, and iter represents the number of

iterations. The experience configuration is provided by the cooperative server manufac-

turer unit, which is obtained by a large number of manually automated tests. The optimal

Figure 9. The average reward curves of the training process in the STREAM scenario. (The results of
the measured experiments).

Sensors 2022, 22, x FOR PEER REVIEW 14 of 19

Figure 9. The average reward curves of the training process in the STREAM scenario. (The results

of the measured experiments).

Figure 10. Optimization results from the initial configuration. (The results of the measured experi-

ments).

The state machine control of the BIOS optimization algorithm (Part 2) is added to

realize continuous optimization. Table 4 shows the comparison of this paper’s joint opti-

mization algorithm and other traditional heuristic algorithms, in which popsize repre-

sents the number of individuals in the population, and iter represents the number of

iterations. The experience configuration is provided by the cooperative server manufac-

turer unit, which is obtained by a large number of manually automated tests. The optimal

Figure 10. Optimization results from the initial configuration. (The results of the measured experiments).

Sensors 2022, 22, 6730 14 of 17

Table 4. Comparison of different algorithm optimization results for the STREAM scenario.

Methods
Main

Parameter
Settings

Best Performance
Score (Average

Memory
Rate MB/s)

Server Downtime Probability
during the Experiment

Process

Prior Knowledge 263,000

Joint BIOS
optimization

algorithm using
DQN (including the

training process)

Iter = 50 290,400 4.1%

Genetic algorithm

Iter = 100,
popsize = 20 281,000 8.1%

Iter = 100,
popsize = 100 289,700 20.3%

Binary particle
swarm algorithm Popsize = 100 276,000 39.8%

We also perform static tuning on several other benchmark software, and the results are
shown in Figure 11. The performance metric of Sysbench-CPU is the 95th percentage of the
prime calculation event latency. The performance metric of Fio is the IOPS (input/output
operations per second) under the random-read workload. For the Sysbench-CPU bench-
mark, there is almost no room for improvement of the empirical configuration. The main
reason is that for the performance of the core, the empirical configuration has reached the
optimal solution, and it is difficult to further optimize it further. In addition, although
kunpeng920 provides a lot of configuration items, only some configurations are selected
for the experiment in this article. Considering that the configurations adjusted in this
article are mainly related to LLC and HHA, there is little opportunity for adjusting these
configurations to improve the core performance but a greater opportunity for optimization
in computing and communication scenarios, such as memory. In the follow-up work,
energy efficiency can be used as the tuning index for scenarios where there is little room for
performance improvement. Additionally, more memory-type benchmarks can be added
for fine-grained scenario classification and static tuning.

Sensors 2022, 22, x FOR PEER REVIEW 16 of 19

these configurations to improve the core performance but a greater opportunity for opti-

mization in computing and communication scenarios, such as memory. In the follow-up

work, energy efficiency can be used as the tuning index for scenarios where there is little

room for performance improvement. Additionally, more memory-type benchmarks can

be added for fine-grained scenario classification and static tuning.

Figure 11. Normalized performance of experience configuration and near-optimal configuration ob-

tained by static offline tuning.

6. Conclusions

In this study, we design a dynamic tuning framework under unknown operating sce-

narios based on the BIOS system. The aim is to give full consideration to the hardware

capabilities of the system. First, dynamic scenario classification is implemented on the

BIOS system using real-time server monitoring data. The accuracy rate reaches 99.7%.

Then, the Markov model of the BIOS control decision is established. Combining reinforce-

ment learning with the nearest neighbor search, we propose a joint BIOS control optimi-

zation method. Simulation experiments show that the algorithm proposed in this paper

can optimize the server to a higher performance state. The actual experiments on the

server prove that the algorithm performs well in dynamic situations, and in the STREAM

scenario, it achieves good memory rate performance optimization (43.7% higher than the

initial training configuration state and 10.3% higher than the experience configuration

state). Compared with the genetic algorithm, the obtained optimal performance is close,

and the probability of downtime during optimization is smaller. Static configuration op-

timization also shows that the performance in partial load scenarios is not sensitive to the

configuration in this article, such as sysbench-CPU, and energy efficiency may be a good

tuning indicator. Given this situation, the static optimization algorithm in this paper can

still work. In summary, the dynamic tuning framework makes full use of system hard-

ware functions and shows its effectiveness.

Author Contributions: Conceptualization, X.Q.; writing—original draft, X.Q. and Y.Z.; methodol-

ogy, X.Q., J.Y., Y.Z. and B.X.; writing—review and editing, J.Y. and B.X.; visualization, X.Q. and

Y.Z.; formal analysis, X.Q.; validation, B.X.; resources, J.Y.; project administration, J.Y.; supervision,

J.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Figure 11. Normalized performance of experience configuration and near-optimal configuration
obtained by static offline tuning.

Sensors 2022, 22, 6730 15 of 17

6. Conclusions

In this study, we design a dynamic tuning framework under unknown operating
scenarios based on the BIOS system. The aim is to give full consideration to the hardware
capabilities of the system. First, dynamic scenario classification is implemented on the BIOS
system using real-time server monitoring data. The accuracy rate reaches 99.7%. Then,
the Markov model of the BIOS control decision is established. Combining reinforcement
learning with the nearest neighbor search, we propose a joint BIOS control optimization
method. Simulation experiments show that the algorithm proposed in this paper can
optimize the server to a higher performance state. The actual experiments on the server
prove that the algorithm performs well in dynamic situations, and in the STREAM scenario,
it achieves good memory rate performance optimization (43.7% higher than the initial
training configuration state and 10.3% higher than the experience configuration state).
Compared with the genetic algorithm, the obtained optimal performance is close, and the
probability of downtime during optimization is smaller. Static configuration optimization
also shows that the performance in partial load scenarios is not sensitive to the configuration
in this article, such as sysbench-CPU, and energy efficiency may be a good tuning indicator.
Given this situation, the static optimization algorithm in this paper can still work. In
summary, the dynamic tuning framework makes full use of system hardware functions
and shows its effectiveness.

Author Contributions: Conceptualization, X.Q.; writing—original draft, X.Q. and Y.Z.; methodology,
X.Q., J.Y., Y.Z. and B.X.; writing—review and editing, J.Y. and B.X.; visualization, X.Q. and Y.Z.; formal
analysis, X.Q.; validation, B.X.; resources, J.Y.; project administration, J.Y.; supervision, J.Y. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare that they have no conflict of interest.

Appendix A

Table A1. Data features remaining after data preprocessing.

Serial Number Feature Name Data Type

1 Cpu_cycles int
2 L1_cache_refill int
3 L1d_cache_refill int
4 L1d_cache int
5 L1d_tld_refill int
6 L1i_cache int
7 L2d_cache int
8 L2d_cache_refill int
9 L1d_tlb int
10 Prf_req int
11 Hit_on_prf int
12 Mem_stall_l1miss int
13 Mem_stall_l2miss int
14 Atc_cmd int
15 Flux_rd int
16 Flux_wr int
17 Prc_cmd int
18 Rnk_chg int

Sensors 2022, 22, 6730 16 of 17

Table A1. Cont.

Serial Number Feature Name Data Type

19 Rw_chg int
20 Fluxid_wcmd int
21 Fluxid_rcmd int
22 Bnk_chg int
23 Rd_cpipe int
24 Rx_ops_num int
25 Rx_outer int
26 Rx_sccl int
27 Retry int
28 Tx_snp_outer int
29 Hac_smmu_transaction int
30 Net_smmu_transaction int
31 Net_smmu_l2_ltb_hit int
32 Net_smmu_ltb_miss int
33 Pcie_smmu_transaction int
34 Pcie_smmu_trans_table_walk_access int
35 Pcie_smmu_context_bank_cache_miss int
36 Pcie_smmu_ltb_miss int
37 Pcie_smmu_l1_tlb int
38 Pcie_smmu_l2_ltb_hit int

References
1. Li, J.; Lu, M. The performance optimization and modeling analysis based on the Apache Web Server. In Proceedings of the 32nd

Chinese Control Conference, Xian, China, 26–28 July 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 1712–1716.
2. Mahajan, D.; Blakeney, C.; Zong, Z. Improving the energy efficiency of relational and NoSQL databases via query optimizations.

Sustain. Comput. Inform. Syst. 2019, 22, 120–133. [CrossRef]
3. Bakhshalipour, M.; Tabaeiaghdaei, S.; Lotfi-Kamran, P.; Sarbazi-Azad, H. Evaluation of Hardware Data Prefetchers on Server

Processors. ACM Comput. Surv. 2020, 52, 1–29. [CrossRef]
4. Liao, S.; Hung, T.H.; Nguyen, D.; Chou, C.; Tu, C.; Zhou, H. Machine learning-based prefetch optimization for data center

applications. In Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis, New York,
NY, USA, 14–20 November 2009; pp. 1–10.

5. Rahman, S.; Burtscher, M.; Zong, Z.; Qasem, A. Maximizing hardware prefetch effectiveness with machine learning. In
Proceedings of the 2015 IEEE 17th International Conference on High Performance Computing and Communications, 2015 IEEE
7th International Sympo-sium on Cyberspace Safety and Security, and 2015 IEEE 12th International Conference on Embedded
Software and Systems, New York, NY, USA, 24–26 August 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 383–389.

6. Li, M.; Chen, G.; Wang, Q.; Lin, Y.; Hofstee, P.; Stenstrom, P.; Zhou, D. PATer: A Hardware Prefetching Automatic Tuner on IBM
POWER8 Processor. IEEE Comput. Arch. Lett. 2015, 15, 37–40. [CrossRef]

7. Xia, J.; Cheng, C.; Zhou, X.; Hu, Y.; Chun, P. Kunpeng 920: The First 7-nm Chiplet-Based 64-Core ARM SoC for Cloud Services.
IEEE Micro 2021, 41, 67–75. [CrossRef]

8. Regenscheid, A. BIOS Protection Guidelines for Servers. NIST Spec. Publ. 2014, 800, 147B. [CrossRef]
9. openEuler: Prefetch_tuning. Available online: https://gitee.com/openeuler/prefetch_tuning/tree/master (accessed on 19 May 2022).
10. Katoch, S.; Chauhan, S.S.; Kumar, V. A review on genetic algorithm: Past, present, and future. Multimed. Tools Appl. 2021, 80,

8091–8126. [CrossRef]
11. Wu, D.; Wu, C. Research on the Time-Dependent Split Delivery Green Vehicle Routing Problem for Fresh Agricultural Products

with Multiple Time Windows. Agriculture 2022, 12, 793. [CrossRef]
12. Koyuncu, H.; Ceylan, R. A PSO based approach: Scout particle swarm algorithm for continuous global optimization problems. J.

Comput. Des. Eng. 2019, 6, 129–142. [CrossRef]
13. Beheshti, Z.; Shamsuddin, S.M.; Hasan, S. Memetic binary particle swarm optimization for discrete optimization problems. Inf.

Sci. 2015, 299, 58–84. [CrossRef]
14. Almahdi, S.; Yang, S.Y. A constrained portfolio trading system using particle swarm algorithm and recurrent reinforcement

learning. Expert Syst. Appl. 2019, 130, 145–156. [CrossRef]
15. Goyal, S.; Bhushan, S.; Kumar, Y.; Rana, A.; Bhutta, M.; Ijaz, M.; Son, Y. An Optimized Framework for Energy-Resource Allocation

in a Cloud Environment based on the Whale Optimization Algorithm. Sensors 2021, 21, 1583. [CrossRef] [PubMed]
16. Faris, H.; Aljarah, I.; Al-Betar, M.A.; Mirjalili, S. Grey wolf optimizer: A review of recent variants and applications. Neural Comput.

Appl. 2018, 30, 413–435. [CrossRef]

http://doi.org/10.1016/j.suscom.2019.01.017
http://doi.org/10.1145/3312740
http://doi.org/10.1109/LCA.2015.2442972
http://doi.org/10.1109/MM.2021.3085578
http://doi.org/10.6028/nist.sp.800-147b
https://gitee.com/openeuler/prefetch_tuning/tree/master
http://doi.org/10.1007/s11042-020-10139-6
http://doi.org/10.3390/agriculture12060793
http://doi.org/10.1016/j.jcde.2018.08.003
http://doi.org/10.1016/j.ins.2014.12.016
http://doi.org/10.1016/j.eswa.2019.04.013
http://doi.org/10.3390/s21051583
http://www.ncbi.nlm.nih.gov/pubmed/33668282
http://doi.org/10.1007/s00521-017-3272-5

Sensors 2022, 22, 6730 17 of 17

17. Chen, H.; Miao, F.; Chen, Y.; Xiong, Y.; Chen, T. A Hyperspectral Image Classification Method Using Multifeature Vectors and
Optimized KELM. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 2781–2795. [CrossRef]

18. Ghoul, T.; Sayed, T. Real-Time Safety Optimization of Connected Vehicle Trajectories Using Reinforcement Learning. Sensors 2021,
21, 3864. [CrossRef]

19. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing atari with deep reinforcement
learning. arXiv 2013, arXiv:1312.5602.

20. Zamani, R.; Afsahi, A. A study of hardware performance monitoring counter selection in power modeling of computing
systems. In Proceedings of the 2012 International Green Computing Conference (IGCC), San Jose, CA, USA, 4–8 June 2012; IEEE:
Piscataway, NJ, USA, 2012; pp. 1–10.

21. Smith, J.W.; Sommerville, I. Workload classification software energy measurement for efficient scheduling on private cloud
platforms. arXiv 2011, arXiv:1105.2584.

22. Myint, S.H. Server Workload Classification and Analysis with Machine Learning Algorithms. Available online: https://meral.
edu.mm/record/4398/files/11108.pdf (accessed on 19 May 2022).

23. Linux/Tools/Perf/Pmu-Events. Available online: https://github.com/torvalds/linux/tree/master/tools/perf/pmu-events/
arch/arm64 (accessed on 19 May 2022).

24. FIO-Flexible I/O Benchmark. Available online: https://fio.readthedocs.io/en/latest/fio_doc.html (accessed on 19 May 2022).
25. IOzone Filesystem Benchmark. Available online: https://www.iozone.org/ (accessed on 19 May 2022).
26. Sysbench Benchmark. Available online: https://wiki.gentoo.org/wiki/Sysbench (accessed on 19 May 2022).
27. STREAM Benchmark. Available online: https://github.com/jeffhammond/STREAM (accessed on 19 May 2022).
28. iPerf3. Available online: https://iperf.fr/ (accessed on 19 May 2022).
29. Patel, H.H.; Prajapati, P. Study and analysis of decision tree based classification algorithms. Int. J. Com-Puter. Sci. Eng. 2018, 6,

74–78. [CrossRef]
30. Wright, R.E. Logistic regression. In Reading and Understanding Multivariate Statistics; Grimm, L.G., Yarnold, P.R., Eds.; American

Psychological Association: Washington, DC, USA, 1995; pp. 217–244.
31. Guo, G.; Wang, H.; Bell, D.; Bi, Y.; Greer, K. KNN model-based approach in classification. In On The Move to Meaningful Internet

Systems 2003: CoopIS, DOA, and ODBASE: Proceedings of the OTM Confederated International Conferences CoopIS, DOA, and ODBASE
2003 Catania, Sicily, Italy, 3–7 November 2003; Springer: Berlin/Heidelberg, Germany, 2003; pp. 986–996.

32. Haldorai, A.; Ramu, A. Canonical correlation analysis based hyper basis feedforward neural network classification for ur-ban
sustainability. Neural Processing Lett. 2021, 53, 2385–2401. [CrossRef]

33. Zhao, H.; Liu, J.; Chen, H.; Chen, J.; Li, Y.; Xu, J.; Deng, W. Intelligent Diagnosis Using Continuous Wavelet Transform and Gauss
Convolutional Deep Belief Network. IEEE Trans. Reliab. 2022. [CrossRef]

34. Puterman, M.L. Markov decision processes. In Handbooks in Operations Research and Management Science; Elsevier: Amsterdam,
The Netherlands, 1990; Volume 2, pp. 331–434.

35. Arulkumaran, K.; Deisenroth, M.P.; Brundage, M.; Bharath, A.A. Deep Reinforcement Learning: A Brief Survey. IEEE Signal
Process. Mag. 2017, 34, 26–38. [CrossRef]

36. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;
Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef] [PubMed]

37. Alom, M.Z.; Taha, T.M.; Yakopcic, C.; Westberg, S.; Sidike, P.; Nasrin, M.S.; Hasan, M.; Van Essen, B.C.; Awwal, A.A.; Asari, V.K.
A state-of-the-art survey on deep learning theory and architectures. Electronics 2019, 8, 292. [CrossRef]

38. Benesty, J.; Chen, J.; Huang, Y.; Cohen, I. Pearson correlation coefficient. In Noise Reduction in Speech Processing; Springer:
Berlin/Heidelberg, Germany, 2009; pp. 1–4.

http://doi.org/10.1109/JSTARS.2021.3059451
http://doi.org/10.3390/s21113864
https://meral.edu.mm/record/4398/files/11108.pdf
https://meral.edu.mm/record/4398/files/11108.pdf
https://github.com/torvalds/linux/tree/master/tools/perf/pmu-events/arch/arm64
https://github.com/torvalds/linux/tree/master/tools/perf/pmu-events/arch/arm64
https://fio.readthedocs.io/en/latest/fio_doc.html
https://www.iozone.org/
https://wiki.gentoo.org/wiki/Sysbench
https://github.com/jeffhammond/STREAM
https://iperf.fr/
http://doi.org/10.26438/ijcse/v6i10.7478
http://doi.org/10.1007/s11063-020-10327-3
http://doi.org/10.1109/TR.2022.3180273
http://doi.org/10.1109/MSP.2017.2743240
http://doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
http://doi.org/10.3390/electronics8030292

	Introduction
	Dynamic Tuning Framework
	Workload Scenario Recognition
	Scenario Preparation
	Data Processing and Scenario Recognition

	Workload Scenario Optimization
	Markov Model for BIOS Control Optimization
	Deep Q-Network
	Joint BIOS Optimization Algorithm Using DQN
	Environment Design
	Agent Decision-Making and Learning
	State Control Optimization Algorithm

	Experimental Results
	Workload Scenario Recognition Results
	Operating Scenario Performance Optimization Experiment
	Simulation
	Measured Experiment

	Conclusions
	Appendix A
	References

