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Abstract: Servers are the infrastructure of enterprise applications, and improving server performance
under fixed hardware resources is an important issue. Conducting performance tuning at the
application layer is common, but it is not systematic and requires prior knowledge of the running
application. Some works performed tuning by dynamically adjusting the hardware prefetching
configuration with a predictive model. Similarly, we design a BIOS (Basic Input/Output System)-
based dynamic tuning framework for a Taishan 2280 server, including dynamic identification and
static optimization. We simulate five workload scenarios (CPU-instance, etc.) with benchmark tools
and perform scenario recognition dynamically with performance monitor counters (PMCs). The
adjustable configurations provided by Kunpeng processing reach 2N(N > 100). Therefore, we
propose a joint BIOS optimization algorithm using a deep Q-network. Configuration optimization is
modeled as a Markov decision process starting from a feasible solution and optimizing gradually. To
improve the continuous optimization capabilities, the neighborhood search method of state machine
control is added. To assess its performance, we compare our algorithm with the genetic algorithm
and particle swarm optimization. Our algorithm shows that it can also improve performance up to
1.10× compared to experience configuration and perform better in reducing the probability of server
downtime. The dynamic tuning framework in this paper is extensible, can be trained to adapt to
different scenarios, and is more suitable for servers with many adjustable configurations. Compared
with the heuristic intelligent search algorithm, the proposed joint BIOS optimization algorithm can
generate fewer infeasible solutions and is not easily disturbed by initialization.

Keywords: reinforcement learning; BIOS; server; performance optimization

1. Introduction

Driven by the strong demand of the internet industry, more traditional industries have
undergone digital transformation, and servers are also widely used by enterprises to build
network applications. For server buyers, high-performance servers can provide their users
with a better experience and meet business needs. However, the performance of the server
mainly depends on its hardware configuration. The better the configuration is, the higher
the performance, and the corresponding cost will also increase. Therefore, it is necessary to
improve server performance based on inherent hardware devices. Server users can conduct
performance tuning at the operating system layer or at the application layer according to the
specific application. For example, Li et al. implemented dynamic performance optimization
of the Apache Web Server by tuning some important parameters, such as ‘MaxClients’ and
‘KeepAlive’ [1]. For database application servers, SQL queries always have an optimization
space. Reference [2] investigated a series of query optimization techniques for improving
the energy efficiency of relational databases and NoSQL databases.

Another effective technique is to improve the performance of a single server through
a reasonable hardware configuration. Reference [3] showed that hardware data prefetching
could improve server application performance, but it did not provide a detailed description
of how to configure it. References [4–6] produced a remarkable performance improvement
by adjusting the hardware configuration on Intel and POWER8 servers. Nevertheless, these
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are all hardware prefetching configurations. On the Taishan 2280 server, the Kunpeng 920
processor [7] also provides a large number of adjustable configurations, such as L3 cache
prefetch configurations and HHA (HCCS Home Agent) [7] related configurations. The
Basic Input/Output System (BIOS) [8] on the server can control the underlying registers
to set these configurations. For example, the L3T_PREFECTH register can control the
“prefetch_utl_ddr_en” function, which represents “whether to allow automatic threshold
reduction according to the utilization of DDR”. For more registers and configurations,
please refer to [9]. The configurable register bits can be regarded as BIOS switch control
items. Reasonable configuration can improve the performance of a multicore server system.
Since there are only four configuration items [4,5], exhaustive search methods were used
to find the best configuration for a specific application. Reference [6] considered the con-
figuration optimization of 25 bits, but they only filtered out the parts that had substantial
performance gains and did not fully consider the possible nonlinear relationship between
configurations. In this paper, the number of BIOS configuration items is larger, and it is
impossible to manually select a configuration representing near-optimal performance out
of such a huge search space. Therefore, it is necessary to resort to intelligent optimiza-
tion algorithms. Evolutionary algorithms and local search algorithms based on swarm
intelligence are common approaches for solving this type of problem. Genetic algorithm
(GA) [10,11], particle swarm optimization (PSO) [12–14], whale optimization algorithm
(WOA) [15], gray wolf optimization (GWO) [16,17] and other intelligent algorithms are
widely used for parameter optimization, and there are versions for discrete parameters.
These methods are iterative optimization algorithms that cannot learn the configuration
process and may have a higher probability of causing server instability. Since the process of
optimizing configuration can be modeled as a sequential decision-making process, we can
also adopt reinforcement learning methods. With the development of artificial intelligence
technology, deep reinforcement learning has shown great research potential on sequential
decision-making problems [18,19].

It can be seen from the literature [4–6] that a fixed configuration does not help perfor-
mance in many cases, and in fact, it may degrade performance due to useless bus bandwidth
consumption and cache pollution. Similarly, it is also not appropriate to set a fixed BIOS
configuration for the server because servers may run under different workloads, such
as CPU-intensive, disk-intensive, memory-intensive, network-intensive, etc. Due to the
different performance indicators of various workload scenarios, the optimal hardware con-
figuration is also different. When the server workload is frequently switched, to avoid
the trouble of manually checking and adjusting the configuration, this paper proposes a
dynamic tuning framework for dynamically adjusting the configuration. First, the workload
scenario is dynamically identified through the server performance monitor counter (PMC)
data [20], and then, the optimal configuration can be switched for the identified scenario.
Server workload monitoring has been discussed in many works [21,22], but these monitor-
ing data come from operating systems, such as CPU utilization and disk read and write rates.
Similar to our work, [4–6] use PMCs as inputs for machine learning strategies to select the
best configuration, but due to the few configuration items, their machine learning strategy
directly outputs the optimal configuration, not the workload scenario. When there are many
configurations, this method is not suitable. Therefore, this paper uses the workload scenario
as the label of the machine learning strategy. BIOS can also collect hardware PMCs by
accessing the underlying event register, including cycles, iTLB-loads, branch-load-misses,
dTLB-loads, and other event-counting data [23]. To the best of our knowledge, there has
been little research on optimizing server performance by dynamically adjusting the BIOS
hardware configuration. Therefore, this study makes the following contributions:

(1) To improve the performance of Kunpeng processor-based servers, we proposed a
performance tuning framework for dynamically adjusting the BIOS configuration. It
monitors the server workload information to identify scenarios and implements per-
formance optimization based on the results of static tuning or empirical configuration.
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(2) At the static configuration tuning stage, finding a near-optimal BIOS configuration
is modeled as starting from a feasible initial configuration and adjusting the BIOS
configuration to obtain an improvement. Based on this model, we propose a joint BIOS
optimization algorithm using a deep Q-network combining reinforcement learning
and nearest neighbor search.

(3) With the proposed optimization algorithm, we significantly improve the memory
bandwidth rate in memory-intensive scenarios. To further evaluate the proposed static
tuning method, we compare it with two metaheuristic methods: genetic algorithm
and particle swarm optimization algorithm. The algorithm in this paper is more stable
and has a lower probability of server downtime.

(4) We have also carried out optimization work in other load scenarios and found that in
some scenarios, performance indicators are no longer critical optimization indicators.

The remainder of the paper is organized as follows. Section 2 describes the dynamic-
tuning framework. Sections 3 and 4 discuss methods for load scenario identification and
optimization, respectively. Section 5 presents the results of operating scenario recognition
and optimization. Finally, this paper is summarized in Section 6.

2. Dynamic Tuning Framework

In this section, we describe the dynamic-tuning framework, which is separated into
three stages: an offline training stage, an offline static configuration tuning stage, and an
online dynamic-tuning stage, as depicted in Figure 1.
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Online dynamic-tuning stage. This paper applies machine learning to predict server
workload scenarios and periodically sets the corresponding optimal hardware configuration
during the online dynamic-tuning stage. It collects PMCs periodically and feeds them into
a classifier after a fixed time to identify the current workload scenario. Once it recognizes
that the scenario changes, the near-optimization configuration is switched in real-time.

Offline training stage. The training data for machine learning are prepared offline. We
simulate workload scenarios with benchmark software to collect training data in Section 3.
Similar to [5], we measure all performance events supported by our processor and perform
feature selection. The final dataset is a matrix, and each row consists of performance
counter data and scenario labels. The performance counter data are the values of the
specific scenario fixed time. Then, we build a classifier using machine learning strategies.
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Offline static configuration tuning stage. To find better configurations from the inex-
haustible configuration, we do not use iterative search methods. Instead, we use reinforce-
ment learning to gradually optimize the initial configuration to find a better configuration.
This is the main part of the article. The details are provided in Section 4.

3. Workload Scenario Recognition
3.1. Scenario Preparation

Scenario identification of the server load is a prerequisite for dynamic optimization.
However, it is impossible to simulate all workload scenarios, and the load scenarios running
on real servers are relatively fixed. Therefore, in this paper, a coarse-grained division of load
scenarios is made. Because of the scalability of the proposed dynamic monitoring algorithm,
users can train fine-grained classifiers according to the actual server usage. According
to different workload conditions, server workload scenarios can be roughly divided into
CPU-intensive scenarios, memory-intensive scenarios, disk-intensive scenarios, network-
intensive scenarios, and idle scenarios. The difference in load is mainly due to the different
tasks currently running on the server. By running the benchmark tool on the server, various
scenarios can be simulated, as seen in Table 1. FIO [24] is a benchmark software used to
test hard disk IO, which can stress test hard disks, including sequential read and write
and random read and write. IOzone [25] is a file system benchmark tool that provides a
variety of IO operations that can comprehensively test the performance of the file system.
Sysbench [26] is a multithreading and multifunctional benchmarking tool commonly used
to test databases, CPUs, etc. The STREAM [27] benchmark is a comprehensive memory test
that is widely used in the testing and server market industries. It supports four operation
modes, copy, scale, add, and triad, to test the memory bandwidth performance. Iperf3 [28]
is a widely used network bandwidth testing tool that supports IPv4 and IPv6 and can run
on Windows, Linux, Android, and other platforms.

Table 1. Scenario simulation tools.

Scenario Type Benchmarking Tools

I/O-intensive scenario FIO, IOZone
Network-intensive scenario iPerf3

CPU-intensive scenario Sysbench-CPU
Memory-intensive scenario STREAM

Idle scenario None

3.2. Data Processing and Scenario Recognition

A typical multiclass supervised learning problem generally follows four steps: data
collection, feature selection, model training, and model evaluation. In various load scenarios
simulated by the benchmark test, the BIOS is used to collect PMC data per second. There
is redundancy in the original data, and feature correlation analysis can be performed to
eliminate some features. The next step is to use traditional machine learning methods for
training, such as decision trees (DT) [29], logistic regression (LR) [30], K-nearest neighbors
(KNN) [31], and deep neural networks (DNN). In recent studies, DNN can handle complex
classification problems well [32,33]. To judge the quality of the final classification model, some
common evaluation indicators can be used for evaluation, such as accuracy and precision.

4. Workload Scenario Optimization
4.1. Markov Model for BIOS Control Optimization

In a specific scenario, the problem of finding a near-optimal BIOS configuration is
modeled as starting from a feasible initial configuration and adjusting the BIOS config-
uration to obtain an improvement. When the BIOS controls the optimization, the state
is characterized by the current server’s absolute BIOS configuration and performance
evaluation. BIOS configuration can be divided into two categories: integer type, and binary
type. There are very few configurations of integer types, so we treat them as multiple
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binary configuration items by converting them to binary. Therefore, all configurations
can be regarded as configuration switch items. The number of BIOS configuration switch
items is N (N > 100), and M performance indicators are used for the server’s performance
evaluation; thus, the state is represented with an (N + M)-dimensional vector. With the
definition of the environment state, the action space can be obtained naturally. Actions can
be defined as the flip of N BIOS configuration items and represented by an N-dimensional
vector. It shows the BIOS register configuration items that need to be flipped. The position
that needs to be flipped is set to 1, and the position that does not need to be flipped is set
to 0. It can be seen that the action space is large and reaches 2N . To narrow the scope of
the action space, we make conventions on actions. Given the state s, the optional action
can only be to flip a single configuration item. In this way, the configuration optimization
problem can be abstracted into multistep tuning rather than one-step tuning. Additionally,
the state at the next moment is only related to the current state and the action and has
nothing to do with the state of the earlier moment, which satisfies the Markov properties.
Therefore, this paper uses the Markov decision process (MDP) [34] to complete the BIOS
control optimization model design. The BIOS control optimization model based on MDP is
defined as follows:

Definition 1. BIOS control optimization is based on MDP (MDP-BIOSCO). An MDP-BIOSCO
can be defined as a tuple: MDP− BISOCO =< S, A, P, R, γ >. S is a set of data describing the
server state, which is expressed above; A(s) is the restricted set of actions that can be performed in
the state s ∈ S. R is a reward function, and when an action is performed, the server changes from s
to s′. With the state change, the server performance also changes. Based on this change, an instant
return r is fed back, and its expected value is r = E(R(s′|s, a)) ; γ ∈ [0, 1] is a discount factor to
distinguish the importance of future rewards and immediate rewards.

4.2. Deep Q-Network

Deep reinforcement learning (Deep RL) is a combination of deep learning (DL) and
reinforcement learning (RL), which is mainly used to deal with high-dimensional states
and action spaces [35]. In [36], Mnih et al. proposed a structure named DQN, which could
learn to play a range of Atari 2600 video games at a superhuman level. In this study, we
employ a DQN because the state-action space is considerably large.

In the high-dimensional state or action space, traditional Q-learning cannot estimate
the Q value corresponding to each large state and action space [37]. In DQN, a deep
convolutional neural network is used to approximate the optimal action-value function.
Nevertheless, when a nonlinear function approximator, such as a neural network, is used
to represent the action-value function, RL is unstable or even divergent. To address this
problem, Mnih et al. proposed an experienced pool and target network. As illustrated in
Figure 2, replay memory is used to store samples (s, a, r, s′) and perform random replay,
thereby eliminating serial data correlation. The target Q network is used to assist in
calculating the following loss function equation:

Li(θi) = E(r + γ max
a′

Q(s′, a′; θ−i )−Q(s, a; θi))
2 (1)

where i is the number of iterations, s and a represent the current state and action, respec-
tively. s′ and s′ represent the next state and action, respectively. θi are the parameters of
the estimation Q-network at iteration i, and θ−i are the target Q-network parameters at
iteration i. r + γ max

a′
Q(s′, a′; θ−i ) is the target value. The parameters θ−i are updated at

every C step from the estimation Q-network.
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4.3. Joint BIOS Optimization Algorithm Using DQN

To optimize BIOS control in a real server, a joint BIOS optimization algorithm using
DQN is proposed based on the above MDP-BIOSCO model. The overall structure is
illustrated in Figure 3. The first part involves the training phase and includes three subparts:
environment, agent, and experience replay. The second part is designed for continuous
optimization during the testing phase.
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4.3.1. Environment Design

The environment is the object of agent interaction in a reinforcement learning system.
The design of the environment mainly includes two parts: an interactive data record and a
function, step().
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It takes a few minutes to configure the BIOS and test the performance data on the server.
The bios.txt and score.txt files shown in Figure 3 store the BIOS absolute configuration and
the corresponding performance score data, respectively.

The core of the environment is the step() function, which contains the contents of
the entire environment in Figure 3. The input of the step() function is the action, and the
output is the state at the next moment, the reward of the current action, and whether to
terminate the training episode. This function directly controls the server to conduct field
measurements and calculate the state at the next moment.

A. The state of the system is obtained at the next moment. The state at the next moment
is obtained through end-to-end testing. First, we calculate the absolute BIOS configu-
ration at the next moment from the predicted action at the current time, and then
we test the server to obtain the performance evaluation. Finally, the two parts are
merged to form a state.

B. An instant reward is obtained. In contrast to the general reinforcement learning task,
BIOS control optimization has no specific target, and the desired effect is that the
algorithm can obtain better server performance quickly while ensuring the ability to
jump out of local optimization. For the STREAM test scenario, the goal is to adjust
the configuration, ensuring that the memory scores can increase rapidly and have
the ability to find higher scores. Therefore, the reward function is set as follows:

Setting reward, r1. The action of BIOS configuration modification causes the performance
scores to rise or fall, and r1 provides feedback for the current action. There is a large gap in
performance evaluation for different servers and operating scenarios. To ensure scalability, this
reward adopts the baseline design method. The baseline is the known maximum difference of
automated test acquisitions in the initial pre-experimental stage as follows:

r1 = (scorei+1 − scorei)/baseline ∗ scale (2)

scorei and scorei+1 represent the performance scores of the current moment and the
next moment, respectively. Since the score gap may be small compared to the baseline in
the actual experiment, we have incorporated a scaling factor scale. By default, scale = 100.

Setting a fixed reward, r2, when performance scores are higher than the record in
this episode. This reward, r2, is mainly to drive the algorithm to find higher scores and
maintain the ability to jump away from the local optima.

Setting reward, rdown, when the server is down or works unstably. Taking all of the
above into consideration, the instant reward module is described as follows:

r =

{
r1 + r2 other
rdown if server down

(3)

Moreover, the generated samples (s, a, r, s′) are stored in an experience replay memory.
These samples are then retrieved randomly from the experience replay and fed into the
training process. If it is a downtime sample, repeat the storage k times to increase the
proportion of downtime samples.

4.3.2. Agent Decision-Making and Learning

The agent is the main actor in strategy learning. It finds the optimal action strategy
through continuous trial and error learning, which mainly includes two aspects: action
selection and strategy learning.

Figure 4 is the Q-network structure, the input is the BIOS configuration, and the
output is the Q value for different actions. For instance, Q(s, aj) represents the Q value for
selecting the jth action at state s. In Section 4.1, we define and restrict actions. Action a
means to modify only one configuration, and thus, the output dimension of the Q network
is the same as that of the configuration item. At state s, to choose the best action in the
set of alternative actions, the decision-maker will use a greedy strategy to take the action
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with the largest Q value. However, adopting the greedy strategy alone will cause missing
the optimal action, so this paper uses the ε greedy policy to ensure a certain probability of
exploration. At the same time, to make up for the low intensity initial search problem, a
large value of εmax is set at the beginning of the training of the algorithm, and it decreases
according to the decline coefficient εdecay, as the training goes on until it drops to the
minimum value, ε as follows:

ε = max(ε ∗ εdecay, εmin) (4)
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During the policy update phase, the parameters of the Q-network are updated as follows:

θi+1 = θi + α[r + γmaxa′Q(s′, a′; θ−i )−
Q(s, a; θi)]5Q(s, a; θi)

(5)

where i is the number of iterations, s and a represent the current state and action, respec-
tively. s′ and a′ represent the next state and action, respectively. θi are the parameters of
the estimation Q-network at iteration i, and θ−i are the target Q-network parameters at
iteration i. α and γ represent the learning rate and discount factor.

In summary, the BIOS optimization algorithm (PART 1) is applied to the server BIOS
control optimization problem, as shown in Algorithm 1.

Algorithm 1 BIOS optimization algorithm based on DQN (Part 1).

Input: N Initial capacity of the playback pool,
M Number of final exploration frames for optimization,
T Number of optimization steps per iteration process,
sinitial State corresponding to the initial configuration

1 Initialize replay memory (D) to capacity N;
2 Initialize Q-network with random weights θ;
3 Initialize environment;
4 For episode = 1, M do
5 Initialize environment state s = sinitial ;
6 For t = 1, T do
7 Calculate Q(s, a; θ) in state s;
8 With probability ε select a random action a,

Otherwise, select a = argmaxa(Q(s, a; θ));
9 Execute action a in the environment,

obtain a reward r, next state s′, and whether server downtime;
10 If server downtime: store the same transition in D k times;
11 else: store one transition in D;
12 Sample random minibatch of transitions from D
13 Update parameters θ in Q-network with Formula (5)
14 Every C steps reset θ− = θ

15 End For
16 End For
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4.3.3. State Control Optimization Algorithm

In Part 2 of Figure 3, state machine control is added to obtain a model-assisted joint
optimization method. The state machine can record the good performance state. Based on
the optimized model and the state machine, the joint optimization method can realize the
continuous optimization of the server to improve global optimization.

After the first part of the algorithm is executed, some better-performing configurations
are obtained, as well as a trained and tuned model. These contents will be used to guide
subsequent state-controlled neighborhood searches. As depicted in Figure 5, the two
experience pools that continue to update come from the data of the training process. There
are three states: steady state, random state, and low-performance state. In the steady state,
it uses the model trained above to select an action. In the random state, it will find the past
n high-performance experiences based on memory and then perform neighbor searching
based on Hamming Distance. In the low-performance state, it will find the first n high-
performance experiences from pool B and then search nearby. The process of generating a
new configuration for neighbor searching is as follows: (1) Randomly generate a candidate
configuration. (2) Calculate the Hamming distance between the candidate configuration
and n reference configurations. In the random state, the reference configuration is the past
n high-performance experiences. (3) Determine whether more than half of the n distances
are lower than the set distance threshold, and if so, generate a new solution; otherwise,
repeat (1). At the beginning of the algorithm, the last 5% of the first stage and the downtime
configuration are filled into experience pool A, and the first 1% of the configuration is filled
into B. The initial configuration is set the same as the first stage and defined as a stable
state. Then, state switching is performed according to Figure 5, and each state transition is
an iterative process. If the resulting new solution performance is lower than the maximum
value of A, it is added to A, and if it is higher than the minimum value of B, it is added to B.
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5. Experimental Results
5.1. Workload Scenario Recognition Results

In each scenario, a similar amount of data is collected, with a total of 497,640 combined
data. With the help of the Pearson correlation coefficient [38] for feature screening, the
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features with high correlation are removed, and finally, 38 features remain in Table A1.
After dividing the dataset, there are 338,396 pieces of data in the training set, 59,716 pieces of
data in the validation set, and 99,528 pieces of data in the test set. As seen in Figure 6, each
classifier after training is evaluated using the test set. It was found that the performance
of the decision tree is the worst. Its classification ability for hard disk-intensive scenarios,
idle scenarios, and CPU-intensive scenarios is too poor, resulting in low accuracy. The
other three algorithms have good classification capabilities for CPU-intensive scenarios,
memory-intensive scenarios, and network-intensive scenarios and can achieve close to 100%
accuracy. The performance difference between these four algorithms is mainly reflected in
the classification ability of hard disk-intensive scenarios and idle scenarios. According to
the results, DNN has the best classification ability, with an accuracy rate of 99.7%.
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5.2. Operating Scenario Performance Optimization Experiment

According to prior knowledge, the server does not work if some BIOS switch con-
figuration items change. Therefore, these configuration items will be directly removed.
The final configuration items are shown in Table 2, and 104 switch configuration items are
reserved for the experimental STREAM scenario.

Table 2. Configuration register [9].

Register Name Number of Configuration Bits Selected for
Optimization

L3T_STATIC_CTRL 8

L3T_DYNAMIC_CTRL 16

L3T_DYNAMIC_AUCTRL0 8

L3T_DYNAMIC_AUCTRL1 21

L3T_PREFECTH 8

HHA_DIR_CTRL 15

HHA_FUNC_DIS 17

HHA_TOTEMNUM 11
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5.2.1. Simulation

To verify the effectiveness of the optimization algorithm detailed in Section 3 and to
find a good parameter design scheme promptly, the algorithm simulation experiment is
designed before the experiment.

The BIOS on the server is configured dynamically, and the STREAM benchmark tool is
run to collect simulation model training data. STREAM uses four memory operations, copy,
scale, add, and triad, to test the bandwidth performance of the system memory. These four
rates are used as indicators to measure the server’s performance. From the collected data,
the minimum average memory rate of the server in the experiment is close to 150,000 MB/s.
Then, a performance score regression model is established based on the collected data.

Experiments with different hyperparameters are conducted based on the optimization
algorithm in this paper, and the parameter setting scheme is selected by comparison. The
influence of some hyperparameter settings on training is shown in Figure 7. When the
learning rate or discount coefficient is too large, the average return shows a downward
trend. The final hyperparameter design scheme is shown in Table 3. The model is used for
optimization from the initial BIOS configuration, as seen in Figure 8. Moreover, the model
can quickly optimize from a low-score state to a high-score state.
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Table 3. List of hyperparameters and their values.

Hyperparameters Value

minibatch size 32
replay memory size 10,000

discount factor γ 0.90
learning rate α 0.005

initial exploration εmax 1
exploration decay εdecay 0.995

final exploration εmin 0.1
final exploration frame M 2000

final step T 100
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5.2.2. Measured Experiment

We refer to the parameter setting plan of the simulation experiment and make minor
modifications to it. The actual training requires a test server, which takes a long time, thus
reducing the capacity of the experience pool and the final step T = 40. The performance
score for the initial training state is 202,000 MB/s. The average reward is used to evaluate
the effect of the algorithm training on the actual server.

In Figure 9, as the number of iterations increases, the average return obtained by the
algorithm continues to increase, but the shock is greater than the simulation result. In
an actual server environment, some BIOS configuration items and configuration progress
cause the server to crash or work unstably. When this happens, the cumulative return of the
round drops considerably, and then the reward curve exhibits a sudden drop. Additionally,
the trained model is used to optimize the initial BIOS configuration in Figure 10.

The state machine control of the BIOS optimization algorithm (Part 2) is added to
realize continuous optimization. Table 4 shows the comparison of this paper’s joint opti-
mization algorithm and other traditional heuristic algorithms, in which popsize represents
the number of individuals in the population, and iter represents the number of iterations.
The experience configuration is provided by the cooperative server manufacturer unit,
which is obtained by a large number of manually automated tests. The optimal configu-
ration performance of the three algorithms is all higher than the empirical configuration,
but the BPSO algorithm has the worst optimization effect and the highest probability of
downtime. This is because BPSO, despite having a strong global search capability, becomes
more random with the iterative search of the algorithm, resulting in an increased probability
of generating downtime configurations. Since too many downtimes will damage the server,
the BPSO optimizations are all manually terminated in about 30 iterations, leading to the
worst optimization effect. Different population sizes in the genetic algorithm also affected
the downtime probability and optimization effect. When the number of individuals in
the population is larger, the difference between populations will be larger, and the global
optimization ability will also be stronger. Therefore, the performance optimization effect
of popsize = 100 is better than that of popsize = 20. Moreover, individuals with greater
differences are more likely to cause downtime when performing crossover operations. In
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addition, both algorithms need to initialize the population, which also brings some down-
time configuration due to the random initialization. Although the algorithm proposed
in this paper limits the number of tuning steps, the search space is also large enough, so
the performance optimization effect can be close to that of the genetic algorithm. More
importantly, the algorithm is based on reinforcement learning with a learning mechanism
and is not disturbed by the initialization process; thus, the performance is more stable
with a smaller downtime probability. After analyzing the downtime configurations, it was
found that the server being down not only depends on the BIOS configuration but also on
the configuration process. For example, configuration-A and configuration-B do not cause
server downtime, but adjusting to configuration-B from configuration-A can cause server
downtime. However, the GA algorithm has no memory of the configuration process.
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Table 4. Comparison of different algorithm optimization results for the STREAM scenario.

Methods
Main

Parameter
Settings

Best Performance
Score (Average

Memory
Rate MB/s)

Server Downtime Probability
during the Experiment

Process

Prior Knowledge 263,000

Joint BIOS
optimization

algorithm using
DQN (including the

training process)

Iter = 50 290,400 4.1%

Genetic algorithm

Iter = 100,
popsize = 20 281,000 8.1%

Iter = 100,
popsize = 100 289,700 20.3%

Binary particle
swarm algorithm Popsize = 100 276,000 39.8%

We also perform static tuning on several other benchmark software, and the results are
shown in Figure 11. The performance metric of Sysbench-CPU is the 95th percentage of the
prime calculation event latency. The performance metric of Fio is the IOPS (input/output
operations per second) under the random-read workload. For the Sysbench-CPU bench-
mark, there is almost no room for improvement of the empirical configuration. The main
reason is that for the performance of the core, the empirical configuration has reached the
optimal solution, and it is difficult to further optimize it further. In addition, although
kunpeng920 provides a lot of configuration items, only some configurations are selected
for the experiment in this article. Considering that the configurations adjusted in this
article are mainly related to LLC and HHA, there is little opportunity for adjusting these
configurations to improve the core performance but a greater opportunity for optimization
in computing and communication scenarios, such as memory. In the follow-up work,
energy efficiency can be used as the tuning index for scenarios where there is little room for
performance improvement. Additionally, more memory-type benchmarks can be added
for fine-grained scenario classification and static tuning.
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6. Conclusions

In this study, we design a dynamic tuning framework under unknown operating
scenarios based on the BIOS system. The aim is to give full consideration to the hardware
capabilities of the system. First, dynamic scenario classification is implemented on the BIOS
system using real-time server monitoring data. The accuracy rate reaches 99.7%. Then,
the Markov model of the BIOS control decision is established. Combining reinforcement
learning with the nearest neighbor search, we propose a joint BIOS control optimization
method. Simulation experiments show that the algorithm proposed in this paper can
optimize the server to a higher performance state. The actual experiments on the server
prove that the algorithm performs well in dynamic situations, and in the STREAM scenario,
it achieves good memory rate performance optimization (43.7% higher than the initial
training configuration state and 10.3% higher than the experience configuration state).
Compared with the genetic algorithm, the obtained optimal performance is close, and the
probability of downtime during optimization is smaller. Static configuration optimization
also shows that the performance in partial load scenarios is not sensitive to the configuration
in this article, such as sysbench-CPU, and energy efficiency may be a good tuning indicator.
Given this situation, the static optimization algorithm in this paper can still work. In
summary, the dynamic tuning framework makes full use of system hardware functions
and shows its effectiveness.
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Appendix A

Table A1. Data features remaining after data preprocessing.

Serial Number Feature Name Data Type

1 Cpu_cycles int
2 L1_cache_refill int
3 L1d_cache_refill int
4 L1d_cache int
5 L1d_tld_refill int
6 L1i_cache int
7 L2d_cache int
8 L2d_cache_refill int
9 L1d_tlb int
10 Prf_req int
11 Hit_on_prf int
12 Mem_stall_l1miss int
13 Mem_stall_l2miss int
14 Atc_cmd int
15 Flux_rd int
16 Flux_wr int
17 Prc_cmd int
18 Rnk_chg int
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Table A1. Cont.

Serial Number Feature Name Data Type

19 Rw_chg int
20 Fluxid_wcmd int
21 Fluxid_rcmd int
22 Bnk_chg int
23 Rd_cpipe int
24 Rx_ops_num int
25 Rx_outer int
26 Rx_sccl int
27 Retry int
28 Tx_snp_outer int
29 Hac_smmu_transaction int
30 Net_smmu_transaction int
31 Net_smmu_l2_ltb_hit int
32 Net_smmu_ltb_miss int
33 Pcie_smmu_transaction int
34 Pcie_smmu_trans_table_walk_access int
35 Pcie_smmu_context_bank_cache_miss int
36 Pcie_smmu_ltb_miss int
37 Pcie_smmu_l1_tlb int
38 Pcie_smmu_l2_ltb_hit int
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