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Abstract: Although lung cancer survival status and survival length predictions have primarily been
studied individually, a scheme that leverages both fields in an interpretable way for physicians
remains elusive. We propose a two-phase data analytic framework that is capable of classifying
survival status for 0.5-, 1-, 1.5-, 2-, 2.5-, and 3-year time-points (phase I) and predicting the number
of survival months within 3 years (phase II) using recent Surveillance, Epidemiology, and End
Results data from 2010 to 2017. In this study, we employ three analytical models (general linear
model, extreme gradient boosting, and artificial neural networks), five data balancing techniques
(synthetic minority oversampling technique (SMOTE), relocating safe level SMOTE, borderline
SMOTE, adaptive synthetic sampling, and majority weighted minority oversampling technique),
two feature selection methods (least absolute shrinkage and selection operator (LASSO) and random
forest), and the one-hot encoding approach. By implementing a comprehensive data preparation
phase, we demonstrate that a computationally efficient and interpretable method such as GLM
performs comparably to more complex models. Moreover, we quantify the effects of individual
features in phase I and II by exploiting GLM coefficients. To the best of our knowledge, this study
is the first to (a) implement a comprehensive data processing approach to develop performant,
computationally efficient, and interpretable methods in comparison to black-box models, (b) visualize
top factors impacting survival odds by utilizing the change in odds ratio, and (c) comprehensively
explore short-term lung cancer survival using a two-phase approach.

Keywords: lung cancer; survival prediction; unbalanced data; one-hot encoding; Surveillance,
Epidemiology, and End Results (SEER)

1. Introduction

Lung cancer is the leading cause of cancer-related deaths worldwide [1]. According to
the World Health Organization (WHO) [1], there were 2.9 million new cases and 1.76 million
deaths due to lung cancer globally in 2018. It is estimated by the American Cancer Society [2]
that around 236,740 people (117,910 men and 118,830 women) will be diagnosed with lung
cancer while approximately 130,180 deaths (68,820 men and 61,360 women) will arise in
2022. According to Lemjabbar-Alaoui et al. [3], the prognosis of lung cancer is generally
poor despite all the advancements in diagnostics and therapeutics. Through the use of
data mining methods, it is possible to further analyze cancer patient data and predict the
survivability outcomes. The combination of machine learning methods with physician
expertise can help facilitate cancer treatment options. The Surveillance, Epidemiology,
and End Results (SEER) [4] program is currently the most comprehensive repository that
contains clinical data for approximately 34.6% of the US population with cancer. We believe
that the literature on lung cancer survivability using SEER data can be classified within two
main research groups. The first group [5–12] focuses on using statistical methods (e.g., Cox
regression, Kaplan–Meier methods, and chi-squared test) for survival analysis as well as
finding significant prognostic features (e.g., tumor size, performing surgery, and positive
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lymph node ratio) that influence survival. The second group focuses on using machine
learning methods for survival prediction (see Table 1). In this study, we focus predominantly
on the second group of research, while identifying significant prognostic features.

Table 1. A summary of recent statistical and data mining research in lung cancer using SEER data.

Category Paper Data, # of Variables, Objective Method/Model

[5] SEER 2010–2016, 23 variables, univariate and
multivariate analysis Cox R

[6] SEER 2008–2016, 13 variables, univariate and
multivariate analysis Cox R, Kaplan–Meier

[7] SEER 2010–2015, 12 variables, univariate and
multivariate analysis Cox R, Kaplan–Meier, chi-squared test

Statistical

[8] SEER 2001–2014, 12 variables, univariate and
multivariate analysis Cox R, Kaplan–Meier, chi-squared test

[9] SEER 2010–2013, 12 variables, multivariate
analysis Cox R, Kaplan–Meier, chi-squared test

[10]
SEER 2006–2010, # of variables is not

disclosed, univariate and multivariate
analysis

Cox R, Kaplan–Meier, chi-squared test,
ANOVA

[11] SEER 1998–2009, 13 variables, univariate and
multivariate analysis Kaplan–Meier, chi-squared test

[12]
SEER 1988–2006, # of variables is not

disclosed, univariate and multivariate
analysis

Cox R, Kaplan–Meier

[13]

SEER 2004–2016, # of variables is not
disclosed, classification + regression for 3

categories: ≤6 months, 7–24 months, and ≥24
months

ANN, RNN, CNN, RF, SVM, NB, GBM,
LR

[7] SEER 2010–2015, 12 variables, classification
(1-, 3-, 5-year survival) XGB, LR, NB, DT, KNN, RF, SVM

[14] SEER 2010–2015, 14 variables, classification
(5-year survival) LR, NB, Gaussian K-base NB,

[15] SEER 1973–2012, 114 variables, classification
(0.5-, 1-, 5-year survival) RF, ANN

Data Mining

[16]
SEER 2004–2009, 13 variables, classification +
regression for 3 categories: ≤6 months, 7–24

months, and ≥24 months
GBM, RF, GLM, EV

[17] SEER 2004–2009, 48 variables, classification
(1-, 5-year survival) LR, MLP

[18] SEER, 24 variables, classification (5-year
survival)

RF, BA, DA, ADB, BOO, RS, RIPPER, DS,
Simple Cart, DT, SMO, LR, BN

[19] SEER 2004–2009, 8 variables, clustering +
regression

MBC, K-Means, GBM, SOM, HC, NNMF,
PCA, LR

[20] SEER 1998–2008, 45 variables, classification
(0.67-year survival) + clustering BDP, K-Means, KNN, J48

[21] SEER 1998–2006, 64 variables, classification
(0.5-, 0.75-, 1-, 2-, 5-year survival) DT, RF, LB, RS, ADT, EV, ANN, SVM, DS

[22] SEER 1988–2004, 13 variables, classification
(5-, 7-, 10-year survival) NB, DT

Cox R = Cox regression, RNN = recurrent neural network, CNN = convolutional neural network, GBM = gradient
boosting machine, LR = logistic regression, XGB = extreme gradient boosting, KNN = K-nearest neighbor, GLM =
generalized linear model, EV = ensemble voting, MLP = multilayer perceptron, BA = bagging, DA = dagging,
ADB = AdaBoost, BOO = boosting, RS = random subspace, DS = decision stump, SMO = sequential minimal
optimization, BN = Bayes Net, MBC = model-based clustering, SOM = self-ordering map, HC = hierarchical
clustering, NNMF = non-negative matrix factorization, PCA = principal component analysis, CE = custom
ensemble, LB = LogitBoost, ADT = alternating DT.
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Survival status prediction, length of survival estimation, and cancer patient clustering
are primary topics found in the machine learning literature that utilizes the SEER dataset,
where focus is placed on model accuracy. Moreover, common classification, clustering, and
regression models employed within the second group of research include artificial neural
networks (ANNs), support vector machines (SVMs), Naïve Bayes (NB), decision trees
(DTs), random forest (RF), ensemble methods, K-means, and bidirectional data partitioning
(BDP) [7,13–22]. Apart from the great strides made in lung cancer prediction research,
several challenges still exist:

• Although most studies explore survival status classification [7,14,15,17,18,21,22] and
survival length prediction [19] individually, a scheme that leverages both remains
elusive [13,16].

• Data used in lung cancer survivability predictions suffer from the class imbalance
problem, which produces algorithm bias in favor of the majority class. This issue is
scarcely addressed in cancer-related studies [14].

• Most features in the SEER data are categorical (e.g., grade, stage, and race). Many
studies adopt integer encoding [14–16,21,22] to transform categorical features, which
can introduce improper hierarchical order in feature levels. Alternatively, several stud-
ies [7,13,17,22] apply one-hot encoding to remedy non-ordinal relationships; however,
most of these studies omit feature interpretation in favor of model performance.

• An interpretable yet effective model for predicting lung cancer survivability or survival
length, which can assist a practitioner in their decision-making process, remains
missing.

This paper lays out a two-phase data analytic framework, where phase I predicts
the 6-month (0.5-year), 1-, 1.5-, 2-, 2.5-, and 3-year survival status of patients diagnosed
with lung cancer while phase II predicts the number of survival months for patients who
succumb to lung cancer within 3 years. In phase I, we use three analytical models (general
linear model (GLM), extreme gradient boosting (XGB), and ANN) along with five data
balancing techniques (synthetic minority oversampling technique (SMOTE), relocating safe
level SMOTE (RSLSMOTE), borderline SMOTE (BLSMOTE), adaptive synthetic sampling
(ADASYN), and majority weighted minority oversampling technique (MWMOTE)), and
two feature selection methods (least absolute shrinkage and selection operator (LASSO)
and RF), while using the one-hot encoding approach to encode the categorical features. In
phase II, we employ similar models used in phase I (GLM, XGB, and ANN) along with two
feature selection methods (LASSO and RF) to predict the number of survival months for
deceased patients within 3 years. We extract and interpret significant predictors based on
regression coefficients for phase I (using odds ratio) and phase II. Through our proposed
data analytic framework, we address the four challenges mentioned above. Furthermore,
by implementing a comprehensive data preparation phase, we demonstrate that a statistical
approach such as GLM performs comparably to the more complex models (e.g., XGB and
ANN) at a considerably lower computational cost. The remaining parts of the paper
are organized as follows: our proposed data analytic framework is discussed in detail
within Section 2, results are presented and discussed in Section 3, and concluding remarks,
including research limitations and future outlook, are given in Section 4.

2. Material and Methods

Figure 1 presents a diagram illustrating our proposed two-phase data analytic frame-
work for lung cancer survivability prediction, where each phase encompasses several steps.
In the following subsections, various phases are described in detail.
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2.1. Phase I: Classification of survival status65

2.1.1. Data preparation66

The data preparation phase is comprised of five main steps: 1) data collection and data under-67

standing, 2) data cleaning, 3) survival status labeling, 4) feature encoding, and 5) outlier detection,68

which are discussed in the following paragraphs.69

This study incorporates de-identified diagnosed lung cancer records from SEER dataset (Novem-70

ber 2020 Submission) spanning from January 2010 to December 2017, where additional features71

were introduced to the SEER database in 2010 while several of these features were later omitted72

in 2018. As shown in Table 2, various criteria/filters are applied during data collection, resulting73

in 183 features and 129,756 records.74
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Figure 1: A proposed two-phase data analytic framework for lung cancer survivability prediction.
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Figure 1. A proposed two-phase data analytic framework for lung cancer survivability prediction.

2.1. Phase I: Classification of Survival Status
2.1.1. Data Preparation

The data preparation phase comprises five main steps: (1) data collection and data
understanding, (2) data cleaning, (3) survival status labeling, (4) feature encoding, and (5)
outlier detection, which are discussed in the following paragraphs.

This study incorporates de-identified diagnosed lung cancer records from the SEER
dataset (November 2020 Submission) spanning from January 2010 to December 2017, where
additional features were introduced to the SEER database in 2010 while several of these
features were later omitted in 2018. As shown in Table 2, various criteria/filters are applied
during data collection, resulting in 183 features and 129,756 records.

Table 2. The criteria/filters applied for data collection.

# Feature Criteria/Filters

1 Survival months = “Complete dates are available and there are more than 0 days of
survival”

2 Age at diagnosis 6= “Unknown”
3 Site record ICD-0-3/WHO 2008 =“Lung and Bronchus”
4 AYA site record/WHO 2008 =“8.3 Carcinoma of trachea, bronchus, and lung”
5 ICCC site rec extended ICD-O-3/WHO

2008 =“XI(f.4) Carcinomas of lung”
6 SEER cause-specific death classification =“Death attribute to this cancer dx”
7 COD to site record =“Lung and Bronchus”
8 COD to site rec KM =“Lung and Bronchus”
9 Behavior recode for analysis =“Malignant”
10 Behavior code ICD-0-3 =“Malignant”
11 SequenceNumber =“One Primary Only”

Due to a large number of unknown/missing values, duplicate variables, and corre-
lated features, the filtered lung cancer dataset requires extensive data cleansing. In this
step, features are identified and removed when (a) variables are discontinued or lack longi-
tudinality, (b) variables possess more than 80% missing values, (c) variables are repetitive,
and (d) variables contain constant input. Rather than arbitrarily removing records that
contain NA values, the unknown and NA levels in categorical features are combined,
which reduces data dimensionality while preserving statistical power. Similar to a past
study [23], the categorical levels with frequencies less than 5% are regrouped in order
to avoid overfitting and to avoid introducing bias to a model. Additionally, in order to



Sensors 2022, 22, 6783 5 of 17

mitigate gratuitous model bias from imputation, records with unknown values for total
number of the benign tumors and regional node examined are removed, maintaining feature
distributions. After the data cleaning step, 22 features and 125,498 records remain. All
features and their type are listed in Table 3, where 4 features are numerical and 18 are
categorical.

Table 3. The resulting features after data preparation with brief descriptions provided.

# Feature Description Type

1 Survival months # of months that a patient survived after diagnosis Numerical
2 Age at diagnosis Age of the patient at diagnosis Numerical
3 Total number of the benign

tumors # of the benign tumors at diagnosis Numerical
4 Regional nodes examined # of the regional lymph nodes examined and removed Numerical
5 Race Patient’s race Categorical
6 Sex Patient’s sex Categorical
7 Primary site Original location of the tumor Categorical
8 Histology Composition of cancer tissues Categorical
9 Grade Appearance of the tumor and its differentiation Categorical
10 Laterality Side of the body that tumor presents Categorical
11 Diagnostic confirmation Method(s) used in order to affirm the existence of the tumor Categorical
12 Summary stage Extent of disease (EOD) (e.g., regional, distant) Categorical

13 RX Summ–Surg Prim Site Surgical procedure performed on the primary site as first course of
therapy Categorical

14 RX Summ–Scope Reg LN Sur Procedure for removal/biopsy/aspiration of the lymph nodes Categorical
15 RX Summ–Surg Oth Reg/Dis Surgical procedure performed beyond the regional lymph nodes Categorical
16 Reason no cancer-directed

surgery Reason(s) for not performing surgical procedure Categorical

17 Mets at DX-bone (added in 2015) Presence of distant metastatic involvement of bone during
diagnosis Categorical

18 Mets at DX-brain (added in 2015) Presence of metastatic brain disease during diagnosis Categorical
19 Mets at DX-liver (added in 2015) Presence of distant metastatic involvement of the liver Categorical
20 Mets at DX-lung (added in 2015) Presence of distant metastatic involvement of the lung Categorical
21 CS Site-Specific Factor 1 Additional information to identify cancer stage Categorical
22 CS Site-Specific Factor 2 Additional information to identify cancer stage Categorical

In the third step of the data preparation phase, the survival status (response variable) is
generated for each patient at each time point using the survival months feature. For example,
if survival months < 6, then the survival status will be denoted as 0 , which indicates death
within 6 months. Otherwise, the survival status is assigned as 1, which indicates that the
patient survived for 6 months or greater.

In the fourth step, categorical features are transformed to ensure that the dataset is
prepared in a format applicable to analytical models. As shown in Table 3, most features are
categorical; however, machine learning models rely on numerical features for input. Many
researchers [14–16,21,22] employ integer encoding to re-code categorical features, where
the levels in each categorical feature are assigned integer values (e.g., denoting Grade I,
Grade II, and Grade III as 1, 2, and 3). Instead, we opt for the one-hot encoding approach,
which circumvents improper hierarchical order and encodes a categorical feature with m
levels into m− 1 dummy variables, to avoid multicollinearity [24]. After feature encoding,
we ended up with 60 features in our dataset.

In the fifth and final step, we utilize Cook’s distance [25] to eliminate outlier incidences
in our dataset. Cook’s distance is one of the most popular approaches for detecting
outliers [26], and it offered modest refinements in our preliminary analyses. For each
observation, the Cook’s distance is determined by comparing the fitted model performance
with and without the data point. Observations with high Cook’s distances are considered
influential or outliers. We adopt a threshold of 4/n for outlier detection, a standard
threshold in the literature [27].
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2.1.2. Modeling

In this phase, the dataset is randomly split into training (70%) and testing (30%) sets.
In addition to using 5-fold cross-validation, bootstrapping is utilized during model training
to mitigate overfitting and reduce model variance. Due to a disproportionate number
of survival and deceased class instances existing for each time-point, class distributions
within the training set are adjusted to address the class imbalance problem. Based on the
superiority of synthetic sampling demonstrated in previous studies [28,29], we explore five
re-sampling approaches: SMOTE [30], RSLSMOTE [31], BLSMOTE [32], ADASYN [33],
and MWMOTE [34].

It is important to note that the one-hot encoding approach increases the number of
features, which increases the complexity of model development and the training process.
Traditional feature selection methods (such as forward/backward selection and recursive
feature elimination) are not practical for high-dimensional data. Therefore, two popular
embedded feature selection methods, namely, LASSO [35] and RF, are used to reduce the
dimension of the input features. Both of these methods are widely used in the literature to
extract important features from high-denominational data [36,37]. Feature selection is used
to decrease the complexity while increasing the generalizability of the analytical model.

Next, three popular models (GLM, XGB, and ANN) from three analytical groups,
(a) statistical models, (b) ensemble models, and (c) deep learning models, are used for
model development. Statistical models are simple, computationally efficient, and more
interpretable compared to ensemble and deep learning models. Ensemble models typically
offer high prediction performance by leveraging a majority voting approach, where the
results of many lesser classifiers are combined. ANN models also offer high prediction
performance through variable transformations; however, their required computational time
notably increases as the dimensionality of a dataset increases [38]. These three models,
drawn from three common analytical groups, are carefully selected in order to gauge how
prediction performance varies from a simpler (GLM) to a more complex analytical model
(ANN). In terms of complexity, the three models can be categorized as less complex (GLM),
mid-complex (XGB), and complex (ANN). Furthermore, we inquire whether comprehen-
sive data preprocessing can substitute complex models (XGB and ANN) with simpler
models (GLM). For further details regarding these data mining methods, we refer the
readers to [39–41]. To evaluate model prediction performance, we compute five metrics: (a)
sensitivity—the reliability of survival status prediction, (b) sensitivity—the reliability of
decease status prediction, (c) accuracy—a measure of the overall survival and decease sta-
tus prediction performance, (d) G-mean—the combined reliability of survival and decease
status prediction (pertinent to imbalanced datasets), and (e) area under the receiver operat-
ing characteristic (ROC) curve (AUC)—a measure of the diagnostic accuracy for survival
and decease status prediction. Note that we use G-mean as our primary criterion for model
selection, where a model with a higher G-mean value is more reliable in simultaneously
predicting survival and decease statuses. The leading four metrics are listed as follows:

Sensitivity =
TP

TP + FN
, (1)

Speci f icity =
TN

TN + FP
, (2)

Accuracy =
TP + TN

TP + TN + FP + FN
, (3)

G-mean =
√

Sensitivity× Speci f icity, (4)

where TP, TN, FP, and FN refer to the number of true positives, true negatives, false
positives, and false negatives, respectively.
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2.2. Phase II: Prediction of the Number of Survival Months

The goal of phase II is to predict the number of survival months for patients predicted
to die within 3 years. The initial (full featured and unbalanced) 3-year survival dataset
utilized in phase I is used to construct the training dataset in phase II, where we include an
additional number of survival month feature. The testing dataset for phase II is the correctly
predicted output from phase I. Moreover, the model development phase is similar to phase
I. In addition to using LASSO and RF methods for feature selection, we employ GLM, XGB,
and ANN to predict the number of survival months. To gauge the performance of each
prediction model, we calculate the root mean squared error (RMSE) and mean absolute
error (MAE). These metrics are listed in Equations (5) and (6), where Yi is the actual number
of survival months, Ŷi is the predicted number of survival months, and m is the number
of records:

RMSE =

√
1
m

m

∑
i=1

(Yi − Ŷi)2, (5)

MAE =
1
m

m

∑
i=1
|Yi − Ŷi|. (6)

3. Results and Discussion

In this section, we present the prediction results for phases I and II. For phase I, due
to the computational cost of XGB and ANN models, we prune the total number of model
combinations, which take into account two feature selection methods and five resampling
approaches. Firstly, we develop all model combinations for 1-year survival prediction and
identify the best feature selection method and data balancing technique for GLM, XGB
and ANN models (Table 4). These initial model benchmarks are based on 1-year survival
data, which contain the largest number of observations compared to other time-points,
with the exception of six-month survival. In addition to having a substantial sample size
(high reliability), 1-year survival is one of the most commonly reported time-points in the
literature [7,15,17]. We use these benchmark results to delimit the best feature selection and
data balancing methods. Next, we combine the top feature selection and data balancing
techniques found in Table 4 with GLM, XGB, and ANN for 0.5-, 1.5-, 2-, 2.5-, and 3-year
survival prediction (Table 5).

Table 4. Mean performance (and corresponding standard deviation) of phase I classifiers for 1-year
survival. Top models are marked in bold for convenience.

Model Sensitivity Specificity Accuracy G-Mean AUC

GLM–LASSO–SMOTE 0.863 (0.001) 0.855 (0.002) 0.862 (0.001) 0.859 (0.001) 0.937 (0.000)
GLM–LASSO–RSLSMOTE 0.868 (0.001) 0.839 (0.001) 0.865 (0.000) 0.853 (0.001) 0.937 (0.000)
GLM–LASSO–BLSMOTE 0.843 (0.001) 0.883 (0.002) 0.848 (0.001) 0.863 (0.001) 0.931 (0.000)
GLM–LASSO–MWMOTE 0.859 (0.001) 0.858 (0.002) 0.858 (0.001) 0.858 (0.000) 0.935 (0.000)
GLM–LASSO–ADASYN 0.840 (0.001) 0.890 (0.002) 0.846 (0.000) 0.864 (0.001) 0.932 (0.000)

GLM–RF–SMOTE 0.859 (0.001) 0.839 (0.002) 0.856 (0.001) 0.849 (0.001) 0.933 (0.000)
GLM–RF–RSLSMOTE 0.869 (0.001) 0.824 (0.001) 0.864 (0.000) 0.846 (0.001) 0.932 (0.000)
GLM–RF–BLSMOTE 0.843 (0.001) 0.853 (0.003) 0.844 (0.000) 0.848 (0.001) 0.922 (0.000)
GLM–RF–MWMOTE 0.850 (0.001) 0.859 (0.002) 0.852 (0.001) 0.855 (0.001) 0.932 (0.000)
GLM–RF–ADASYN 0.843 (0.001) 0.867 (0.002) 0.846 (0.001) 0.855 (0.001) 0.929 (0.000)

XGB–LASSO–SMOTE 0.855 (0.003) 0.858 (0.006) 0.855 (0.002) 0.857 (0.002) 0.937 (0.000)
XGB–LASSO–RSLSMOTE 0.865 (0.002) 0.830 (0.005) 0.861 (0.001) 0.847 (0.002) 0.935 (0.000)
XGB–LASSO–BLSMOTE 0.850 (0.001) 0.859 (0.004) 0.851 (0.001) 0.855 (0.001) 0.933 (0.001)
XGB–LASSO–MWMOTE 0.852 (0.002) 0.859 (0.004) 0.853 (0.001) 0.855 (0.002) 0.935 (0.000)
XGB–LASSO-ADASYN 0.850 (0.002) 0.867 (0.004) 0.852 (0.001) 0.859 (0.002) 0.936 (0.000)
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Table 4. Cont.

Model Sensitivity Specificity Accuracy G-Mean AUC

XGB–RF–SMOTE 0.857 (0.002) 0.850 (0.005) 0.856 (0.002) 0.853 (0.002) 0.936 (0.000)
XGB–RF–RSLSMOTE 0.868 (0.002) 0.830 (0.003) 0.863 (0.002) 0.849 (0.001) 0.934 (0.000)
XGB–RF–BLSMOTE 0.848 (0.002) 0.848 (0.004) 0.848 (0.002) 0.848 (0.001) 0.929 (0.001)
XGB–RF–MWMOTE 0.851 (0.002) 0.846 (0.005) 0.850 (0.001) 0.848 (0.002) 0.932 (0.000)
XGB–RF–ADASYN 0.850 (0.001) 0.861 (0.004) 0.851 (0.001) 0.855 (0.002) 0.935 (0.001)

ANN–LASSO–SMOTE 0.858 (0.007) 0.872 (0.016) 0.860 (0.005) 0.865 (0.004) 0.945 (0.001)
ANN–LASSO–

RSLSMOTE 0.862 (0.007) 0.867 (0.011) 0.863 (0.005) 0.864 (0.003) 0.945 (0.001)
ANN–LASSO–BLSMOTE 0.857 (0.005) 0.878 (0.010) 0.859 (0.003) 0.867 (0.003) 0.942 (0.002)
ANN–LASSO–MWMOTE 0.855 (0.004) 0.881 (0.011) 0.858 (0.002) 0.868 (0.004) 0.942 (0.002)
ANN–LASSO–ADASYN 0.851 (0.004) 0.888 (0.005) 0.856 (0.003) 0.870 (0.002) 0.943 (0.001)

ANN–RF–SMOTE 0.861 (0.004) 0.851 (0.010) 0.860 (0.003) 0.856 (0.003) 0.942 (0.001)
ANN–RF–RSLSMOTE 0.866 (0.006) 0.843 (0.011) 0.863 (0.005) 0.854 (0.003) 0.942 (0.001)
ANN–RF–BLSMOTE 0.856 (0.005) 0.858 (0.012) 0.856 (0.003) 0.857 (0.004) 0.940 (0.001)
ANN–RF–MWMOTE 0.850 (0.005) 0.867 (0.010) 0.852 (0.003) 0.858 (0.003) 0.940 (0.001)
ANN–RF–ADASYN 0.850 (0.008) 0.860 (0.015) 0.852 (0.006) 0.855 (0.004) 0.939 (0.003)

Table 5. Mean performance (and corresponding standard deviation) of phase I classifiers for 0.5-, 1-,
1.5-, 2-, 2.5-, and 3-year time-points. Top models are marked in bold for convenience.

Time-Point Model Sensitivity Specificity Accuracy G-Mean AUC

0.5-year GLM–LASSO–ADASYN 0.881
(0.001) 0.892 (0.001) 0.885

(0.000) 0.887 (0.000) 0.959
(0.000)

XGB–LASSO–ADASYN 0.876
(0.003) 0.883 (0.004) 0.879

(0.001) 0.880 (0.002) 0.958
(0.000)

ANN–LASSO–ADASYN 0.885
(0.009) 0.883 (0.011) 0.884

(0.002) 0.884 (0.002) 0.965
(0.000)

1-year GLM–LASSO–ADASYN 0.840
(0.001) 0.890 (0.002) 0.846

(0.000) 0.864 (0.001) 0.932
(0.000)

XGB–LASSO–ADASYN 0.850
(0.002) 0.867 (0.004) 0.852

(0.001) 0.859 (0.002) 0.936
(0.000)

ANN–LASSO–ADASYN 0.851
(0.004) 0.888 (0.005) 0.856

(0.003) 0.870 (0.002) 0.943
(0.001)

1.5-year GLM–LASSO–ADASYN 0.859
(0.001) 0.857 (0.003) 0.859

(0.001) 0.858 (0.001) 0.933
(0.000)

XGB–LASSO–ADASYN 0.867
(0.004) 0.855 (0.007) 0.867

(0.003) 0.861 (0.002) 0.940
(0.000)

ANN–LASSO–ADASYN 0.861
(0.005) 0.888 (0.011) 0.862

(0.004) 0.874 (0.003) 0.944
(0.001)

2-year GLM–LASSO–ADASYN 0.848
(0.001) 0.856 (0.003) 0.848

(0.001) 0.852 (0.001) 0.930
(0.000)

XGB–LASSO–ADASYN 0.852
(0.003) 0.851 (0.006) 0.852

(0.003) 0.851 (0.002) 0.933
(0.000)

ANN–LASSO–ADASYN 0.856
(0.003) 0.863 (0.007) 0.857

(0.003) 0.860 (0.003) 0.940
(0.001)

2.5-year GLM–LASSO–ADASYN 0.838
(0.001) 0.829 (0.003) 0.838

(0.001) 0.833 (0.002) 0.919
(0.000)

XGB–LASSO–ADASYN 0.850
(0.003) 0.821 (0.005) 0.850

(0.003) 0.835 (0.001) 0.922
(0.001)

ANN–LASSO–ADASYN 0.844
(0.009) 0.836 (0.017) 0.844

(0.009) 0.840 (0.005) 0.928
(0.002)

3-year GLM–LASSO–ADASYN 0.823
(0.001) 0.821 (0.003) 0.823

(0.001) 0.822 (0.001) 0.910
(0.000)

XGB–LASSO–ADASYN 0.825
(0.004) 0.822 (0.011) 0.825

(0.004) 0.824 (0.005) 0.911
(0.001)

ANN–LASSO–ADASYN 0.839
(0.007) 0.819 (0.021) 0.839

(0.007) 0.829 (0.008) 0.918
(0.002)

3.1. Phase I: Classification

Table 4 presents the classification results for 1-year survival prediction. Firstly, LASSO
feature selection performs marginally better than RF feature selection across all models
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and all data balancing techniques using G-mean as a criterion. The G-mean values range
between 0.847–0.870 and 0.846–0.858 for all models using LASSO and RF feature selection,
respectively. Note that LASSO is computationally efficient compared to RF feature selection.
Second, the use of ADASYN for data balancing provides equal or higher G-mean values
(0.855–0.870) across all models compared to the remaining four data balancing techniques.
Models utilizing balancing techniques such as SMOTE and MWMOTE are among the top
performing models just below the ADASYN method. The best-performing GLM, XGB, and
ANN models based on the G-mean metric (marked in bold in Table 4) are used in 0.5-, 1.5-,
2-, 2.5-, and 3-year survival predictions.

Table 5 presents the classification results for 0.5-, 1-, 1.5-, 2-, 2.5-, and 3-year survival
predictions using GLM, XGB, and ANN, along with LASSO feature selection and the
ADASYN data balancing technique. The highest-performing models for each of the six
time-points are marked in bold using the G-mean value as a criterion. Based on Table
5, GLM is the top model for 0.5-year survival prediction, with a G-mean value of 0.887,
while ANN is the top-performing model for 1-, 1.5-, 2-, 2.5-, and 3-year survival prediction.
Although ANN models exhibit higher performance compared to GLM and XGB for 1-, 1.5-,
2-, 2.5-, and 3-year survival prediction, the G-mean values for GLM and XGB are nearly on
par with those offered by ANN models. Additionally, ROC curves for all models listed in
Table 5 are plotted in Figure 2, which visually demonstrates the comparable performance of
each technique. By incorporating a thorough data scheme within our model framework, we
demonstrate that simple models such as GLM can perform comparably to more complex
models such as XGB and ANN.

3.2. Important Features for Survival Prediction

We use the GLM–LASSO–ADASYN models to extract the topmost significant survival
predictors for all time-points (see supplementary materials https://github.com/zahrame/
LungCancerPrediction for a list of GLM equations). Besides their interpretability, GLM
models provide relatively high classification results (see Table 5) at low computational cost.
We define the odds ratio (OR = p

1−p in which p is the probability of survival) and calculate
the relative change in OR (∆OR) to quantify the impact of each important feature based on
its respective GLM coefficient:

log(
p

1− p
) = β0 + β1x1 + β2x2 + β3x3 + ...+ βixi, i= # of the features in the model, (7)

∆ORj =
ORnew −ORold

ORold
= exp β j − 1, j= feature j in the model. (8)

By defining the difference between the odds (ORnew −ORold) of an individual feature
increasing by one unit (xj + 1) and exponentiating both sides of the equation, we can
decouple each feature’s effect on the odds of survival (confined within the logarithmic
function of Equation (7)). By subtracting one from the results, we obtain the effective
change in the odds ratio (Equation (8)) by an individual feature [23]. Figure 3 visualizes
the top-contributing features with ∆OR values greater than |10%| for 0.5-, 1-, 1.5-, 2-, 2.5-,
and 3-year survival predictions. The green positive (red negative) bars correspond to an
increase (decrease) in the odds of survival.

https://github.com/zahrame/LungCancerPrediction
https://github.com/zahrame/LungCancerPrediction
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Figure 2: Phase I ROC curves for 0.5-, 1-, 1.5-, 2-, 2.5- and 3-year survival time-points (18 models).13Figure 2. Phase I ROC curves for 0.5-, 1-, 1.5-, 2-, 2.5-, and 3-year survival time-points (18 models).
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Figure 3: Top (Phase I) predictors with ∆OR > |10%| for 0.5-, 1-, 1.5-, 2-, 2.5- and 3-year survival time-points.
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Figure 3. Top (phase I) predictors with ∆OR > |10%| for 0.5-, 1-, 1.5-, 2-, 2.5-, and 3-year survival
time-points.

Summary stage: Regional is a highly significant and consistent feature that positively
impacts (∆OR > 0) a patient’s odds of survival across all time-points. If the spread of lung
cancer (Summary stage) in a patient is categorized as Regional, the odds of survival are 37.99%,
27.56%, 21.64%, 17.92%, 14.80%, and 16.38% higher on average (holding other features
constant) for 0.5-, 1-, 1.5-, 2-, 2.5-, and 3-year survival time-points, respectively. Similarly,
Summary stage: Localized is a significant feature that positively affects a patient’s survival
status, particularly for early time-points. If the spread of lung cancer is categorized as Local-
ized, the odds of survival are 57.92%, 36.45%, 21.64%, 13.89%, and 11.47% higher on average
(holding other features constant) for 0.5-, 1-, 1.5-, 2-, and 3-year time-points, respectively.
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Another prominent feature that positively contributes to patient survival is RX Summ
Surg Prim Site: Yes, a feature that documents if a surgery procedure is performed on the
primary cancer site. Figure 3 shows that if surgery is performed on a primary site, a patient’s
odds of survival are 22.47%, 27.57%, 27.30%, 27.29%, and 20.92% higher on average (holding
other features constant) for 1-, 1.5-, 2-, 2.5-, and 3-year survival time-points, respectively.
Regarding primary cancer sites, Primary site: Upper lobe lung is attributed to higher odds
of survival for several time-points. If the primary cancer site of a patient is Upper lobe
lung, the patient’s odds of survival are 14.47%, 13.75%, 12.75%, and 11.25% higher on
average (holding other features constant) for 1-, 1.5-, 2-, and 2.5-year survival time-points,
respectively.

In contrast, CS site specific factor 1: Unknown is one of the most significant and consistent
features that negatively impacts (∆OR < 0) a patient’s odds of survival across all time-
points. If the existence of separate tumor nodules (CS site specific factor 1) cannot be assessed
in a patient’s ipsilateral lung, the odds of survival are 12.21%, 17.14%, 15.53%, 15.99%,
17.20%, and 14.5% lower on average (holding other features constant) for 0.5-, 1-, 1.5-, 2-,
2.5-, and 3-year survival time-points, respectively. Note that the presence of separate tumor
nodules in the ipsilateral lung (CS site specific factor 1: 10, 20, 30, and 40) is highly significant,
which negatively impacts (∆OR < 0) a patient’s survival status for 1-, 1.5-, 2-, 2.5-, and
3-year survival time-points.

Mets at DX-liver: Yes is another significant and consistent feature that negatively affects
a patient’s odds of survival. If a patient experiences a distant metastatic involvement of the
liver, the odds of survival are 17.40%, 14.67%, 11.56%, 10.86%, 11.81%, and 11.82% lower
on average (holding other features constant) for 0.5-, 1-, 1.5-, 2-, 2.5-, and 3-year survival
time-points, respectively. Moreover, Regional nodes examined is a vital feature that negatively
affects a patient’s odds of survival. If the number of removed and examined regional lymph
nodes for a patient increases by one node, the patient’s odds of survival are 11.83%, 12.99%,
12.99%, 13.7%, and 13.23% lower (holding other features constant) for 1-, 1.5-, 2-, 2.5-, and
3-year survival time-points, respectively.

3.3. Phase II: Regression

Table 6 presents the number of survival months prediction results for deceased patients
within 3 years, where the best models are marked in bold. Similar to phase I, LASSO
outperforms RF feature selection with marginally smaller values of RMSE and MAE
for each model methodology. The GLM and XGB models offer similar survival month
prediction performance with an MAE ∼ 5.6 months. Even though ANN is a more complex
model compared to GLM and XGB, the MAE values for ANN using LASSO and RF
feature selection are ∼6.7 and ∼7.1 months, respectively. These findings illustrate that
although ANN outperforms GLM and XGB in classification problems (phase I), ANN is
not guaranteed to outperform the simpler models in regression problems (phase II).

Table 6. Mean performance (and corresponding standard deviation) of survival month prediction
(phase II) models that use LASSO or RF feature selection. Top models are marked in bold for
convenience.

Model RMSE MAE

GLM–LASSO 7.327 (0.001) 5.547 (0.007)
GLM–RF 7.336 (0.001) 5.559 (0.007)

XGB–LASSO 7.341 (0.007) 5.522 (0.010)
XGB–RF 7.354 (0.008) 5.540 (0.009)

ANN–LASSO 8.429 (1.552) 6.680 (1.741)
ANN–RF 8.748 (1.617) 7.101 (1.937)

Similar to phase I, we use the GLM–LASSO model to extract significant features and
their coefficients (see supplementary https://github.com/zahrame/LungCancerPrediction
for a list of GLM equations). Figure 4 visualizes the top 18 contributing features with

https://github.com/zahrame/LungCancerPrediction
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coefficient values greater than |1.00| that predict the number of survival months. The 13
(5) features with positive green (negative red) bars are attributed to an increase (decrease)
in the number of survival months. Histology: >8083 is the topmost significant feature that
positively impacts the number of survival months. If a patient (predicted to perish) is
assigned a histology code greater than 8083, the patient is expected to survive 7.07 months
longer on average (holding other features constant). Note that a patient (predicted to perish)
assigned a histology code, regardless of carcinoma group type, is expected to live several
months longer on average compared to a patient who was not or could not be assigned a
code (holding other features constant).

The GLM and XGB models offer similar survival month prediction performance with a MAE ∼249

5.6 months. Even though ANN is a more complex model compared to GLM and XGB, the MAE250

value for ANN using LASSO and RF feature selection is ∼ 6.7 and ∼ 7.1 months, respectively.251

These findings illustrate that although ANN outperforms GLM and XGB in classification problems252

(Phase I), ANN is not guaranteed to outperform the simpler models in regression problems (Phase253

II).254

Table 6: Mean performance (and corresponding standard deviation) of survival month prediction (Phase II) models
that use LASSO or RF feature selection. Top models are marked in bold for convenience.

Model RMSE MAE
GLM-LASSO 7.327 (0.001) 5.547 (0.007)
GLM-RF 7.336 (0.001) 5.559 (0.007)

XGB-LASSO 7.341 (0.007) 5.522 (0.010)
XGB-RF 7.354 (0.008) 5.540 (0.009)

ANN-LASSO 8.429 (1.552) 6.680 (1.741)
ANN-RF 8.748 (1.617) 7.101 (1.937)
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Figure 4: Top (Phase II) predictors with coefficient values > |1.00| that predict the number of survival months.
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Figure 4. Top (phase II) predictors with coefficient values > |1.00| that predict the number of survival
months.

Summary stage: Localized and Summary stage: Regional are the next important features
that positively contribute to the number of survival months. If the spread of lung cancer in
a patient (predicted to perish) is localized or regional, the patient is expected to survive
4.71 or 2.59 months longer on average (holding other features constant), respectively.
Additionally, Regional nodes examined and RX Summ Surg Prime Site: Yes are significant
features in predicting the number of survival months of a lung cancer patient. If a patient
(predicted to perish) has an additional lymph node removed and examined or has surgery
performed on a primary cancer site, the patient is expected to live 1.91 or 1.34 months
longer on average (holding other features constant). Note that a higher number of examined
regional lymph nodes implies a decrease in a patient’s odds of survival (phase I); yet, with
the removal and examination of additional lymph nodes, the survival length of a patient
expected to perish may be prolonged (holding other features constant).

Contrarily, Mets at DX-liver: Yes is the top significant feature that negatively affects the
number of survival months. If distant liver metastases have formed in a patient (predicted
to perish), the patient is expected to live 1.83 months less on average (holding other features
constant). Moreover, if distant brain (Mets at DX-brain: Yes) or bone (Mets at DX-bone: Yes)
metastases have formed in a patient (predicted to perish), the patient is expected to live 1.22
or 1.02 months less on average (holding other features constant), respectively. For every
additional year in age (Age at diagnosis), a patient (predicted to perish) is expected to live
1.24 months less on average (holding other features constant). Lastly, if a patient (predicted
to perish) is diagnosed with Grade III lung cancer (Grade: Poorly differentiated (Grade III)),
the patient is expected to live 1.18 months less on average (holding other features constant).
Similar to phase I, the use of one-hot encoding enables us to not only extract significant
categorical levels but to interpret the individual levels.
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3.4. Recent Literature Comparison

In spite of the fact that a proper one-to-one comparison between our research and
prior lung cancer data mining studies is not possible due to variations in dataset time
ranges, feature availability, data collection criteria, data preprocessing techniques, modeling
approaches, and prediction time-points, we highlight some similarities and differences to
provide a synopsis. In a recent study, Doppalapudi et al. [13] yielded AUC values as high as
0.83, 0.86, and 0.92 for 0.5-, 0.5–2-, and >2-year survival prediction, respectively, based on
2004–2016 SEER data using CNN. Our data and approach yield AUC values as high as 0.97,
0.94, 0.94, 0.94, 0.93, and 0.92 for 0.5-, 1-, 1.5-, 2-, 2.5-, and 3-year time-points, respectively
(Figure 2). Similar to our study, Doppalapudi et al. found that Histology, Age at diagnosis,
Summary stage, and Primary site are important lung cancer survival predictors. Unlike our
results, Doppalapudi et al. found that Registry information, Sex, Number of radiation rounds,
and two discontinued variables (Number of lymph nodes and Derived AJCC TNM) in the
SEER dataset are important features. Although this study reports the relative importance
of various contributing features in survival prediction, the effect of each feature is not
quantified.

In another recent study, Wang et al. [7] achieved accuracies (AUC was not reported)
of 0.93, 0.78, and 0.72 for 1-, 3-, and 5-year survival prediction, respectively, based on
2010–2015 SEER data using XGB and LR. Our study yields accuracies as high as 0.89, 0.86,
0.87, 0.86, 0.85, and 0.84 for 0.5-, 1-, 1.5-, 2-, 2.5-, and 3-year time-points, respectively. The
important predictors Surgery, Grade, Histology, Age at diagnosis, and Race found by Wang et
al. are consistent with our results; however, Laterality, Sex, Marital status, and Derived AJCC
TNM (a discontinued variable in SEER data) are not. In addition, Jonson et al. [14] yielded
an AUC value of 0.94 for 5-year survival prediction based on 1975–2015 SEER data using
RF and AdaBoost models. Although Jonson et al. explored intermediate-term survival,
they found that Age at diagnosis, Histology, Surgery on primary site, and Summary stage are
important features for survival prediction, similarly found in our study for short-term
survival. Jonson et al. also found that Sequence Number (used as one of our criteria for data
collection) and two discontinued variables (Number of lymph nodes and Extent of disease) are
important predictors, which differ from our study. Again, the impact of each feature on
lung cancer survival is not quantified in the latter two studies.

4. Conclusions

Pertaining to the results obtained in this study, we have three main contributions,
previously unexplored in lung cancer data mining research. First, we developed a two-
phase data analytic framework that is capable of 1) predicting the survival status of a
patient with lung cancer for 0.5-, 1-, 1.5-, 2-, 2.5-, and 3-year time-points and 2) predicting
the number of survival months for patients who were predicted and labeled as deceased
within 3 years. Second, by incorporating a comprehensive data preprocessing step, we
showed that a computationally efficient and interpretable model such as GLM can perform
comparably to complex models such as XGB and ANN. Moreover, the data preparation
steps outlined in phases I and II facilitate data reproducibility. Third, we used GLM–
LASSO–ADASYN models to extract important numerical and encoded categorical features
(using one-hot encoding), where we interpreted the effect of individual features on the
odds of survival in phase I. Similarly, in phase II, we used the GLM–LASSO model to
extract important numerical and individual categorical features (using one-hot encoding)
that influence the number of predicted survival months. Although the performance of the
proposed framework in practice is still a challenge, since other potential factors such as
a patient’s lifestyle (e.g., diet and smoking behavior) or prior medical/drug history may
impact lung cancer survivability, our simple yet interpretable GLM models (phases I and II)
may assist physicians in better decision-making by prioritizing the most important factors
related to lung cancer survivability.
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Abbreviations
The following abbreviations are used in this manuscript:

SEER Surveillance, Epidemiology, and End Results
GLM General linear model
XGB Extreme gradient boosting
ANN Artificial neural network
SMOTE Synthetic minority oversampling technique
RSLSMOTE Relocating safe level SMOTE
BLSMOTE Borderline SMOTE
ADASYN Adaptive synthetic sampling
MWMOTE Majority weighted minority oversampling technique
LASSO Least absolute shrinkage and selection operator
RF Random forest
WHO World Health Organization
BDP Bidirectional data partitioning
RNN Recurrent neural network
CNN Convolutional neural network
GBM Gradient boosting machine
LR Logistic regression
GLM Generalized linear model
EV Ensemble voting
MLP Multilayer perceptron
BA Bagging
DA Dagging
ADB AdaBoost
BOO Boosting
RS Random subspace
DS Decision stump
SMO Sequential minimal optimization
BN Bayes Net
MBC Model-based clustering
SOM Self-ordering map
HC Hierarchical clustering
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NNMF Non-negative matrix factorization
PCA Principal component analysis
CE Custom ensemble
Cox R Cox regression
LB LogitBoost
ADT Alternating DT
ROC Receiver operating characteristic
AUC Area under the receiver operating characteristic curve
RMSE Root mean squared error
MAE Mean absolute error
OR Odds ratio
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