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Abstract: The performance of modern digital cameras approaches physical limits and enables high-
precision measurements in optical metrology and in computer vision. All camera-assisted geometrical
measurements are fundamentally limited by the quality of camera calibration. Unfortunately, this
procedure is often effectively considered a nuisance: calibration data are collected in a non-systematic
way and lack quality specifications; imaging models are selected in an ad hoc fashion without proper
justification; and calibration results are evaluated, interpreted, and reported inconsistently. We
outline an (arguably more) systematic and metrologically sound approach to calibrating cameras
and characterizing the calibration outcomes that is inspired by typical machine learning workflows
and practical requirements of camera-based measurements. Combining standard calibration tools
and the technique of active targets with phase-shifted cosine patterns, we demonstrate that the
imaging geometry of a typical industrial camera can be characterized with sub-mm uncertainty up to
distances of a few meters even with simple parametric models, while the quality of data and resulting
parameters can be known and controlled at all stages.
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1. Introduction

Digital cameras are relatively inexpensive, fast, and precise instruments capable of
measuring 2D and 3D shapes and distances. Equipped with O(106 − 108) pixels, each
sensing O(102 − 103) intensity levels in several color channels, and a perspective lens
commanding a field of view of O(101 − 102) degrees, a typical digital camera may tech-
nically resolve features as small as 10−3 to 10−4 rad. Moreover, by exploiting the prior
knowledge of the scene, one may transcend the physical sensor resolution limits and locate
extended objects or prominent features to within O(10−1 − 10−2) pixels. This impressive
sensitivity powers metrological methods, such as laser triangulation and deflectometry,
as well as various shape-from-X techniques in the closely related field of computer vision.
In some state-of-the-art camera-based measurements, the residual uncertainty reaches tens
of nanometers, even with non-coherent illumination [1].

Depending on the employed optical scheme, translation of images to metric statements
may be a non-trivial task. In order to take full advantage of data, one needs a sufficiently
accurate mathematical model of the imaging process and its uncertainties as well as an
adequate calibration procedure to fix all relevant parameters based on dedicated measure-
ments (calibration data). In metrology, once an instrument is calibrated, one naturally
should quantify the following properties of the model:

(a) Consistency: How well does the calibrated model agree with the calibration data?
(b) Reproducibility: Which outcomes should be expected if the calibration were re-

peated with data collected independently under similar conditions?
(c) Reliability: Which uncertainties should one expect from a measurement made in a

given application-specific setup that uses the calibrated camera model?
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In Bayesian terms, calibration aims to estimate the posterior probability distribu-
tion function (PDF) over the model parameters given evidence (calibration data) and
prior knowledge (e.g., physical bounds on parameter values). In case such a posterior
PDF can be formulated, it may be analyzed using entropy, Kullback–Leibler divergence,
and other information-theoretical tools in order to optimally address the points (a–c) above.
However, finding true closed-form PDFs for complex systems with multiple parametric
inter-dependencies such as a camera may be difficult and/or impractical. Nevertheless,
Bayesian methods may be used to analyze, e.g., Gaussian approximations to true PDFs.

A complementary approach adopted in the field of Machine Learning and advocated
for in this paper treats camera models as trainable black or gray boxes whose adequacy to
the actual devices can be estimated statistically using sufficiently large datasets, interpreted
as samples drawn from implicit stationary PDFs. The above quality characteristics (a–c)
then may be naturally related to empirical metrics such as loss function values on train-
ing/testing/validation datasets, dispersion of outcomes in cross-validation tests, various
generalizability tests, etc. In what follows, we provide a simple example of how such
techniques may deliver more useful descriptions than the commonly accepted practices
while remaining relatively inexpensive to implement. The wider acceptance of similar
methods may therefore lead to better utilization of hardware and benefit numerous existing
applications. Ultimately, unambiguous and reproducible quality indicators for geometrical
camera calibration may even facilitate the introduction of new industrial standards similar
to those that exist for photometric calibration [2].

Throughout this paper, we assume the most typical use-case: a compact rigid imaging
unit—a camera consisting of optics and a sensor—is placed at various positions in space and
acquires data at rest with respect to the observed scene. Light propagates in a transparent
homogeneous medium (air, vacuum, or non-turbulent fluid). For simplicity, we exclude
“degenerate” imaging geometries with non-trivial caustics of view rays (e.g., telecentric
or complex catadioptric systems): such devices usually serve specific purposes, and there
exist dedicated methods and separate bodies of literature devoted to their calibration.
We further only consider the constellation parameters consistent with geometrical optics,
i.e., diffraction and interference effects are assumed negligible. The internal state of the
camera is supposed to be fixed throughout all measurements. Finally, we assume that
the calibration is based on data collected in a dedicated session with a controlled scene.
The end user/application then is ultimately interested in the geometry of uncontrolled
scenes recorded under similar conditions, e.g., sizes and shapes of objects and/or positions
and orientations of the camera itself.

The purpose of this paper is to provide some background and motivate and experi-
mentally illustrate a practical ML-inspired calibration approach intended for applications
in precision optical metrology and advanced computer vision tasks. This procedure and the
quality assurance tools it is based on represent our main contribution. In order to keep the
focus on the workflow rather than technical details, we deliberately employ a very simple
experimental setup (described in Appendix B) and use the standard calibration algorithm
by Zhang [3] implemented in the popular OpenCV library [4].

The structure of this paper is as follows. Section 2 briefly mentions a few camera
models and calibration techniques often used in practice and outlines typical quality
characterization methods. Section 3 introduces the generic notation for camera models
and Section 4—for calibration data. After that, Section 5 discusses the quantification
of model-to-data discrepancies and schematically explains how calibration algorithms
work. Section 6 provides some basic methods of the quantitative calibration quality as-
sessment; Section 7 adjusts these recipes accounting for the specifics of camera calibration
requirements. Our proposed workflow is then summarized in Section 8 and subsequently
illustrated with an experiment in Section 9. It is thus Sections 7 and 8 that contain novel
concepts and algorithms. We discuss the implications of our approach in Section 10 and
conclude in Section 11.
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2. Typical Calibration Methods, Data Types, and Quality Indicators

The basics of projective geometry may be found, e.g., in [5]. The common theory and
methods of high-precision camera calibration are thoroughly discussed in [6], including the
pinhole model that virtually all advanced techniques use as a starting point. In what follows,
we many times mention the popular Zhang algorithm [3] that minimizes re-projection
errors (RPEs) in image space and estimates the parameters of a pinhole model extended by
a few lower-order polynomial distortion terms.

In its canonical version, the Zhang algorithm needs a sparse set of point-like features
with known relative 3D positions that can also be reliably identified in the 2D images.
In practice, one often uses cell corners in a flat checkerboard pattern printed on a rigid
flat surface. More sophisticated calibration patterns may include fractals [7] or complex
star-shaped features [8] in order to reduce biases and enable more robust feature detection.
Advanced detection algorithms may be too complex to allow an easy estimation of the
residual localization errors. In order to reduce the influence of these (unknown) errors, one
may employ sophisticated procedures such as the minimization of discrepancies between
the recorded and inversely rendered pattern images [9]. However, all these improvements
leave the sparse nature of datasets intact.

2.1. Calibration with Dense Datasets Produced by Active Target Techniques

As a fundamentally better type of input data, calibration may employ active target
techniques (ATTs) [10,11] that use high-resolution flat screens as targets. The hardware
setup here is slightly more complex than that with static patterns: a flat screen displays a
sequence of special coded patterns (10 s to 100 s of patterns depending on the model and
the expected quality) while the camera synchronously records frames. From these images,
one then independently “decodes” screen coordinates corresponding to each modulated
camera pixel. Note that the decoding does not rely on pattern recognition and that the
resulting datasets (3D to 2D point correspondences) are dense. Furthermore, from the same
data, one may easily estimate decoding uncertainties in each pixel [12].

For generic non-central projection, Grossberg and Nayar [13] propose a general frame-
work where a camera induces an abstract mapping between the image space and the space
of 3D view rays; this is the base of many advanced camera models. As a rule, the cali-
bration of such models needs significantly better quality data than the Zhang algorithm,
and ATTs have for a long time been a method of choice, in particular, for the calibration of
non-parametric models in optical metrology [10,14–17].

However, even for simpler models, ATTs are long known to outperform the static
pattern-based techniques [11]. For the best accuracy, one may relatively easily include cor-
rections for the refraction in the cover glass of the display [18] and other minor effects [17].
In our experiments, ATTs routinely deliver uncorrelated positional decoding uncertainties
of order 0.1 mm (less than half of the typical screen pixel size), while the camera-to-screen
distances and screen sizes are of order 1 m.

We claim that there are no reasons to not use ATTs as a method of choice also in
computer vision (except, perhaps, some exotic cases where this is technically impossible).
Even if an inherently sparse algorithm such as Zhang’s cannot use full decoded datasets
without sub-sampling, one may easily select more abundant and better quality feature
points from dense maps at each pose than a static pattern would allow. In practice, sub-
sampled ATT data considerably improve the stability of results and reduce biases.

2.2. Quality Assessment of Calibration Outcomes

Regardless of the nature of calibration data, in most papers, the eventual quality
assessment utilizes the same datasets as the calibration. This approach addresses the
consistency of the outcomes but not their reproducibility and reliability. Very rarely,
the calibration is validated with dedicated scenes and objects of known geometry [19].

As an alternative example, consider a prominent recent work [8] from the field of
computer vision. Its authors propose novel static calibration patterns along with a dedi-



Sensors 2022, 22, 6804 4 of 24

cated detection scheme and calibrate several multi-parametric models capable of fitting
higher-frequency features. The calibration quality is evaluated (and the models are com-
pared) based on dedicated testing datasets, i.e., data not used during the calibration. This
is a serious improvement over the usual practice. However, following the established
tradition, the authors report the results in terms of RPEs on the sensor measured in pixels.
Without knowing (in this case, tens of thousands) the calibrated camera parameters, it is
impossible to translate these maps and their aggregate values into actual metric statements
about the 3D geometry of the camera view rays. As we demonstrate below, such translation
may be quite helpful; the comparison of model-related to data-related uncertainties is a
powerful instrument of quality control. Finally, in the absence of dense datasets, the authors
of [8] have to interpolate between the available data points in order to visualize artifacts in
dense error maps; this step may potentially introduce complex correlations and biases into
integral (compounded) quality indicators.

Dense datasets generated by an ATT could have been useful to resolve these issues.
Even better, estimates of uncertainties in decoded 3D point positions—a by-product in ad-
vanced ATTs—could potentially enable an even more metrologically sound characterization
of residual model-to-data discrepancies.

2.3. Note on Deep-Learning-Based Camera Calibration Methods

“Traditional” calibration algorithms such as Zhang’s rely on the explicit numerical
optimization of some loss function (cf. Section 5.2). As an alternative, some recent works
demonstrate that multi-layer neural networks can be trained to infer some camera parame-
ters using, e.g., images of unknown scenes or otherwise inferior-quality data [20–22]. While
we acknowledge these developments, we point out that so far they mostly address issues
that are irrelevant in the context of this paper. Nevertheless, if at some point a “black-box”
solution for ML-based high-quality calibration appears, it may also be trivially integrated
into and benefit from our proposed workflow of Section 7.

3. Camera Models and Parameters

The approach presented in this paper is model-agnostic and can be easily applied to
arbitrarily flexible discrete and smooth generic parameterizations [6,8,14,23–29]. However,
in our experiments and illustrations, we employ the venerable Zhang model, and more
specifically, its implementation in the open-source library OpenCV [4,30] (version 4.2.0 as
of writing). We also adopt the OpenCV-style notation for the model parameters.

The simplest part of a camera model is its pose, or embedding in the 3D world, which
includes the 3D position and the orientation of the camera. At a given pose, the transforma-
tion between the world and the camera’s coordinate systems is described by six extrinsic
parameters: a 3D translation vector~t and three rotation angles that we represent as a 3D
vector ~u. The relevant coordinate systems are sketched in Figure 1. According to this
picture, a 3D point P with the world coordinates ~p W =

(
xW , yW , zW)T has coordinates

~p C =
(

xC, yC, zC)T in the camera’s frame that are related by

~p C = R(~u) ~p W +~t. (1)

The 3 × 3 rotation matrix R(~u) may be parameterized in many ways that may be
more or less convenient at a given scenario; the recipe adopted in OpenCV is shown in
Equation (A1).

The direct projection model ~π = ~Π(~p C | ~θ) then describes the mapping of 3D point
coordinates ~p C onto 2D pixel coordinates ~π =

(
xI , yI)T of the projection of point P on

the sensor. The number of intrinsic parameters ~θ may be as low as four in the pinhole
model in Figure 1 or reach thousands in high-quality metrological models. The basic model
~Π(CV)(·|·) implemented in OpenCV has 18 parameters as described in Equation (A2).
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Figure 1. World, camera, and image plane coordinates for a pinhole camera.

In addition to a direct mapping, it is often useful to also introduce an inverse projection
model~r = ~R(~π | ~θ) with the same parameterization that returns a direction vector~r for a
view ray that corresponds to the pixel ~π. By definition, the two projection functions must
satisfy ~π = ~Π(α~R(~π | ~θ) | ~θ) for any pixel ~π and any scaling factor α > 0. Although no
closed-form inversion is known for the OpenCV model, Equation (A3) presents a practical
way to define the respective inverse projection ~R(CV)(·|·).

Note that the choice of the direct or the inverse projection function to define a camera
model for non-degenerate optical schemes is arbitrary and is mostly a matter of conve-
nience. For example, the OpenCV model is often employed for rendering where a succinct
formulation of ~Π(·|·) is a plus, but many advanced metrological models are formulated
in terms of the inverse mapping ~R(·|·). (For non-central projection schemes, the inverse
model should also define view ray origins~o = ~O(~π | ~θ) in addition to their directions~r at
each pixel, but this is a relatively straightforward extension [29].) Generally, powerful and
highly parallel modern hardware in practice eliminates any real difference between the
two formulations for any camera model.

Each component of ~θ in the OpenCV model has a well-defined physical meaning
(cf. the description in Appendix A): the model of Equation (A2) was clearly constructed
to be “interpretable”. A direct relation between intrinsic parameters and simple lens
properties is obviously useful when we, e.g., design an optical scheme to solve a given
inspection task. However, when our goal is to fit the imaging geometry of a real camera to
an increasingly higher accuracy, we necessarily need more and more parameters to describe
its “high-frequency features” [8]—minor local deviations from an ideal smooth scheme.
At some point, the convenient behavior of the model in numerical optimization becomes
more important than its superficial interpretability. Alternative—less transparent, or even
“black-box”—models then may end up being more practical.

We may control the “flexibility” of the OpenCV model by fixing some intrinsic parameters
to their default values. For illustration purposes, we devise two “toy models” as follows.
The simpler “model A” uses only fx, fy, cx, cy, k1, k2, k3, p1, and p2 (cf. Equation (A2)), while
keeping the remaining nine parameters fixed to zeros. The full model with all 18 parameters
enabled is referred to as “model B”. In our tests, the latter has proven to be less stable: in
optimization, it often becomes caught in local minima and generally converges more slowly
than the “model A”, even with high-quality calibration data.

4. Calibration Data Acquisition and Pre-Processing

Cameras are typically calibrated based on a collection of points in 3D and their
respective sensor images. Let us denote a pair (~p W , ~π)—the world coordinates and the
respective projection onto the sensor for some point-like object—a record, a collection
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A =
{(

~p W
j , ~πj

)}M

j=1
(dense or sparse) of M records obtained at a fixed camera pose—a

data frame, and a collection Q = {Ai}N
i=1 of N data frames for various camera poses but

identical intrinsic parameters—a dataset. Most calibration algorithms expect such a dataset
as input; in particular, the central function calibrateCamera() in OpenCV [30] receives
a dataset Q collected at N > 3 distinct poses and fits extrinsic parameters (~ti,~ui) for each
pose i and intrinsic parameters~θ that are assumed to be common to all poses.

ATTs collect data in a setup where a camera looks directly at a flat screen. The screen
displays a sequence of modulated patterns while the camera captures respective frames.
Finally, these images are decoded, and for each camera pixel, we obtain corresponding
screen pixel coordinates. The procedure is outlined, e.g., in [29]; our experimental setup is
described in Appendix B and is shown with Display 1 in operation in Figure 2.

Figure 2. Our experimental set-up. The distance between the camera and the active target (a 55′′

Philips monitor) is about 1000 mm. The two panels demonstrate data acquisition with phase-shifted
cosine patterns modulated at different directions and different spatial frequencies.

In order to convert screen coordinates to 3D world vectors, we prescribe them a zero
z-component, so that each world point is ~p W =

(
xS, yS, 0

)T , where xS and yS are the
decoded screen coordinates. At each pose, we then obtain a dense data frame of M records,
where M may be as large as the total number of camera pixels. As a by-product, at each
pixel, the decoding algorithm may also estimate ∆~p W—the uncertainty in ~p W originating
from the observed noise level in the recorded camera pixel values.

Unfortunately, the calibrateCamera() function cannot use dense data nor take advan-
tage of estimated uncertainties. We therefore have to extract a sparse subset of valid records
from each data frame. To that end, we apply a Gaussian filter with the size of 3 pixels to
the decoded coordinate maps and then pick valid pixels in the nodes of a uniform grid in
the image space. We found that a 100 × 100 grid (providing at most 10,000 valid records
per frame) ensures rather stable and robust convergence of calibration, while its runtimes
remain under ten minutes on a modern CPU. Collecting equivalent-quality data with static
(checkerboard) patterns would be very challenging.

A complete calibration dataset then includes several (normally 10–30) such sub-
sampled sparse data frames recorded at different camera poses. Our experimental datasets
span 3 to 4 different distances between the camera and screen and include typically 4 or
more poses at each distance; for details, see Appendix B.

An example of a dense decoded data frame before filtering and sub-sampling is shown
in Figure 3. Non-modulated pixels are identified during the decoding and are displayed
as the white space in the maps. The panel (a) shows the decoded values xS, the panel
(c)—estimated uncertainties ∆xS. As should be expected, the high-frequency “jitter” in
the coordinates that is visible, e.g., in the cutout 1D profile (b), has a typical amplitude
that is close to the respective estimates in (d). In this particular case, the mean decoding
uncertainty is about 0.09 mm, which is roughly the same as the screen pixel size of our
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Display 2 (that was used to collect these data). Note that the decoding works even with a
partial view of the target; by contrast, many simple checkerboard detectors require a full
unobstructed view of the entire pattern. This may lead to systematic undersampling and
reduce the reliability of calibrated models near the frame boundaries [7].

Figure 3. Sample data frame (dataset 4, pose 17). (a): map of the decoded xS (x-coordinates on the
screen); (b): profile of xS along the line xI = 1232 (indicated with a red line in (a); note that xIand yI

refer to pixel coordinates in the recorded images); (c): estimated decoding uncertainties ∆xS and their
histogram (number of pixels vs ∆xS); (d): profile of ∆xS along the line xI = 1232. Similar maps are
also available for yS (decoded y-coordinates on the screen).

5. Data-to-Model Consistency Metrics

Consider a camera with intrinsic parameters~θ and extrinsic parameters~t, ~u. The con-
sistency of a model ~Π(~p C | ~θ) to a record (~p W , ~π) may be evaluated in the image space
using point-wise vector- and scalar-valued re-projection errors (RPEs):

~DRPE

(
~p W , ~π | ~θ,~t,~u

)
= ~Π

(
R(~u) ~p W +~t | ~θ

)
− ~π, (2)

DRPE

(
~p W , ~π | ~θ,~t,~u

)
=
∥∥∥~DRPE

(
~p C, ~π | ~θ,~t,~u

)∥∥∥.

In order to aggregate point-wise RPEs over a data frame A =
{(

~p W
j , ~πj

)}M

j=1
we may

define the respective “root mean squared” (RMS) value:

D2
DF RMS RPE

(
A | ~θ,~t,~u

)
=

1
M

M

∑
j=1

D2
RPE

(
~p W

j , ~πj | ~θ,~t,~u
)

. (3)

Similarly, for a dataset Q = {Ai}N
i=1 we may define

D2
DS RMS RPE

(
Q | ~θ,

{
~ti,~ui

}N
i=1

)
=

1
∑i Mi

N

∑
i=1

Mi

∑
j=1

D2
RPE

(
~p W

ij , ~πij | ~θ,~ti,~ui

)
, (4)
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where Mi is the number of records in the frame Ai, and the normalization is chosen in
order to match the convention adopted in the calibrateCamera() function. Figure 4 shows
residual RPEs for the pose 13 of the dataset 0 upon the calibration of our “model A”.

Figure 4. Residual point-wise RPEs for the model A calibrated over the dataset 0, pose 13. The values
are shown at sub-sampled pixels. (a): DRPE mapped over the sensor. The visible low-frequency
Moiré structure results from the interference between the pixel grids of the camera and the screen.

(b): direction angles tan−1
(
(~DRPE)y/(~DRPE)x

)
. RPEs here demonstrate significant correlations (a

systematic bias) which may be partially explained by the same Moiré effect. (c): 2D histogram of
point-wise vectors ~DRPE. (d): histogram of DRPE values. The ragged contour of the valid region
in this data frame is due to the oblique view angle of the camera; the modulation contrast of the
observed patterns falls below the threshold for the remote parts of the screen.

5.1. Forward Projection Errors

However useful, RPEs have limitations. Most importantly, they are defined in terms
of pixels. Effective pixel sizes can often be re-defined by software or camera settings and
do not trivially correspond to any measurable quantities in the 3D world. Pixel-based
discrepancies are justified when the uncertainties in data are also naturally represented in
pixels—for example, when the detections are based on pattern recognition, as is the case
with checkerboards and cell corners. Decoding errors in ATTs, however, are defined in
length units (e.g., meters) in the 3D space and cannot be directly related to RPEs.

Therefore, it appears useful in addition to RPEs to also define forward projection errors
(FPEs). Using the same notation as in Equation (2), point-wise FPEs can be defined as

~DFPE

(
~p W , ~π | ~θ,~t,~u

)
= ~p E(~π | ~θ,~t,~u)− ~p W and (5)

DFPE

(
~p W , ~π | ~θ,~t,~u

)
=
∥∥∥~DFPE

(
~p C, ~π | ~θ,~t,~u

)∥∥∥, where

~p E(~π | ~θ,~t,~u) = (xE, yE, zE)T =~o W + α~r W is the expected hit point on the target,

~o W = −R(~u)T~t is the projection center in world coordinates, and

~r W = R(~u)T ~R(~π | ~θ) is the view ray direction in world coordinates.

The scaling factor α here is found as the solution of the linear equation zE = 0, which
encodes our assumption that the (flat) active target is located in the plane zW = 0.
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In plain words, Equation (5) may be interpreted as follows: We emit a view ray
from~o W along the direction~r W that corresponds to the pixel ~π according to our inverse
projective mapping ~R(·|·) and find its intersection ~p E with the canonical screen plane
zW = 0. The discrepancy on the screen between ~p E and the actual decoded point ~p W

then determines a 3D (effectively a 2D) vector ~DFPE. FPEs are defined in physical length
units and may be directly compared with the estimated decoding uncertainties ∆~p W when
the latter are available. By analogy to Equations (3) and (4), we may also trivially define
aggregate values DDF RMS FPE(. . . ) and DDS RMS FPE(. . . ) over data frames and datasets.

Figure 5 shows FPE maps for the same model and data frame as Figure 4. Qualitatively,
FPE distributions in this case look similar to those of RPEs, but their values can now be
interpreted without any reference to sensor parameters and model details.

Figure 5. Residual FPEs for the same model and data frame as in Figure 4. (a): DFPE mapped over

the sensor. (b): direction angles tan−1
(
(~DFPE)y/(~DFPE)x

)
. (c): 2D histogram of vectors ~DFPE. (d):

histogram of DFPE values.

One possible reason why FPEs have been less popular than RPEs in practice so far
is their dependence on the inverse camera mapping ~R(·|·), whose evaluation may be
more computationally expensive than the direct projection. However, as mentioned above,
modern hardware increasingly tends to obsolesce this argument.

If the assumption of a flat target is inconvenient or inapplicable in a given setup, one
may easily modify the definition Equation (5) as necessary. Furthermore, it is possible to
combine FPEs and estimated decoding uncertainties into dimensionless “weighted” error
metrics. The latter then optimally exploit the available information and represent the best
minimization objective for metrological calibration algorithms [29].

5.2. Calibration Algorithms

The work principle of most calibration algorithms is to find model parameters that
minimize some model-to-data consistency metric. In particular, assuming the definitions of
Equations (2) and (4), the Zhang algorithm may be formulated as the following optimization
problem. Given a dataset Q = {Ai}N

i=1, it finds

~Θ∗ ≡
(
~θ ∗,

{
~t ∗i ,~u ∗i

}N
i=1

)
= argmin(~θ,{~ti ,~ui}N

i=1

)D2
DS RMS RPE

(
Q | ~θ,

{
~ti,~ui

}N
i=1

)
, (6)
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where the camera model ~Π(·|·) = ~Π(CV)(·|·) in the definition of DDS RMS RPE is the OpenCV
model Equation (A2) and~θ represents the selected subset of intrinsic parameters affected
by the optimization (i.e., those that are not fixed to their default values).

Note that Equation (6) treats all the records in the dataset Q equally. This is equivalent
to implicitly prescribing the same isotropic uncertainty ∆~π to the projected sensor coor-
dinates at all calibration points. In terms of imaging geometry, this means that detections
of similar quality (metric uncertainty) that originate at 3D points further away from the
camera constrain the model more strongly than those that are located near the camera. This
effect may introduce a non-trivial bias into calibrated models.

Alternatively, it is possible to use Equation (5) or similar definitions in order to design
calibration algorithms that minimize FPEs instead of RPEs [14]. Such approach is in fact
preferable for metrological applications, but we refrain from discussing it here.

6. Characterization of Calibration Quality

Let us imagine that a calibration algorithm such as Equation (6) returns not only the
most likely parameters ~Θ∗ but also the complete posterior PDF p(~Θ | Q). For a sufficiently
well-behaved model and high-quality data, such a (in general case, intractable) PDF may be
expected to have a high “peak” at ~Θ∗, and therefore we may reasonably well approximate
it with a Gaussian N (~Θ | ~µΘ, ΣΘ) that has some central point ~µΘ = ~Θ∗ and a covariance
matrix ΣΘ. If we further assume that the true ~µΘ and ΣΘ are known, the calibration quality
aspects (a–c) formulated in Section 1 could be addressed as follows.

6.1. Consistency

It is a common practice to inspect residual RMS values and per-pose maps of RPEs
and FPEs computed for ~Θ∗ such as in Figures 4 and 5. In the best case, typical FPEs should
match the level of uncertainties ∆~p W if these are available. RPEs, in turn, may be compared
with the diffraction-related blurring scale for the optics measured in pixels. For example,
in our experiments, the size of the diffractive spot on the sensor is about 4 µm, which
corresponds to 1–2 pixels. A significantly higher level of RPEs/FPEs and the presence of
prominent large-scale non-uniformities in per-pose error maps may indicate data collection
issues (cf. Moiré structures in Figures 4 and 5), convergence problems in optimization,
or an excessively “stiff” model (the situation known as “underfitting”).

6.2. Reproducibility

Let us assume the following splitting of the calibration state vector ~Θ and the parame-
ters of the respective Gaussian posterior PDF:

~Θ =

(
~θ
~γ

)
, ~µΘ =

(
~µθ

~µγ

)
, and ΣΘ =

(
Σθ Σθγ

ΣT
θγ Σγ

)
, (7)

where~θ represents intrinsic camera parameters, ~γ collectively denotes all per-pose extrinsic
parameters, and Σθ and Σγ are some symmetric positive-definite matrices. The off-diagonal
block Σθγ captures the correlations between~θ and ~γ. As discussed below, these correlations
are typically hard to estimate reliably, and we ignore them.

Only~θ may be compared between independent calibration attempts since poses are
chosen each time anew. We propose to use a Gaussian distribution N (~θ | ~µθ , Σθ) as the
induced posterior PDF over the expected calibration outcomes. This form is equivalent
to the full PDF marginalized over ~γ and is consistent with the absence of any additional
information that could constrain the model parameters. In case such information does exist
(in the form of, e.g., independent measurements of camera positions by an external sensor),
one should modify this rule and, e.g., implement some form of conditioning.

The consistency of some set of intrinsic parameters~θ ′ with the current calibration re-
sults then may be estimated with the help of Mahalanobis distance DM(~θ ′ | ~µθ , Σθ) defined
in Equation (A4) and the respective plausibility level PM(~θ ′ | ~µθ , Σθ) of Equation (A6).
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6.3. Reliability

If one intends to use the calibrated camera model in geometric measurements, its
crucial physical characteristic is the expected 3D uncertainty of the view rays induced by
the uncertainty in the model parameters. Let us assume that the inverse camera model
~R(·|·) returns a vector~r = (rx, ry, 1)T whose third component is fixed at unity similarly to
our definition of the inverse Zhang model in Equation (A3). Then, the function

ρ(~π | ~θ, Σθ) =

√
Tr
(

Σr(~π | ~θ)
)

, where (8)

Σr(~π | ~θ, Σθ) = J(~π | ~θ) Σθ J(~π | ~θ)T and J(~π | ~θ) = ∂~R(~π | ~θ)
∂~θ

describes the scalar projected uncertainty of the view rays at their intersection with the plane
zC = 1. In other words, ρ(~π |~θ, Σθ) defines a map of “expected FPE gains” (EFPEGs). These
may be interpreted as expected FPEs (EFPEs) evaluated over a virtual screen orthogonal to
the camera’s axis and displaced by 1 m from the projection center.

Obviously, for any central model, the uncertainty of view ray positions is linearly
proportional to the distance from the camera. That is, an EFPE for a view ray corresponding
to some pixel ~π on the plane zC = z in the camera’s frame is

DEFPE(~π | ~θ, Σθ , z) = z ρ(~π | ~θ, Σθ). (9)

Thus, a single map of EFPEGs over the sensor is sufficient to derive calibration
uncertainty-related errors for any scene of interest. In particular, we can derive EFPEs
for the actual calibration targets and compare them with the respective residual FPEs. If
EFPEs significantly exceed residual errors, the model may be “under-constrained”, i.e., the
calibration dataset is too small or the camera poses in it are insufficiently diverse.

7. Calibration Workflow and Data Management

The approach of Section 6 allows us, in principle, to fully characterize the quality of
calibration. This section focuses on obtaining the best estimates of ~µθ and Σθ in practice.

Given a dataset Q with N data frames and a camera model, one may simply cal-
ibrate the latter using all N poses in order to obtain the best-fit parameters ~Θ(ini). We
denote this step as initial calibration. In addition to ~Θ(ini), many calibration tools in
fact also estimate their stability in some form. For example, the extended version of
the calibrateCamera() function in OpenCV (overloaded under the same name in the
C++ API, calibrateCameraExtended() in the Python API [30]) returns the estimated vari-
ances δ2~Θ(ini) for the individual components of ~Θ(ini). From these, one may recover a
covariance matrix Σ(ini)

Θ = diag(δ2~Θ(ini)). This diagonal form is a conservative estimate of
the true variability of outcomes that assumes no available knowledge about possible corre-
lations between the errors in different components of ~Θ(ini). Covariances of parameters are
hard to estimate reliably since they in practice need many more data frames than what is
typically available and are not returned by OpenCV.

The values δ2~Θ(ini) are found (at high added computational cost) from the approximate
Hessian of the objective function in Equation (6) and the residual RPEs at the optimum,
which is the standard approach for non-linear least square problems [31]. Unfortunately,
in practice, this method may wildly under- or overestimate the variability of parameters
depending on the lens properties, constellation geometries, and input data quality.

For example, Figure 6 shows EFPEs computed according to Equation (9) for the same
calibration target as Figure 5 based on the output from calibrateCamera(). We see that
this projection seriously underestimates the actual deviations, and Σ(ini)

Θ is thus unreliable.
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Figure 6. Expected FPEs (EFPEs) for the same model and camera pose as in Figure 5 based on Σ(ini)
Θ .

(a): map of point-wise values DEFPE over the sensor. (b): histogram of EFPE values.

7.1. Rejection of Outlier Data Frames

The data collection process is not trivial, and it is possible for some data records to have
a significantly poorer quality than others. This may happen due to, e.g., a bad choice of
calibration poses, illumination changes or vibration during the data acquisition, etc. In the
context of ATTs, such quality degradation typically affects entire data frames—adjacent
pixels in a frame are not likely to feature significantly different error levels.

If the decoded dataset contains per-record uncertainty estimates as in Figure 3, the lat-
ter will reflect any decoding problems, and an uncertainty-aware calibration tool may then
automatically detect bad data and ignore them in the fits. Unfortunately, the Zhang method
in Equation (6) cannot detect faulty frames and the latter, if present, may randomly affect
the optimization outcomes. We therefore must detect and remove such “outlier frames”
manually before we produce the final results and conclusions.

To that end, we analyze the residual per-pose RPEs after the initial calibration:

E(ini)
i = DDF RMS RPE(Ai | ~θ (ini),~t (ini)

i ,~u (ini)
i ) (10)

for the data frames Ai and the respective camera parameters ~θ(ini), ~t (ini)
i , and ~u (ini)

i
(i = 1, ..., N) extracted from ~Θ(ini). We expect that the RPEs for the “good” frames will
“cluster” together, while the “bad” frames will demonstrate significantly different residual
errors. For example, Figure 7 shows residual per-pose RPEs for all 29 poses in our dataset 0.
Indeed, the values appear to group together except for a few points. In this particular case,
the “problematic” frames correspond to the camera being placed too close to the screen (at
about 10 cm); the finite entrance aperture of the lens and the mismatching focus then lead
to a high dispersion of the decoded point coordinates.

Figure 7. Residual per-pose values E(ini)
i of Equation (10) for the model A calibrated over all 29 frames

in the dataset 0. The red line indicates the median of all values and the shaded region denotes the
acceptance bounds according to the modified Z-score method with the threshold of 2.0.

The most well-known formal outlier detection techniques are based on Z-scores,
modified Z-scores, and interquartile ranges. In our code, we use the modified Z-score
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method with the threshold of 2.0 since it is more stable for small samples and allows an
easy interpretation. The shaded region in Figure 7 shows the acceptance bounds dictated by
this method, according to which the frames 25 and 26 must be declared outliers. However,
one is free to use any reasonable alternative methods and thresholds. In what follows, we
assume that our dataset Q is free from such outliers.

7.2. Empirical Evaluation of Calibration Quality

As discussed in Section 6.1, residual per-dataset and per-pose errors as in Figure 7, as
well as maps such as in Figure 4, characterize the consistency of the model with the data that
it has “seen” during the calibration. However, they tell us nothing about its performance
on “unseen” data. In machine learning (ML), this problem is solved by randomly splitting
the available data into “training” and “testing” sets Qtrain and Qtest. One then calibrates
the model over Qtrain and evaluates its performance on Qtest. Usually, one allocates 70% of
data to Qtrain; in our experiments, this proportion also seems to work well.

This approach addresses the so-called “generalizability” of the model. A well-trained
model must demonstrate similar metrics on Qtrain and Qtest. If, e.g., RPEs on Qtest signifi-
cantly exceed the residual values in training, this may indicate “overfitting”: an excessively
flexible model that learns random fluctuations rather than physical features inherent in the
data. Such a model cannot be considered reliable, nor its parameters reproducible. As a
remedy, one could use more data or switch to a “stiffer” model.

Furthermore, most ML models have some “hyperparameters” such as discretization
granularity, numbers of layers in a neural network, their types, etc. Generally, these affect
the flexibility of the model as well as the number of trainable parameters. Sometimes, one
may choose hyperparameters a priori based on physical considerations. Often, however,
they may only be found from data along with the model’s parameters. In this case, one
uses the third separate “validation” dataset Qvalid [32]. Again, the basic rule here is that we
should make the final evaluation on data that the model has not “seen” during its training
nor during the fine-tuning of hyperparameters.

We can easily adapt this procedure to camera calibration. Given a dataset Q, we first
split it into Qtrain, Qvalid, and Qtest. Let us assume that we wish to calibrate either our
“model A” or “model B”. This choice is our hyperparameter: model B can fit more complex
imaging geometries but is more prone to overfitting. We calibrate both models according
to Equation (6) using Qtrain and determine respective intrinsic parameters ~θ ( f in A) and
~θ ( f in B). After that, we evaluate DDF RMS RPE(Qvalid | ...) for both models. Depending on
the outcomes, we pick the model that better fits the data and demonstrates neither over-
nor underfitting. Finally, once the model is fixed, we find E( f in) = DDS RMS RPE(Qtest | ...)
and report it as a measure of the final calibration quality.

In what follows, we in fact assume a simpler procedure (we call it final calibration)
which uses only Qtrain and Qtest; we do not optimize hyperparameters and do not choose
the model based on data. A similar strategy has been used in [8].

The recipe above warrants a few remarks. First, all records in a frame depend on the
same camera pose. We thus can only split datasets at the level of frames. Second, in order
to compute RPEs/FPEs on a new data frame for some fixed intrinsic parameters~θ, we need
to first find a best-fit camera pose via the so-called bundle adjustment:(

~t ∗,~u ∗
)
= argmin(~t,~u)D2

DF RMS RPE

(
A | ~θ,~t,~u

)
. (11)

In OpenCV, this optimization is implemented in the solvePnP() function [30]. Note
that formally the “final calibration” uses a smaller dataset and may thus produce a model
inferior to the “initial calibration”. This is the price of the added quality guarantees; we
believe that the benefits are almost always worth it.
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7.3. K-Fold Cross-Validation

The “final calibration” above provides us the final set of intrinsic parameters ~µθ = ~θ ( f in). In
order to estimate their variability, we employ yet another ML-inspired empirical technique—the
so-called K-fold cross-validation [32].

In essence, we repeat the same steps as in the “final calibration” K times (we use
K = 10), each time making a new random splitting of data into Qtrain and Qtest. The col-
lection of the resulting intrinsic parameters ~θ (k) and the residual RMS RPE values E(k)

train

and E(k)
test for k = 1, . . . , K is retained; the remaining calibrated parameters and evaluation

results are discarded. From that, we derive the following two indicators:

Σ(KF f ull)
θ = cov

({
~θ (k)

}K

k=1

)
, (12)

δ2E(KF) = var
({

E(k)
train

}K

k=1

)
+ var

({
E(k)

test

}K

k=1

)
.

The value δE(KF) estimates the stability of the residual RPEs and quantifies any claims
of “significantly higher/lower” RPE levels when, e.g., detecting overfitting (Section 6.1).
The matrix Σ(KF f ull)

θ can in principle be used as an estimate for Σθ of Sections 6.2 and 6.3.
However, in practice, K is usually significantly smaller than the number of independent
components in Σ(KF f ull)

θ . The latter then ends up being rank-deficient, and even if it does
have a full rank, its inverses are often unstable due to insufficient statistics. As a pragmatic
fix to this problem, we define a “robustified” matrix Σ(KF)

θ that has the same diagonal as

Σ(KF f ull)
θ and zero non-diagonal elements. As discussed above, such construction does not

introduce new biases and improves stability. With Σθ = Σ(KF)
θ , we then may complete the

characterization of the model’s quality.
Note that our recipe is different from the typical descriptions of K-fold cross-validation

in the literature. In ML, one typically assumes relatively large datasets that may be arbitrar-
ily sub-divided into parts; by contrast, in camera calibration, we usually deal with at most
a few dozen camera poses, hence our pragmatical modification.

Figure 8 shows EFPEs obtained with~θ = ~θ( f in) and Σθ = Σ(KF)
θ produced as discussed

above. The typical values in Figure 8d are more consistent with Figure 5d than those in
Figure 6; we thus believe that Σ(KF)

θ in this case better characterizes the model than the
internal estimation in the calibrateCamera() function.

One may argue whether EFPEG plots such as Figure 8a should use the units of
mm/m or radians. Indeed, scalar EFPEs for central models directly correspond to angular
uncertainties of the view rays emitted from the projection center. One reason to prefer our
notation is that Equation (8) can easily accommodate anisotropic errors (separate estimates
for ∆xW and ∆yW); respective angular quantities may be tricky to define. An even more
complex picture arises for non-central camera models. In this case, the uncertainty profile
for a view ray in 3D is described by a “Gaussian beam”: a complicated object that induces
a 2D Gaussian PDF over any intersecting plane. Depending on the calibration camera
poses and the data quality, the “waist” of such beam will not necessarily be located at the
camera’s origin. A practical way to characterize the expected model errors in this case
could include a series of plots such as Figure 8a but evaluated at different distances from
the camera (selected as dictated by applications). (We thank the members of the audience
at the 2022 Annual Meeting of the German Society for Applied Optics (DGaO) who have
drawn our attention to this issue.)
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Figure 8. Uncertainty in view ray positions induced by the residual uncertainty in the intrinsic camera
parameters as estimated by K-fold cross-validation. Model A is calibrated over the training subset
Qtrain of the dataset 0; x- and y-axes in (a,c) are camera pixel coordinates. (a,b): map and histogram
of EFPEGs (expected FPEs over the plane 1 m away from the camera). (c,d): map and histogram of
EFPEs for the same pose as in Figure 5. As could be expected, EFPEs in (a,c) are bounded from below
by a positive value that is achieved near the center of the frame.

8. Proposed Workflow and Reporting of Outcomes

Summarizing the discussion in the previous section, here, we present the list of
essential steps needed to ensure a controllable calibration session. The method receives a
dataset Q with N data frames as an input and produces intrinsic parameters~θ∗ accompanied
by sufficient quality specifications.

1. Initial calibration. Calibrate the model with all N data frames. Output N per-pose

residual RPE values E(ini)
i (Section 7.1).

2. Outlier rejection. Based on values E(ini)
i , remove “bad” data frames (Section 7.1).

3. Final calibration. Randomly sub-divide Q into Qtrain and Qtest. Calibrate the model
over Qtrain. Output the resulting intrinsic parameters~θ( f in) and the residual RPEs/FPEs
as per-pose/per-dataset values and point-wise maps (Section 7.2).

4. K-fold cross-validation. Repeat K times the splitting of Q into training and test sets;

calibrate sub-models. Output stability indicators δE(KF) and Σ(KF)
θ (Section 7.3).

5. Generalizability check. Perform bundle adjustment for ~θ( f in), evaluate RPEs and
FPEs over Qtest. Output respective per-pose, per-dataset values, and point-wise maps.

6. Reliability metrics. Map expected FPEs based on~θ( f in) and Σ(KF)
θ . Output the map

of EFPEGs and per-pose maps of EFPEs for the poses in Q (Section 6.3).

The outcomes of this procedure include the intrinsic parameters ~θ ∗ ≡ ~θ( f in), the
covariance matrix Σ∗θ ≡ Σ(KF)

θ , and the map of EFPEGs over the sensor—as discussed
above, these objects may be useful for the downstream applications of the calibrated model.
In addition, one may report the residual RPEs and FPEs over Qtrain and Qtest and the
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estimated variability δE(KF) of the residual RPEs. The user then may decide whether the
model is sufficiently flexible and the size of the calibration dataset adequate.

9. Experimental Illustration

We conducted our experiments and collected five datasets as described in Appendix B.
For each dataset, we calibrated three models: “model A”, “model B”, and the additional
“model AB”. The latter was introduced in order to overcome instabilities of the “model B”.
It uses the same parameterization, but the program first calibrates the “model A” and then
uses it as the starting point for the subsequent calibration of the full “model B”. Table 1
summarizes our results in terms of the following metrics:

Table 1. Outcomes of our experiments. The meaning of entries is described in the text.

Dataset/Model 0/A 0/B 0/AB 1/A 1/B 1/AB 2/A 2/B 2/AB 3/A 3/B 3/AB 4/A 4/B 4/AB

Nposes 29 18 17 17 19

E(ini), px 2.69 2.69 2.69 2.30 2.27 2.30 2.10 2.09 2.09 0.47 0.40 0.47 0.51 0.40 0.51

Noutliers 2 2 2 1 0 1 1 1 1 1 1 2 2 4 2

E( f in)
train , px 2.07 2.06 2.08 2.24 1.94 2.21 1.86 1.90 2.02 0.43 0.38 0.38 0.42 0.23 0.39

E( f in)
test , px 2.29 2.35 2.28 1.81 2.96 1.43 2.09 1.93 1.35 0.43 0.33 0.41 0.33 0.25 0.41

δE(KF), px 0.31 0.42 0.31 0.70 0.42 0.65 0.68 0.45 0.66 0.10 0.11 0.08 0.07 0.05 0.08

DRMS EFPEG, mm/m 1.37 51.3 1.70 3.30 37.2 3.87 3.50 3295.4 4.48 1.55 19.4 0.71 1.01 28.3 1.04

Sample pose 13 3 5 10 17

D( f in)
DF RMS RPE, px 2.41 2.36 2.40 1.26 1.30 1.27 0.46 0.49 0.45 0.23 0.25 0.22 0.38 0.26 0.38

D( f in)
DF RMS FPE, mm 0.37 0.37 0.37 0.44 0.46 0.44 0.42 0.44 0.40 0.16 0.18 0.16 0.08 0.06 0.08

D(KF)
DF RMS EFPE, mm 0.43 11.9 0.52 2.69 29.4 3.19 5.83 334.4 7.60 2.35 9.60 0.88 0.46 7.68 0.48

• Nposes is the number of data frames in the dataset before the rejection of outliers;
• E(ini) is the residual RMS RPE for the entire dataset after the “initial calibration”;
• Noutliers is the number of detected (and rejected) “bad” data frames;

• E( f in)
train is the residual RMS RPE after the “final calibration” evaluated over Qtrain;

• E( f in)
test is the residual RMS RPE after the “final calibration” evaluated over Qtest;

• δE(KF) is the empirical variability scale of the residual per-dataset RMS RPEs;

• D(KF)
RMS EFPEG is the RMS “expected FPE gain” (EFPEG) estimated from Σ(KF)

θ ;
• “Sample pose” is used as an example to illustrate the subsequent per-pose values;

• D( f in)
DF RMS RPE is a sample per-pose RMS RPE upon the “final calibration”;

• D( f in)
DF RMS FPE is a sample per-pose RMS FPE upon the “final calibration”;

• D(KF)
DF RMS EFPE is a sample per-pose RMS EFPE based on K-fold cross-validation.

Figure 9 illustrates the calibration outcomes of the more nuanced “model AB” over the
dataset 3. The EFPEG map and the EFPEs for pose 10 promise here sub-mm uncertainties.
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Figure 9. (a,b): map and histogram of the final EFPEGs for the model AB calibrated over the dataset
3. (c,d): map and histogram of the expected FPEs (EFPEs) for the pose 10. As in Figure 8, the x- and
y-axes in (a,c) correspond to camera pixel coordinates.

Discussion of Experimental Results

By inspecting Table 1, we may derive a number of non-trivial conclusions:

1. Data collected with an 8K monitor (datasets 3, 4) enable a significantly better calibra-
tion that those obtained with an HD screen (datasets 0, 1, 2) as can be seen, e.g., in
the residual error levels E( f in)

test . Apart from larger screen pixels, this may be due to the
aforementioned Moiré effect (more pronounced with an HD screen).

2. The commonly used aggregate error indicators are very weakly sensitive to the
detailed calibration quality aspects defined in Section 1: models with wildly different
reliability and reproducibility metrics demonstrate very similar values of E(ini).

3. The full OpenCV camera model (“model B”) is much less stable than the reduced
“model A”, as follows from the values DRMS EFPEG. The two-step optimization (“model
AB”) significantly improves the situation; one possible explanation is that the “model
B” too easily becomes trapped in some shallow local minima, and the informed
initialization helps it select a better local minimum. Therefore, in practice, one should
always prefer the “model AB” to the “model B”.

4. Our larger dataset 0 has relatively high decoding errors, and the performance metrics
of the “model A” and the “model AB” are almost identical. Therefore, in this case,
one should prefer the simpler “model A”. As a benefit, the latter promises slightly
lower EFPEGs (DRMS EFPEG) due to its higher “stiffness”. (For a better justification
one should use the “validation” logic as discussed in Section 7.2.)

5. The datasets 1 and 2 are apparently too small to constrain our models, as follows from
the increased δE(KF) and DRMS EFPEG values compared with the larger datasets. This
may be also a reason for the test metrics E( f in)

test to be lower that the training accuracy

E( f in)
train (although the difference is still of order δE(KF)). The higher flexibility of the

“model AB” then translates to higher expected errors DRMS EFPEG.
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6. With the better quality datasets 3 and 4, the “model AB” finally demonstrates an
advantage and promises slightly better metric uncertainties DRMS EFPEG. With the
dataset 3, we see sub-mm RMS uncertainty at the distance of 1 m; in the center of the
frame, the errors are even lower (Figure 9). Note that the residual FPEs D( f in)

DF RMS FPE
for the dataset 4/pose 17 nicely agree with the estimated decoding errors in Figure 3.

10. General Discussion

Our results suggest that it is possible to relatively easily calibrate typical industrial
cameras to the accuracy of order 1 mm when camera-assisted measurements happen at
the distances of order 1 m and at the same time produce some “certificates” of calibration
quality. The main enabling factor here is the superior quality of calibration data delivered
by ATTs. We further observe that modern higher-resolution screens (4K and 8K) offer a
significant advantage due to smaller pixels and suppressed Moiré effects. As such screens
become widely available, we see no reason to calibrate cameras with static patterns, even
for less demanding applications in computer vision.

We also observe that the decoding errors for the affordable 1920 × 1080 screens
are relatively high and do not justify the use of advanced models such as our “model
AB”. A simple pinhole model with low-order distortions is sufficient here to obtain quite
consistent, reliable, and reproducible results. Note, however, that this effect may be also
due to the relatively high quality of lenses used in our experiments: simpler or wider-angle
optics may cause higher distortions and necessitate a more flexible model.

The ML-inspired procedure outlined in Section 7 appears to consistently deliver
adequate variability estimates for the parameters and the performance metrics of camera
models. By contrast, the internal estimates built into the OpenCV functions may be
significantly off, sometimes by a factor of 10 or more. (For example, typical error scales in
Figure 6 and in Figure 8c,d differ by about a factor of 6; we have witnessed significantly
more extreme examples in our complete experimental database.) The numerical behavior
of the complete OpenCV model also appears to be unstable, and one may need to apply
some ad hoc fixes such as our “model AB” in order to obtain useful calibration results.

Further Improvements and Future Work

If order to further push the boundaries in terms of data quality and the resulting
model uncertainties, one has to account for various minor effects that are present in any
setup similar to ours. One such issue is the refraction in the screen’s cover glass that
introduces systematic deviations into decoded coordinates xS and yS of order 0.1 mm when
the view angles are sufficiently far away from the normal incidence [18]. Respective optical
properties of the screen as well as its deformations due to gravity or thermal expansion [17]
then must be modeled and calibrated separately.

Furthermore, one may switch to high-dynamic-range screens and separately calibrate
the pixel response functions (gamma curves). Respective corrections may improve the
decoding accuracy or, alternatively, reduce the necessary data acquisition times.

As shown above, Moiré structures may significantly impact data quality. To the best of
our knowledge, these effects have not been studied systematically. In practice, one usually
adjusts calibration poses and screen parameters until such structures become less visible.
For ultimate-quality measurements, one may require more rigorous procedures.

Another less-studied effect is blurred (non-sharp) projection. There is a general
assumption that blurring does not affect coordinates decoded with phase-shifted cosine
patterns [33]. However, this statement is true only for Gaussian blurring kernels whose scale
is significantly smaller than the spatial modulation wavelengths of patterns. The decoding
is also noticeably biased near screen boundaries if they appear in the frame.

Note that already our achieved uncertainty levels may approach the breaking point for
the assumption of the ideal central projection. Depending on the quality of optics, at some
point one then has to switch to non-central models. There is no simple and clear rule to
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determine this point; also, the calibration of such models is significantly more challenging
in practice, and their theory still has some open questions [29].

At the system level, it may be interesting to extend the above approach and address
the online calibration problem. In particular, once a camera is studied in a laboratory, one
could use simpler procedures and less “expensive” indicators (that ideally do not interfere
with its main task) in order to detect and quantify parametric drifts due to environmental
factors along with variations in the quality metrics (such as EFPEGs).

All comparisons and quality evaluations in this paper are based on high-quality
datasets collected with ATTs. Each such dataset may contain millions of detected 3D points,
and therefore provides a very stringent test for a calibrated camera model. Nevertheless,
it may be quite instructive to demonstrate the advantages of the proposed workflow
in the context of demanding practical applications such as fringe projection-based or
deflectometric measurements. We leave such illustrations to future work.

11. Conclusions

In this paper, we discuss the quality of camera calibration and provide practical rec-
ommendations for obtaining consistent, reproducible, and reliable outcomes. We introduce
several quality indicators that, if accepted in common practice, may potentially lead to the
better characterization of calibration outcomes in multiple applications and use-cases both
in camera-assisted optical metrology and computer vision fields.

Our approach is empirical in nature and is inspired by the techniques used in Machine
Learning. As an illustration of the proposed method, we conduct a series of experiments
with typical industrial cameras and commercially available displays. Our procedure
to characterize the quality of outputs is shown to be superior to the previously known
methods based on fragile assumptions and approximations. The metric uncertainty of the
calibrated models in our experiments corresponds to forward projection errors of order
0.1–1.0 mm at the distances of order 1 m and is consistent with the observed levels of
residual projection errors.

We hope that the workflows and tools demonstrated in this paper may appear attrac-
tive to other practitioners of camera-based measurements. In order to lower the threshold
for the adoption of these methods, we published the datasets and the Python code that
were used to obtain our results; respective links are provided below.
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Appendix A. Camera Model Implemented in the OpenCV Library

The camera embedding into the 3D world is given by Equation (1) according to the
extrinsic parameters~t, ~u. The parameterization of rotation matrices R(~u) in OpenCV is
as follows:
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R(~u) = I cos θ + (1− cos θ) ~n ~nT + N(~u) sin θ, where I is a 3 × 3 unit matrix, (A1)

N(~u) =

 0 −nz ny
nz 0 −nx
−ny nx 0

, θ = |~u|, and ~n = (nx, ny, nz)
T =

~u
θ

.

The intrinsic camera model adopted in OpenCV is formulated in terms of the di-
rect projection relation for a 3D point onto the sensor plane. Given the coordinates
~p C =

(
xC, yC, zC)T of some 3D point P in the camera’s intrinsic frame, the respective

coordinates ~π =
(

xI , yI)T
= ~Π(CV)(~p C | ~θ) of its projection on the sensor are

~Π(CV)(~p C | ~θ) =
(

fxx′′′ + cx, fyy′′′ + cy
)T , where (A2)

x′′′ =
X′′′

Z′′′
, y′′′ =

Y′′′

X′′′
,

 X′′′

Y′′′

Z′′′

 = T1T2

 x′′

y′′

1

,

T1 =

 cos τy cos τx 0 sin τy cos τx
0 cos τy cos τx − sin τx
0 0 1

,

T2 =

 cos τy sin τy sin τx − sin τy cos τx
0 cos τx sin τx

sin τy − cos τy sin τx cos τy cos τx

,

x′′ = f x′ + 2p1x′y′ + p2(r2 + 2x′2) + s1r2 + s2r4,

y′′ = f y′ + p1(r2 + 2y′2) + 2p2x′y′ + s3r2 + s4r4,

f =
1 + k1r2 + k2r4 + k3r6

1 + k4r2 + k5r4 + k6r6 , r2 = x′2 + y′2, x′ =
xC

zC , and y′ =
yC

zC .

The 18 intrinsic parameters~θ = ( fx, fy, cx, cy, k1, k2, k3, p1, p2, k4, k5, k6, s1, s2, s3, s4, τx, τy)
can be interpreted as follows. The values fx, fy, cx, cy define the sensor’s size, resolution,
and placement in the image plane according to the basic pinhole camera model (skewed
projection is not allowed). The remaining terms describe various types of distortions: k1,
k2, k3, k4, k5, k6—radial, p1, p2—tangential, and s1, s2, s3, s4—thin-prism. Finally, τx and
τy correspond to the possible tilting of the image plane with respect to the lens (related via
Scheimpflug principle to the tilt of the focus plane). When the parameters k1, . . . , τy vanish,
Equation (A2) reduces to the undistorted pinhole model.

In order to derive an inverse projection relation for the model Equation (A2), one
would need to invert these formulas—a task that is intractable in closed form. Instead,
in practice, we find the direction~r = ~R(CV)(~π | ~θ) of a view ray corresponding to a pixel ~π
numerically as a solution of a small optimization problem:

~R(CV)(~π | ~θ) = (r∗x, r∗y , 1)T , where (A3)

(r∗x, r∗y) = argmin(rx ,ry)

∥∥∥~π − ~Π(CV)
(
(rx, ry, 1)T | ~θ

)∥∥∥2
.

In non-pathological cases, Equation (A3) can be solved by some Newton’s scheme or another
iterative method. In our code used in the experiments, we employ the Levenberg–Marquardt
method [31] implemented in the SciPy library [34] and observe solid convergence.

Finally, the analysis of the calibrated model requires the derivatives ∂~Π/∂~p C, ∂~Π/∂~θ,
∂~R/∂~π, and ∂~R/∂~θ (cf. Section 6.3 and Equation (8)). The differentiation of Equation (A2)
and the conversion of formulas to code is trivial but tedious. Instead, we apply an au-
tomated differentiation tool implemented in the AutoGrad package [35] to the code for
~Π(CV)(·|·). The derivatives of ~R(CV)(·|·) are then obtained by trivial matrix manipulations.
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Appendix B. Hardware Setup and Collected Datasets

Our experimental setup uses two identical industrial cameras (Camera 1 and Camera 2)
by Allied Vision, model Mako G-507 B. Their 2/3 sensor (11.1 mm in diagonal) has
2464 × 2056 monochromatic pixels (horizontal × vertical) working at 12-bit resolution
and arranged at the pitch of 3.45 µm × 3.45 µm. Each camera is coupled with a Fujinon
HF8XA-5M lens chosen to provide adequate optical resolution. In all experiments, the focus
distance was fixed at about 900 mm and the F-number was fixed at 4.0 when collecting
all datasets, except for the dataset 3, where it was set to 2.0. The lens has a focal length of
8.0 mm, the field of view with a 2/3 sensor is about 56◦ × 48◦.

Figure A1. Visualization of camera poses for the dataset 0. The rectangle indicates the coding screen
and each pyramid denotes a calibration camera pose. The projection center corresponds to the tip of
each pyramid.

As active targets, we have used two different computer displays. We assume them
to be sufficiently flat and make no modification to ensure planarity other than placing
them vertically without tilting. The first one (Display 1) is a 55′′ Philips monitor (model
55BDL5057P) with 1920 × 1080 pixels and the active region of 1209.6 mm × 680.4 mm (the
pixel pitch is 0.630 mm × 0.630 mm). The second (Display 2) is a 32′′ 8K Dell monitor
(UP3218K) with 7680 × 4320 pixels in the active region of 697.0 mm × 392.0 mm (pitch
0.091 mm × 0.091 mm).

Each recorded calibration dataset includes data frames captured at different camera
poses. In order to efficiently exploit the screen and the sensor resolution, and avoid Moiré
effects as well as excessive blurring, the camera positions are chosen at about 100 mm,
250 mm, 1000 mm, and 2500 mm from the 55′′ Philips monitor and at about 300 mm,
800 mm, and 1700 mm from the 8K Dell monitor. At each distance, we rotated the camera
so as to cover most of the frame area with overlapping observations. Figure 2 shows the
experimental setup where the camera is placed at a distance of about 1000 mm from the
Philips monitor and Figure A1 visualizes all camera positions for the dataset 0.

The spatial frequencies and the numbers of phase shifts of the coding patterns were
selected to enable robust decoding both at the shortest and at the furthest camera poses; the
number of displayed patterns/camera images at each pose was 16 for the datasets collected
with the Phillips monitor and 45 with the Dell monitor.

The collected datasets have the following characteristics:

Dataset Camera F-Number Display Number of Poses Uncertainties

0 1 4 1 29 no
1 2 4 1 18 no
2 1 4 1 17 no
3 2 2 2 17 yes
4 2 4 2 19 yes

Appendix C. Mahalanobis Distance and the Plausibility of Outcomes

Given an n-dimensional Gaussian PDF P = N (~µ; Σ) with a central value ~µ and
covariance matrix Σ, how can we evaluate the consistency of an arbitrary vector~θ with P?
In other words, how plausible is the assumption that~θ has been sampled from P?
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In the one-dimensional case (n = 1), we could find the difference between~θ and ~µ in
the units of standard deviation (“sigma”) and apply the well-known “empirical rule”: the
probability of encountering a deviation of one “sigma” or less is 68.2%, a deviation of two
“sigmas” or less—95.4%, etc. The generalization of this rule to higher dimensions n > 1
uses the so-called Mahalanobis distance:

DM(~θ | ~µ, Σ) =
√
(~θ −~µ)TΣ−1(~θ −~µ). (A4)

Figure A2. Profiles of the accumulated Gaussian probability mass q(n, d) of Equation (A5) for several
values of space dimensionality n and Mahalanobis distance d.

In order to interpret the values of DM, one needs a generalized “empirical rule” that
represents the probability for a random sample drawn fromN (~µ; Σ) to land within a given
Mahalanobis distance d from ~µ. This probability can be evaluated in closed form:

Prob
[

DM(~θ | ~µ, Σ) < d for~θ ∼ N (~µ; Σ)
]
= q(n, d) = 1− Γ(n/2, d2/2)

Γ(n/2)
, (A5)

where Γ(z) =
∫ ∞

0 xz−1e−xdx and Γ(a, z) =
∫ ∞

z xa−1e−xdx are the regular and the incom-
plete gamma-functions (cf. χ2-distribution and its cumulative distribution function).

Some values of the function q(n, d) are shown in Figure A2. In particular, the n = 1 case
reproduces the above-mentioned one-dimensional “empirical rule”. In higher dimensions,
the bulk of probability mass moves further away from the center. For instance, in n = 9
dimensions, only 0.056% of the accumulated probability remains inside the “one-sigma”
(d = 1) hyperellipsoid, and there is only a 56.27% chance for a random sample from a
Gaussian distribution to land within three “sigmas” away from its central point. These
definitions allow us to define a convenient “plausibility” metric:

PM(~θ | ~µ, Σ) = q(n, DM(~θ | ~µ, Σ)). (A6)

Using Equation (A6) and~θ ∗, Σθ—the outputs from the workflow of Section 8—one
can, e.g., compare the outcomes of several calibrations and decide if they are compatible.
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