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Abstract: Human pose estimation has long been a fundamental problem in computer vision and
artificial intelligence. Prominent among the 2D human pose estimation (HPE) methods are the
regression-based approaches, which have been proven to achieve excellent results. However, the
ground-truth labels are usually inherently ambiguous in challenging cases such as motion blur,
occlusions, and truncation, leading to poor performance measurement and lower levels of accuracy.
In this paper, we propose Cofopose, which is a two-stage approach consisting of a person and
keypoint detection transformers for 2D human pose estimation. Cofopose is composed of conditional
cross-attention, a conditional DEtection TRansformer (conditional DETR), and an encoder-decoder in
the transformer framework; this allows it to achieve person and keypoint detection. In a significant
departure from other approaches, we use conditional cross-attention and fine-tune conditional DETR
for our person detection, and encoder-decoders in the transformers for our keypoint detection.
Cofopose was extensively evaluated using two benchmark datasets, MS COCO and MPII, achieving
an improved performance with significant margins over the existing state-of-the-art frameworks.

Keywords: DETR; human pose estimation; conditional DETR; convolutional neural network (CNN); detection

1. Introduction

Human pose estimation has long been a compelling yet challenging problem. Funda-
mentally, human pose estimation [1,2] concerns discovering the configuration of the body
parts of a human from either consecutive images or single images. In computer vision,
human pose estimation has necessitated a paradigm shift due to its practical importance
for behavioral analysis, video surveillance [3], autonomous driving, human– computer
interactions [4], healthcare, computer animation, skeleton action recognition [5], and video
retrieval [6]. Recently, deep convolutional neural networks (DCNNs) have proven their
capacity for visual understanding [7,8] and recognition [9,10] in terms of capacity and
efficiency in human pose estimation. However, pose estimation is inherently challeng-
ing due to the ways that body shape changes in motion, inter- or intra-person occlusion,
and background clutter. Recent pose estimation approaches can be roughly categorized
into two groups: heatmap-based and regression-based approaches. Heatmap-based ap-
proaches adopt handcrafted features and heuristic pre/post-processing to encode an image
to heatmaps, and then decode these heatmaps to predict keypoints. However, this approach
faces challenges such as difficulties in updating and adaption. Regression-based approaches
instead perform regression for the keypoints directly, entailing fewer intermediate stages
and specifications. Although their performance is not on par with the heatmap-based
approaches, they can be made end-to-end and readily integrated with other downstream
tasks. In addition, regression-based approaches also aim to remove unnecessary designs by
making the training objective and target output direct and transparent. Inspired by the re-
cent regression-based method for pose estimation [11], we present a two-stage transformer
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approach for 2D pose estimation. Specifically, we use cascading transformers, consisting
of a person detection transformer and a keypoint detection transformer. Cofopose differs
from existing approaches insofar as it consists of conditional cross-attention, conditional
DETR, and the use of encoder-decoders in the transformer architecture to achieve person
and keypoint detection. That is, we leverage conditional cross attention and conditional
DETR for person detection, and use encoder-decoders in the transformer to detect the
keypoints. Cofopose shows competitive results in pose recognition compared with the
existing regression-based and heatmap-based methods. In brief, the contributions of our
work can be summarized as follows:

• We propose Cofopose, a two-stage approach consisting of person- and keypoint-
detection transformers for 2D human pose estimation.

• Cofopose comprises conditional cross-attention, conditional DETR, and encoder-decoders
in the transformer framework to achieve person and keypoint detection. Specifically,
we utilize conditional cross-attention and fine-tuned conditional DETR for our person
detection, and encoder-decoders in the transformers for our keypoint detection.

• Cofopose achieves state-of-the-art accuracy on both the MPII and MS-COCO bench-
mark datasets. Furthermore, the contributions of the hypothesized architecture have
been confirmed using ablation investigations.

2. Related Work
2.1. Transformers

Machine translation has greatly benefited from the introduction of attention [12],
specifically transformer models, which have significantly improved the performance of
deep learning architectures when performing language-based tasks [13]. The popularity of
transformers has recently increased because of vision-related issues [14]. These methods of
attention gather data from a long input sequence and divide it up into their constituent
parts. Recently, their application has been expanded to include speech recognition [15,16]
and generative language modeling [17], among numerous other tasks [14,18]. In recent years,
various architectures have been proposed to solve computer vision issues such as object de-
tection [14,19], pose estimation [11,20], low-level image processing and classification [21,22],
and transformer transducer [23] tasks via features extracted from a CNN’s backbone. By
learning the weight of each node, researchers propose a graph attention network (GAT) [24]
that combines neighbor information using self-attention. Akbari et al. [25] introduced
the model Video-Audio-Text Transformer (VATT) for generating multi-modal representa-
tions from unprocessed text, video, and audio. VATT further investigates the relationship
between the frame sequences, audio, and sentences. Similarly, Huang et al. [26] argue
that, through the power of self-attention, the transformer-encoder block can be used to
upscale the component of sequences of keypoints. For some time now, video–text rep-
resentations have been learned by using global action and local regional objects [27] as
inputs; to improve communications between various sources. Detection with Transformers
(DETR) [28] formulates the object detection architecture to predict a box set in order for the
detection model to perform end-to-end training. Both 2D pose estimation and 3D human
pose estimation [27] applications can benefit from transformers.

2.2. Human Pose Estimation

Human pose estimation can be either image based or video based. With image-
based learning, Kortylewaki et al. [29] proposed an architecture that uses the VGG-16
base model to learn the correlations between human body parts. Furthermore, probability
heatmaps [30] are deployed to identify the locations of joints. Zhang et al. [31] made
significant progress using multi-scaled feature pyramids for human pose estimation. In a
practical sense, all of these achievements were accomplished by deploying either a bottom-
up or a top-down strategy. As might be expected, the bottom-up approach [32,33] extracts
each human body part and then integrates them to form a full person. In contrast, the
top-down approach executes person detection at the initial stage and then accomplishes
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single-person human pose estimation for each body part. To accomplish high-resolution
feature maps, Sun et al. [8] suggested a Deep High-Resolution Network (HRNet) for multi-
scale fusion. This improvement seeks to address the problem encountered in keypoint
heatmaps regarding spatial precision. On the other hand, video-based pose estimation can
be boosted by capturing temporal information together with appearance information across
frames. Many prior models [34,35] address video-based pose detection tasks as a two-sided
problem, comprising (1) identifying the keypoints that exist in individual frames, and then
(2) using temporal smoothing techniques. In addition, the tracking of human poses [36]
has been widely adapted to simultaneously refine human pose estimation. Tao et al. [37]
suggested convolutional LSTMs for capturing temporal and spatial context information,
while others utilize Recurrent Neural Networks (RNN) [38,39]. Raaj et al. [40] proposed
an algorithm for pose detection using a warping mechanism on the PoseTrack datasets.
Liu et al. [41] proposed a DC-Pose that uses HRNet [8] as the backbone for pose detection,
while tracking through the novel Pose Temporal Merger (PTM) and Pose Residual Fusion
(PRF), as well as Pose Correction Network (PCN), on Pose-Track datasets, to achieve
results that were significantly better than the existing state-of-the-art. Zhang et al. [42]
also provided a distribution-aware coordinate representation to cope with the quantization
error of down-sampling heatmaps. In addition to being tolerant of jitter errors, this type
of learning schema is also tolerant of spatial ambiguity in its implementation. Whenever
coordinate migration refinement is used as a post-processing step, the likelihood of false
positives is reduced. Luvizon et al. [43] suggested an end-to-end model architecture based
on regression for human pose estimation, using the soft-argmax function to extract feature
maps into keypoint coordinates of a complete differentiable model. A summary of some
related works is also presented in Table 4.

Table 1. Summary of some related works, and their contributions and limitations.

Models Remarks Limitations

DeepPose [44]
A model was created to study the results of jointly training

a multi-staged framework with repeated intermediate
inspection.

Regressing to a location is extremely difficult, increasing
the complexity of the learning and reducing generalization.

ConvNet Pose [45] Proposed an architecture to generate discrete heatmaps
instead of continuous ones The architecture lacks structural modeling.

CPM [46]
Integration of the convolutional network into pose

machines, allowing them to learn image features and
image-dependent spatial models to estimate human poses.

Vulnerable when multiple individuals are nearby,
computational cost, and, if the detection of individuals fails,

there is no possibility of recovering.

Stacked-Hglass [47] Utilized repeated bottom-up, top-down, and intermediate
supervision to improve the network’s performance.

Hundreds of parameters, and loss functions become
incredibly complex

DeeperCut [48]
Introduced strong body part detectors to produce effective
bottom-up proposals for body joints, and utilized the deep

ResNet for human pose estimation.
The pairwise representations are very hard to regress.

PAF [49]
Proposed a model to connect human body parts via Part

Affinity Fields (PAF), a non-parametric method, to achieve
bottom-up pose estimation.

Grouping body parts is very challenging when there is a
large overlap between people.

CPN [50]

Proposed a CPN structure composed of GlobalNet and
RefineNet. Easy keypoints are estimated by the GlobalNet,

while the estimation of hard keypoints is performed by
RefineNet.

High computational costs, and vulnerable when multiple
individuals are nearby.

SB [51]
Introduced an intuitive and simplified architecture that is

made up of few deconvolutional layers at the end of
ResNet to estimate the keypoint heatmap.

High computational cost, and vulnerable when multiple
individuals are nearby.

HRNet [8] Proposed an innovative and intuitive method to keep a
high-resolution representation throughout the process.

Fails to capture long-range interactions between joints, and
has high computational complexity.

CFA [52]
Provides a cascaded multiple hourglass, as well as

aggregating high, medium, and low-level features to better
capture global semantic and local detailed information.

If the detection of individuals fails, there is no possibility of
recovering, and it has a high computational cost.
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Table 1. Cont.

Models Remarks Limitations

occNet [53]
Revealed tow occlusion detection networks, namely Occlusion
Net (OccNet) and Occlusion Net Cross Branch (OccNetCB), to

perform pose estimation of all the detected persons.

Suffers from early commitment, hence, if the detection of an
individual person fails, recovery becomes very difficult.

Dark [42]
The researchers identified the design limitations on the existing

standard coordinate-decoding model, and introduced a
principled distribution-aware decoding model.

Encounters the problem of sub-pixel localization.

3. Model
3.1. Revisiting Conditional DETR

First, let us revisit conditional DETR architectures, as this will be beneficial for us
when establishing effective architectures for pose estimation. A typical conditional DETR
comprises of a number of encoder and decoder blocks, a CNN backbone, and object class
predictors as well as box position predictors. Self-attention and feed forward are the two
major components of the encoder, which is designed specifically to enhance the quality
of the content embeddings that are produced by the CNN backbone. The decoder layer
comprises three parts: (i) a self-attention layer for eliminating duplication prediction, which
interacts with the embeddings output from the last decoder layer, and is then used for class
and box prediction; (ii) to enhance class and box prediction, cross-attention layers are used
to aggregate the embedding output from the encoders and fine-tune the embedding output
from the decoders; and (iii) feed-forward layers.

Furthermore, a multi-head attention technique [12] has been proposed to describe
the difficult relationships between token entities from many perspectives. It uses multiple
heads in order to model attention from distinct representation sub-spaces and positions
simultaneously. Technically, a standard cross-attention has q: queries, k: keys, and v: values,
by notation:

MHAq,k,v = Concat(Hi . . . , Hm)WO (1)

where MHA represents the multi-headed attention.

Hi = So f t

 qWq
i

(
kWk

i

)T

√
dk

vWv
i

 (2)

where dk: dimension of the key, m: number of heads, (Wq
i , Wk

i , Wv
i ): linear projections, and

WO: projection matrix for combining the various features heads. Each key is constructed by
joining a content key Ck (the output encoder content embedding) with a spatial key Pk. (the
positional embedding of the matching 2D coordinate). The said value is generated from the
content embedding, the same as the content key and the encoder output. In the original
DETR, a query is generated by aggregating a content query Cq (for embedding the outcome
produced by the decoder’s self-attention) together with a spatial query Pq for object query
Oq. Here, N consists of 100 object queries, with N queries: each query produces a candidate
detected output in a single decoder layer. In contrast to existing DETR cross-attention
mechanisms, the conditional cross-attention technique partitions the roles of content as
well as spatial queries, such that spatial queries concentrate on the spatial while content
queries focus on content attention weights. Additionally, the computation of the spatial
query Pq from the embedding of the previous decoder layer is another important task.

3.2. Cofopose Architecture

Drawing inspiration from [11] and tapping into the power of multi-cross attention [12],
we propose Cofopose, a two-stage architecture for human pose estimation. In the initial
stage, the end-to-end detector predicts all the input images for the person detector; then,
the output of the person detection transformer is leveraged as an input for the keypoint
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detection transformer. Intuitively, the model comprises a backbone, a transformer encoder
and decoder, a classifier, and a regressor for boxes and coordinates, as shown in Figure 1.
The regression transformer’s task is to perform direct learning and inference, in this case by
obtaining complex keypoint correlations between input and output images, estimating queries
via conditional cross-attention, and modeling the conditional probability via self-attention.
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Figure 1. Detailed architectural pipeline of the proposed Cofopose. It starts by extracting and
detecting the keypoint positions using the backbone net. Afterwards, the feature map is fed forward.
Finally, the feature map is concatenated together with the keypoints so that the encoder can encode
their appearances with the 2D locations, and give them as inputs to the transformer decoder in order
to predict the human poses.

3.2.1. Transformer Encoder

The transformer encoder tries to enhance the output of the CNN backbone’s informa-
tion embeddings. It comprises a stack of numerous encoder layers, each of which consists
primarily of a self-attention layer and a feed-forward layer. The encoder phase flattens and
feeds the image features constructed by the network (CNN) into a transformer encoder, to
provide context-specific image features.
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3.2.2. Transformer Decoder

The transformer decoder comprises a series of decoder layers stacked on top of one
another. It comprises: a self-attention layer for deleting duplication prediction, which
interacts with the embeddings produced by the former decoder layer and is utilized
for class regression as well as box regression; a cross-attention layer that aggregates the
encoder’s embeddings in order to further enhance the decoder’s embeddings for improved
classification; and box and keypoint regression and multi-layer perceptrons (the feed-
forward layer) which transform the output of one attention layer in order to make it fit
better with the input of the subsequent attention layer as the main components. When given
a fixed set of learned query embeddings as input, the transformer decoder determines the
differences between objects using image features as context, and outputs all object queries
concurrently. For the box regression, similar to DETR [28], the decoder layer embedding
estimates the candidate bounding box (Cb), formulated as:

Cb = σ((De) +
[
uT 0 0

]T
) (3)

where Cb: four-dimensional vector for candidate bounding box
[
bcy bw bh

]T , σ: sigmoid
function for predicting Cb within the range of [0, 1],

∮
(): feed-forward network for estimat-

ing the unnormalized box, De: decoder embedding, uT : 2D unnormalized coordinate to
be used as a reference point in contrast to DETR, which is (0, 0). Two options are key here:
either to learn the reference point u as a parameter for estimating individual candidate
bounding boxes, or by corresponding query generation.

3.2.3. Conditional Cross-Attention

The suggested conditional cross-attention method constructs the query by joining the
content query Cq, which is output from the decoder’s self-attention, with the spatial query
Pq. Thus, the key is generated by concatenating the content key Ck with itscorresponding
spatial key Ck. In this way, cross-attention weights can be simulated as content attention
and spatial attention weights. The weights are calculated by taking the dot products of
content and spatial information, which are denoted as:

CT
q Ck + PT

q Pk (4)

In contrast to the traditional DETR cross-attention procedure, the system now seg-
regates the responsibilities of spatial and content queries, with spatial queries focusing
on the spatial as well as content attention weights, accordingly. Additionally, the spatial
query Pq is computed from the prior decoder embedding layer De, thus establishing that
the spatial information of separate regions is influenced by a combination of both decoder
embedding ((De) and a reference point (u). Finally, they are mapped to their corresponding
embedding space by constructing the query Pq, so that the spatial query is located in the
same space as the keys’ 2D coordinates. The conditional spatial query prediction tries to
estimate the resultant conditional spatial query produced by the decoder embedding ((De)
and the reference point u:

(De, u)⇒ Pq (5)

It does so by mapping the positional space to which the keys’ normalized 2D coordinates
are matched. This adjusts the reference point u before matching it to a 256-dimensional
sinusoidal positional (space) embedding, in the same manner as the keys represented:

Pu = ψ(σ(De)) (6)

ψ represents sinusoidal positional (space) embedding. Here, the displaced data
embedded in the decoder embedding De is mapped to a linear representation in the
same positional space via an FFN (

∮
), comprising learnable linear projection, ReLU, and

learnable linear projection concatenated together: T =
∮
(u).
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3.2.4. Keypoint Detection

An image I with a four-dimensional vector for candidate bounding box [bbx bcy bw bh]
T

output from the person-detection transformer is cropped and fed into the backbone convo-
lutional neural network, I ∈ RB ∗ 3 ∗ H ∗ W , where B: input batch size, 3: color channels, and
H, W: height and width of the image, as shown in Figure 1. In the initial stage, the keypoints
that are most likely to correlate to body joint locations are first identified and extracted.
A series of computation and downsampling steps are performed by the backbone net to
obtain lower-resolution feature maps, which are denoted by the letters F ∈ RB X CXH/SXW/S,
with S representing stride. Due to the fact that mapped queries are necessary for comput-
ing loss for transformer keypoint detection, the mismatched tokens are eliminated. It is
valuable to know that, in this phase, the earlier encoder-decoder transformer predicts in a
parallel manner with the former. In the final stages, a classifier tries to predict among N
categories of joints (N = 17, in MSCOCO) with a background and a two-channel regression
head to yield the coordinates of each individual joint. The proposed architecture produces
a predetermined number of more predictions than the ground truth N. It is necessary to
find a mapping between them so as to compute the loss. The training target and loss
function were established as a bipartite matching problem, a similar approach to that seen
in DETR [28]. We use the Hungarian algorithm to discover the best bipartite matching
between both the predicted and ground-truth entities and, as a result, defined the cost for
computing and back-propagating the gradients. We attempted to deduce a matching cost
(L) with the optimized loss as denoted below:

Lε = argmin
σ

= ΣN
i Lε

(
yi, ŷσ(i)

)
(7)

σ(i) denotes the regression to be mapped with the number of joints. Queries are correlated
by adopting a mixture of conditional probability classifications, as well as the joint deviation.
The joint loss function with its corresponding query σ(i) is formulated as:

Lεi = −P̂σ(i) (Lεi) + II b1 − b̂σ(i) II (8)

σ(i) shows the probability class of the corresponding query and Lεi represents the label class
for i-th joints or keypoints; as such, the final architectural loss function can be estimated
by changing the probability −P̂σ(i) (Lεi) to the negative log-likelihood −logP̂σ(i) (Lεi)
for the mapped queries. When a mismatch is detected, queries are backpropagated for
classification loss. This disparity with the class can be corrected by assigning weight 0.1 to
the log-probability. At this stage, the conditional spatial query is calculated by converting
the embedded space reference point: Pq = Tpu. An easy approach with lower computational
costs is adopted for better accuracy, with ϕq representing a 256-diagonal elements vector.
The conditional spatial query

(
Pq
)

is formulated by performing element-wise multiplication
of both sides, as denoted below:

Pq = Tpu = φq ⊗ Pu (9)

4. Experiments
4.1. Setup

Dataset: We analyze our proposed model with reference to the difficult MS COCO
object-detection benchmarks [54], utilizing the regular practice settings. The dataset con-
tains over 160 K photos that have been culled from the web and organized into 80 main
categories. In addition, the dataset is divided into three subgroups: train2017, val2017, and
test2017, which comprise 118 K images, 5 K images, and 41 K images, respectively. For pose
estimation, the COCO dataset has about 200,000 photos of over 150,000 people labeled with
up to 17 keypoints of annotation. The dataset is divided into three sets: the train set, the
validation set, and the test-dev set, which contain 57 k, 5 k, and 20 k images, respectively.
For easy comparison with the state-of-the-art designs, we conducted training using the
training images (including humans) and reported the findings for the validation set and
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also on the test set. The conventional mean average precision (mAP) was adopted to report
the accuracy of the Cofopose. Additionally, we deployed the COCO standardized Object
Keypoint Similarity (OKS), defined as:

OKS = ∑
i

exp
(
− d2

i
2s2k2

i

)
δ(vi > 0)

δ(vi > 0)
(10)

Thus, given the 17 annotated keypoints i ∈ {1, 2, 3, 4, . . . , 17}, the Euclidean distance
between the predicted keypoint and its related ground truth is denoted as di, vi: visibility
of the ground truth, s: the object scale, ki: the COCO constant, and α is 1 when the visibility
is positive and zero for negative visibility. Additionally, following the normal metrics
for the COCO dataset, we computed the mean average precision and recall. Average
precision: AP50, AP75, APS (Small), APM (Medium), and APL (Large). The recall score
was performed at AR50, AR75, ARS (Small), ARM (Medium), and ARL (Large). For the
purposes of comparison with other approaches, we primarily used the average precision
(AP) metric, which is the key challenge metric in COCO, as well as FLOPs, and evaluates the
computing overhead. Moreover, we also conducted an extensive experiment on MPII [55].
There are roughly 25 k photos and about 40 k people with 16 joint labels represented in
the MPII dataset. All input photos are cropped in accordance with conventional training
settings [8,51] in order to provide fair comparisons. For training, we randomly divided
the data into two portions for the backbone architecture search: 80% for operating weight
training and 20% for updating the model architectural parameters.

4.2. Model Settings

We utilized the AdamW optimizer [56] during model training. The baseline learning
rate for the ResNet backbone was set to 1 × 10−5 whereas both the remaining part and
the weight decay were set to 1 × 10−4. The dimensions of the input image snippet setting
were 384 × 288 or 512 × 384 for COCO, and 384 × 384 or 512 × 512 for MPII. We used
the default parameters for HRNet [8] and Simple Baseline [51]. For the person detection
transformer, we began by adapting the method [11] for tuning a person detector using
weights developed by DETR [28].

4.3. Implementation Details

We employed the top-down human pose estimation (HPE) methodology outlined
in [7,8,10] and a hybrid approach comparable to Li et al. [11]. Here, a person detector
initially detects the instance of a single person, and thereafter keypoints are estimated.
γ1 and γ2 are set to 0.9 and 0, respectively. The following techniques are used: data
augmentation, random rotation ([−40, 40]), random scaling ([0.7, 1.3]), and flipping, as
well as half-body data augmentation. The setting for the transformer section is as follows:
the number of encoder layers—6, the number of decoder layers—6, keypoint queries—100.
Transformers have the dropout rate reported by Li et al. [11]. Similarly to Smith et al. [21],
after 40 epochs for 50 training epochs, the learning rate is reduced by a factor of 10. The
training procedure stops after 50 epochs for both the COCO and MPII datasets. The primary
architectural novelty in this research is that we use conditional spatial embeddings, like
those of spatial queries, for conditional multi-head cross-attention; moreover, we integrate
the spatial and content queries (keys) via concatenation rather than addition. Since there
are no decoder content embeddings in the first cross-attention layer, we use the DETR-
version [28] modification: we merge the positional embedding estimated from the object
query into the original query (key).

4.4. Comparism with Existing State-of-the-Art Archectures

In this section, we evaluate Cofopose against existing state-of-the-art 2D pose estima-
tion algorithms using MPII, COCO validation split, and COCO test-dev split. We compare
these methods based on accuracy, convergence, and computational cost.
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Results from MPII: In Table 2, we show the performance comparisons of Cofopose
with state-of-the-art (SOTA) models, as well as the performance gain. We show the outcome
from simple baseline (SBL) [51], CPM [46], PETR [11], and our proposed architecture using
the MPII dataset. With 50 training epochs, PETR achieves low accuracy in comparison
with when the training setting is set to 200 epochs. With the Cofopose architecture, just
50 epochs of training using ResNet-101 and ResNet-152 as the model backbone achieves
slightly better or equivalent results compared with SBL, CPM, and PETR with 200 epochs
of training. In addition, we trained PRTR [11] and Cofopose for 50 epochs with the same
settings for easy comparison. The results that are in bold show our best model, and the one
that is underlined is the best SOTA model.

Table 2. Comparisons on the MPII validation set (PCKh @0.5). Results for lower and higher resolu-
tions with different backbones. We use * to denote Cofopose with lower resolution and ** for higher
resolution, with 256 × 256 and 512 × 512, respectively.

Method Backbone Epoc Head Shou Elbow Wrist Hip Knee Ankle Mean

CPM [46] CPM 200 96.2 95.0 87.2 82.2 87.6 82.7 78.4 87.7

SBL [51] Res-152 200 97.0 95.9 90.3 85.0 89.2 85.3 81.3 89.6

Integral [57] Res-101 200 - - - - - - - 87.3

PRTR [11]
HRNet-W32 200 97.3 96.0 90.6 84.5 89.7 85.5 79.0 89.5

HRNet-W32 50 93.3 91.4 73.5 60.0 81.0 58.1 41.7 73.2

Cofopose

Res-101 * 50 96.0 94.2 84.3 75.8 86.9 78.0 71.1 84.6

Res-101 ** 50 97.6 95.8 90.5 84.9 89.8 85.1 79.1 89.6

Res-101 ** 75 97.9 96.2 90.3 85.3 90.3 85.7 80.4 90.1

Res-152 * 50 96.8 94.5 85.2 77.3 88.8 78.8 73.4 85.6

Res-152 ** 50 97.1 95.5 88.6 82.3 88.6 82.5 75.5 87.9

HRNet-W32 ** 50 96.5 94.0 84.8 77.1 87.3 77.1 79.0 84.5

Performance
Gain +0.6 +0.2 +0.3 +0.6 +0.2 +0.5

Results for COCO: In Table 3, we compare our proposed Cofopose with other pose
estimation architectures using the COCO 2017 validation set. In Table 4, we look at how
our proposed Cofopose compares to other state-of-the-art pose estimation networks on the
COCOtest-dev set. H-B*** and R-B*** denote heatmap-based keypoint heatmap prediction
and post-processing to decode coordinates, and regression-based direct keypoint coordinate
prediction, respectively. #Params and FLOPs are computed for the pose estimation model,
but not for detection and tracking or grouping of keypoints. The results that are in bold
show our best model and the ones that are italicized and underlined represent the best
SOTA model for both heatmap-based and regression-based approaches.

On validation set, Cofopose outperforms various heatmap-based approaches with
the same backbone (Res-50, CPN [50]) (71.9 AP as compared to 68.6 AP). Cofopose with the
Res-101 backbone is analogous to PointSetNet [58] for the validation set, which has a more
sophisticated backbone (HRNet-W48). Even Cofopose with Res-101 shows an improvement
of 7% as compared to the heatmap-based Hourglass-8 stacked approach [47], and a largely
similar result with SB [51] using the same Res-101 as the backbone. Furthermore, Cofopose
outperforms a number of regression-based approaches, such as PointSetNet [58] (74.2 AP
as compared to 65.7 AP) and PRTR [11] (74.2 AP as compared to 73.3 AP). It is noteworthy
that, compared to CPN [50], Cofopose with a Res-50 backbone achieves low computational
costs (10.2 GFLOPs) relative to its heatmap-based counterparts on the validation set. Our
performance gain, as compared to the best regression-based and heatmap-based SOTA, is
+0.9 and +0.6 AP, respectively, which is significant.
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On test-dev, as demonstrated in Table 4, Cofopose achieves the greatest outcome
among the heatmap-based approaches. Cofopose using six encoder layers with Res-101
produces 71.5 AP, which is superior to its heatmap-based counterparts PifPaf [49] (65.5) and
PersonLab [59] (65.5 AP), and its regression-based counterparts DirectPose [60] (63.3 AP)
and Integral [11,57] (67.8) with the same backbone. Cofopose achieves the best mini-
mal computational costs (18.3 GFLOPs) as compared to the best heatmap-based models
(32.9 GFLOPs). Our best performance with the HRNet-32 backbone on dev-test is compa-
rable with both the best heatmap-based and regression-based methods. It is noteworthy
that there is a slight increase in AP over PRTR [11], demonstrating that Cofopose can iden-
tify more precise keypoint coordinates. In particular, Cofopose’s findings with 50 epochs
are comparable to the best-published pose estimation results, such as PRTR [11], SB [51],
HigherHRNet [51], Dark [42], and SPM [61] with 200 epochs. Our performance gain as
compared to the best regression-based SOTA is +2.0 AP, which is a significant improvement
and demonstrates that our network is comparable to its heatmap-based counterparts.

Table 3. Comparisons for the COCO val set. H-B** and R-B** represent the heatmap-based approach
and the regression-based approach, respectively.

Method Backbone Input #Params GFLOPs AP AP50 AP75 APM APL AR

H-B**

8-stage Hglass [47] Hglass-8
stacked 256 × 192 25.1 M 14.3 66.9 - - - - -

CPN [50] Res-50 256 × 192 27.0 M 6.20 68.6 - - - - -

SB [51] Res-50 384 × 288 34.0 M 18.6 72.2 89.3 78.9 68.1 79.7 77.6

SB [51] Res-101 384 × 288 53.0 M 26.7 73.6 69.9 80.3 79.1 81.1 79.1

R-B**

PointSetNet [58]
ResNeXt-101-

DCN - - - 65.7 85.4 71.8 - - -

HRNet-W48 - - - 69.8 88.8 76.3 - - -

PRTR [11] HRNet-W32 512 × 384 57.2 M 37.8 73.3 89.2 79.9 69.0 80.9 80.2

Cofopose

Res-50 384 × 288 39.2 M 10.2 69.3 89.4 76.3 64.0 77.1 76.9

Res-50 512 × 384 40.4 M 17.7 71.9 90.4 79.1 67.3 79.9 79.1

Res-101 512 × 3 84 59.3 M 32.3 73.1 90.4 80.3 68.4 80.8 80.1

HRNet-W32 384 × 288 56.0 M 20.7 74.1 90.3 80.8 69.9 81.3 80.9

HRNet-W32 512 × 384 56.0 M 36.9 74.2 90.2 81.0 70.1 81.8 81.3

Performance
Gain(R-B**) +0.9 +1.2 +1.1 +1.1 +0.9 +1.1

Performance
Gain(H-B**) +0.6 +1.1 +0.7 +0.7 +2.2

Table 4. Comparisons for the COCO test-dev set, with the exclusion of systems trained using external data.
H-B*** and R-B*** represent the heatmap-based approach and the regression-based approach, respectively.

Method Backbone Input #Params GFLOPs AP AP50 AP75 APM APL AR

H-B***

Mask-RCN [62] Res-50 - - - 63.1 87.3 68.7 57.8 71.4 -

G-RMI [10] Res-50 353 × 257 42.6 M 57.0 64.9 85.5 71.3 62.3 70.0 69.7
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Table 4. Cont.

Method Backbone Input #Params GFLOPs AP AP50 AP75 APM APL AR

H-B***

Assoc. Embe [63] Hglass-4 stack - - - 65.5 86.8 72.3 60.6 72.6 70.2

PifPaf [49] Res-101 - - - 65.5 - - 62.4 72.9 -

PersonLab [59] Res-101 - - - 65.5 87.1 71.4 61.3 71.5 70.1

HigherHRNet [7] HRNet-W48 - - - 70.5 89.3 77.2 66.6 75.8 74.9

CPN [50] ResNet-
Inception 384 × 288 - - 72.1 91.4 80.0 68.7 77.2 78.5

SB [51] Res-152 384 × 288 68.6 M 35.6 73.7 91.9 81.1 70.3 80.0 79.0

Dark [42] HRNet-W48 384 × 288 63.6 M 32.9 76.2 92.5 83.6 72.5 82.4 81.1

R-B***

CenterNet [64] Hglass-2 stack - - - 63.0 86.8 69.6 58.9 70.4 -

DirectPose [60] Res-101 - - - 63.3 86.7 69.4 57.8 71.2 -

SPM [61] Hglass-8 stack 384 × 384 - - 66.9 88.5 72.9 62.6 73.1 -

Integral [11,57] Res-101 256 ×256 45.0 M 11.0 67.8 88.2 74.8 63.9 74.0 -

PointSetNet [58] HRNet-W48 - - - 68.7 89.9 76.3 64.8 75.3 -

PRTR [11] HRNet-W32 512 × 384 57.2 M 37.8 72.1 90.4 79.6 68.1 79.0 79.4

Cofopose

Res-101 384 × 288 58.9 M 18.3 69.9 91.0 77.8 65.7 76.9 77.5

HRNet-W32 384 × 288 56.1 M 21.0 72.8 91.5 80.7 68.7 79.3 79.7

HRNet-W32 512 × 384 56.1 M 36.9 74.1 91.3 80.7 69.0 80.1 80.3

Performance
Gain(R-B***) +2.0 +1.1 +1.1 +0.9 +1.1 +0.9

4.5. Ablation Study

In our experimental settings, pose samples acquire prior knowledge and information
by learning the statistical significance of keypoints from the dataset. To represent the
embedded information, we compute and display the inner product matrix, as shown in
Figure 2. It can be observed from rows (a) and (b) that Cofopose is robust in both low
and high illumination. In addition, in Figure 2 row (b), in the picture with the red border,
we illustrate how Cofopose performs on occlusion with an image occluded by clothes.
The results show that Cofopose is also robust to occlusion. Row (c) shows Cofopose
used on blurred and low-illumination images. The first three images are blurred images
demonstrated on Cofopose and the last image shows Cofopose on low illumination images.
In summary, Cofopose is able to overcome some existing challenges, such occlusion, low
illumination, and blurry images, and achieves superior results. In Figure 3, we visualized
Cofopose’s process of decoding for the keypoint detection Transformer on MPII and COCO.
In the first row, the first column, the second column, the third column, and the fourth
column represent the right hip, left hip, left knee, and left ankle, respectively, on the MPII-
dataset. For COCO, the first column, second column, third column, and fourth column of the
second row denote the left eye, right shoulder, right wrist, and right knee, respectively. In
Figure 4, we present the graphical trade-off accuracy speed for each keypoint, with ResNet-101
as a backbone, on the MPII dataset, with the head and shoulder obtaining the highest accuracy.
Figure 5 depicts Cofopose’s process of decoding for the keypoint detection Transformer. Each
row shows an outline of heatmaps of 100 queries for all individual keypoints. In Table 5, we
compare the efficiency of Cofopose to other state-of-the-art variants, where we established that
Cofopose achieves a competitive speed/accuracy trade-off.
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the MS-COCO dataset. Rows (a,b) are results estimated from images with good illumination, with
the exception of the picture with the red border from row (b), which is occluded by clothes. Even
though the image with the red border looks more occluded, Cofopose was able to estimate the pose
accurately; (c) shows Cofopose results on blurred and low-illumination images.
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Figure 3. Visualization of Cofopose’s process of decoding for the keypoint detection transformer on
MPII and COCO is denoted by the first and second rows, respectively. For MPII, the first, second,
third, and fourth columns represent the right hip, left hip, left knee, and left ankle, respectively. For
COCO, the first, second, third, and fourth columns represent right eye, right shoulder, right wrist,
and right knee, respectively.
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Table 5. AP and inference speed results on COCO val. HRNet and Transpose are trained with 210
and 240 epochs, respectively, whereas Cofopose is trained with 50 epochs. Our network achieves a
competitive speed/accuracy trade-off.

Method AP Inference Speed (FPS)

HRNet-W48 73.3 27

HRNet-W32 72.5 28

TransPose-H 74.2 38

Cofopose 74.2 36

5. Conclusions

In this paper, we introduced a two-stage 2D human pose estimation method that uses
person- and keypoint-detection transformers; it is named Cofopose. Cofopose consists of
conditional cross-attention, conditional DETR, and encoder-decoders in the transformer
architecture to achieve person and keypoint detection. Specifically, we use conditional cross-
attention and conditional DETR for person detection, and encoder-decoder transformers
for regressing their keypoints. Furthermore, we demonstrate the dissemination of keypoint
queries in a variety of ways in order to reveal the transformer′s internal mechanism for
gradual detection refinement. Ablation experiments also show the effectiveness of our
proposed model during inference. Cofopose was extensively evaluated on two benchmark
datasets, MS COCO and MPII; with less training, it achieved an improved performance
(with significant margins of +2.0 for the COCO dev set, +0.9 for the val set, and +0.6 for
MPII) over the top regression-based state-of-the-art methods.

We believe that our study will serve as a foundation for future research in this crucial
area. Future work will focus on enhancing the human pose estimation architecture and
developing a new architecture for multi-person pose estimation. The datasets utilized in
this work emphasize frame-by-frame inference; thus, there is an opportunity to develop
video estimate techniques that give more temporally consistent [41,65] results.
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