Loosening Identification of Multi-Bolt Connections Based on Wavelet Transform and ResNet-50 Convolutional Neural Network
Abstract
:1. Introduction
2. Loosening Identification Method for High-Strength Multi-Bolt Connections
2.1. VAM
2.2. Wavelet Transform
2.3. ResNet-50 CNN Model
2.4. Multi-Bolt Loosening Identification Based on Wavelet Transform and the ResNet-50 CNN
3. Experimental Verification
3.1. VAM Test
3.2. Dataset Construction
4. Results and Discussion
4.1. Comparison of Different CNN Models
4.2. Comparison of the Dataset Size on Identification Performance
4.3. Comparison of VAM Excitations on Identification Performance
4.4. Verification of the Proposed CNN Model and VAM Excitation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nikravesh, S.M.Y.; Goudarzi, M. A review paper on looseness detection methods in bolted structures. Lat. Am. J. Solids Struct. 2017, 14, 2153–2176. [Google Scholar] [CrossRef]
- Xiang, Z.H.; Huang, J.T. A controlled tap dectection method for bolt tightness. J. Exp. Mech. 2012, 27, 545–551. [Google Scholar]
- Johnson, D.R.; Wang, K.W.; Kim, J.S. Investigation of the threshold behavior of subharmonics for damage detection of a structure with a breathing crack. In Proceedings of the Conference on Health Monitoring of Structural and Biological Systems 2010, San Diego, CA, USA, 8–11 March 2010; SPIE: Bellingham, WA, USA, 2010; p. 7650. [Google Scholar] [CrossRef]
- Fierro, G.P.M.; Meo, M. Iwshm 2017: Structural health monitoring of the loosening in a multi-bolt structure using linear and modulated nonlinear ultrasound acoustic moments approach. Struct. Health Monit. Int. J. 2018, 17, 1349–1364. [Google Scholar] [CrossRef]
- Meyer, J.J.; Adams, D.E. Theoretical and experimental evidence for using impact modulation to assess bolted joints. Nonlinear Dyn. 2015, 81, 103–117. [Google Scholar] [CrossRef]
- Wang, F.R.; Song, G.B. Bolt early looseness monitoring using modified vibro-acoustic modulation by time-reversal. Mech. Syst. Signal Processing 2019, 130, 349–360. [Google Scholar] [CrossRef]
- Amerini, F.; Meo, M. Structural health monitoring of bolted joints using linear and nonlinear acoustic/ultrasound methods. Struct. Health Monit. Int. J. 2011, 10, 659–672. [Google Scholar] [CrossRef]
- Jaques, J.L.; Adams, D.E.; Doyle, D.; Reynolds, W. Experimental study of impact modulation for quantifying loose bolt torque in on-demand satellites. In Proceedings of the 3rd Annual Meeting of the ASME/AIAA Smart Materials, Adaptive Structures, and Intelligent Systems (SMASIS)/Symposium on Modeling, Simulation and Control, Philadelphia, PA, USA, 10–12 September 2010; ASME: New York, NY, USA, 2010; pp. 727–734. [Google Scholar]
- Jaques, J.; Adams, D.E.; Doyle, D.; Reynolds, W. Using impact modulation to identify loose bolts in a satellite structure. In Proceedings of the 5th European Workshop on Structural Health Monitoring, Naples, Italy, 28 June–4 July 2010; Destech Publications, Inc.: Lancaster, PA, USA, 2010; pp. 432–437. [Google Scholar]
- Wang, F.R.; Song, G.B. Monitoring of multi-bolt connection looseness using a novel vibro-acoustic method. Nonlinear Dyn. 2020, 100, 243–254. [Google Scholar] [CrossRef]
- Sankarasrinivasan, S.; Balasubramanian, E.; Karthik, K.; Chandrasekar, U.; Gupta, R. Health monitoring of civil structures with integrated uav and image processing system. In Proceedings of the 11th International Conference on Image and Signal Processing (ICISP), Bangalore, India, 21–23 August 2015; Elsevier Science Bv: Amsterdam, The Netherlands, 2015; Volume 54, pp. 508–515. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Choi, J.H. Convolutional neural network for gear fault diagnosis based on signal segmentation approach. Struct. Health Monit. Int. J. 2019, 18, 1401–1415. [Google Scholar] [CrossRef]
- Huang, N.; Chen, H.; Zhang, S.; Cai, G.; Li, W.; Xu, D.; Fang, L. Mechanical fault diagnosis of high voltage circuit breakers based on wavelet time-frequency entropy and one-class support vector machine. Entropy 2016, 18, 7. [Google Scholar] [CrossRef]
- Ballal, T.M.A.; Sher, W.D. Artificial neural network for the selection of buildable structural systems. Eng. Constr. Archit. Manag. 2003, 10, 263–271. [Google Scholar] [CrossRef]
- Abdel-Hamid, O.; Mohamed, A.-R.; Jiang, H.; Deng, L.; Penn, G.; Yu, D. Convolutional neural networks for speech recognition. IEEE/ACM Trans. Audio Speech Lang. Processing 2014, 22, 1533–1545. [Google Scholar] [CrossRef]
- Wang, F.R. A novel autonomous strategy for multi-bolt looseness detection using smart glove and siamese double-path capsnet. Struct. Health Monit. Int. J. 2021, 21, 2329–2339. [Google Scholar] [CrossRef]
- Tan, J.L.; Fang, S.E. Safety evaluation of truss bridges using continuous bayesian networks. Struct. Control. Health Monit. 2022, 29, 16. [Google Scholar] [CrossRef]
- Zhuo, D.B.; Cao, H. Damage identification of bolt connection in steel truss structures by using sound signals. Struct. Health Monit. Int. J. 2022, 21, 501–517. [Google Scholar] [CrossRef]
- Zhao, X.F.; Zhang, Y.; Wang, N.N. Bolt loosening angle detection technology using deep learning. Struct. Control. Health Monit. 2019, 26, 14. [Google Scholar] [CrossRef]
- Wang, T.; Song, G.B.; Liu, S.P.; Li, Y.R.; Xiao, H. Review of bolted connection monitoring. Int. J. Distrib. Sens. Netw. 2013, 8, 871213. [Google Scholar] [CrossRef]
- Wang, B.; Huo, L.S.; Chen, D.D.; Li, W.J.; Song, G.B. Impedance-based pre-stress monitoring of rock bolts using a piezoceramic-based smart washer-a feasibility study. Sensors 2017, 17, 250. [Google Scholar] [CrossRef]
- Ren, L.; Feng, T.Z.; Ho, M.; Jiang, T.; Song, G.B. A smart “shear sensing” bolt based on fbg sensors. Measurement 2018, 122, 240–246. [Google Scholar] [CrossRef]
- Luo, M.Z.; Li, W.J.; Wang, B.; Fu, Q.Q.; Song, G.B. Measurement of the length of installed rock bolt based on stress wave reflection by using a giant magnetostrictive (gms) actuator and a pzt sensor. Sensors 2017, 17, 444. [Google Scholar] [CrossRef]
- Tran, D.Q.; Kim, J.W.; Tola, K.D.; Kim, W.; Park, S. Artificial intelligence-based bolt loosening diagnosis using deep learning algorithms for laser ultrasonic wave propagation data. Sensors 2020, 20, 5329. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.X.; Li, J. Image registration-based bolt loosening detection of steel joints. Sensors 2018, 18, 1000. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Liang, Z.L.; Ren, W.X.; Yang, D.; Wang, S.D.; Xiang, S.L. Structural damage identification under nonstationary excitations through recurrence plot and multi-label convolutional neural network. Measurement 2021, 186, 21. [Google Scholar] [CrossRef]
- Li, D.; Wang, Y.; Yan, W.J.; Ren, W.X. Acoustic emission wave classification for rail crack monitoring based on synchrosqueezed wavelet transform and multi-branch convolutional neural network. Struct. Health Monit. Int. J. 2021, 20, 1563–1582. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, C.Y.; Gu, X.Y.; Li, J.C. A novel deep learning-based method for damage identification of smart building structures. Struct. Health Monit. Int. J. 2019, 18, 143–163. [Google Scholar] [CrossRef]
- Yu, Y.; Rashidi, M.; Samali, B.; Mohammadi, M.; Nguyen, T.N.; Zhou, X.X. Crack detection of concrete structures using deep convolutional neural networks optimized by enhanced chicken swarm algorithm. Struct. Health Monit. Int. J. 2022, 20. [Google Scholar] [CrossRef]
- Looney, D.; Hemakom, A.; Mandic, D.P. Intrinsic multi-scale analysis: A multi-variate empirical mode decomposition framework. Proc. R. Soc. A Math. Phys. Eng. Sci. 2015, 471, 20140709. [Google Scholar] [CrossRef]
- Rehman, N.U.; Mandic, D.P. Filter bank property of multivariate empirical mode decomposition. IEEE Trans. Signal Processing 2011, 59, 2421–2426. [Google Scholar] [CrossRef]
- Van Den Abeele, K.E.A.; Johnson, P.A.; Sutin, A. Nonlinear elastic wave spectroscopy (news) techniques to discern material damage, part i: Nonlinear wave modulation spectroscopy (nwms). Res. Nondestruct. Eval. 2000, 12, 17–30. [Google Scholar] [CrossRef]
- Sutin, A.M.; Donskoy, D.M. Nonlinear vibro-acoustic nondestructive testing technique. In Nondestructive Characterization of Materials viii; Springer: Berlin/Heidelberg, Germany, 1998; pp. 133–138. [Google Scholar]
- Van Den Abeele, K.E.; Sutin, A.; Carmeliet, J.; Johnson, P.A. Micro-damage diagnostics using nonlinear elastic wave spectroscopy(news). Ndt E Int. 2001, 34, 239–248. [Google Scholar] [CrossRef]
- Chen, B.Y.; Soh, S.K.; Lee, H.P.; Tay, T.E.; Tan, V.B.C. A vibro-acoustic modulation method for the detection of delamination and kissing bond in composites. J. Compos. Mater. 2016, 50, 3089–3104. [Google Scholar] [CrossRef]
- Donskoy, D.M.; Ramezani, M. Separation of amplitude and frequency modulations in vibro-acoustic modulation nondestructive testing method. Proc. Meet. Acoust. 2018, 34, 045002. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar] [CrossRef]
- Wang, R.; Chencho; An, S.; Li, J.; Li, L.; Hao, H.; Liu, W. Deep residual network framework for structural health monitoring. Struct. Health Monit. Int. J. 2021, 20, 1443–1461. [Google Scholar] [CrossRef]
- Liang, X. Image-based post-disaster inspection of reinforced concrete bridge systems using deep learning with bayesian optimization. Comput. Aided Civ. Infrastruct. Eng. 2019, 34, 415–430. [Google Scholar] [CrossRef]
- Ariafar, S.; Mariet, Z.; Brooks, D.; Dy, J.; Snoek, J. Faster & more reliable tuning of neural networks: Bayesian optimization with importance sampling. In Proceedings of the 24th International Conference on Artificial Intelligence and Statistics (AISTATS), Electr Network, San Diego, CA, USA, 13–15 April 2021; Microtome Publishing: Brookline, MA, USA, 2021; p. 130. [Google Scholar]
Case | Bolt Number and State | |||
---|---|---|---|---|
Bolt I | Bolt II | Bolt III | Bolt IV | |
A | Loosening | Loosening | Loosening | Loosening |
B | Loosening | Loosening | Loosening | Tightness |
C | Loosening | Loosening | Tightness | Tightness |
D | Loosening | Loosening | Tightness | Loosening |
E | Loosening | Tightness | Tightness | Tightness |
F | Loosening | Tightness | Tightness | Loosening |
G | Loosening | Tightness | Loosening | Loosening |
H | Loosening | Tightness | Loosening | Tightness |
I | Tightness | Loosening | Tightness | Tightness |
J | Tightness | Tightness | Tightness | Tightness |
K | Tightness | Tightness | Tightness | Loosening |
L | Tightness | Tightness | Loosening | Loosening |
M | Tightness | Loosening | Loosening | Loosening |
N | Tightness | Tightness | Loosening | Tightness |
O | Tightness | Loosening | Tightness | Loosening |
P | Tightness | Loosening | Loosening | Tightness |
Software and Hardware Platform | Model Parameters |
---|---|
Operating system | Windows 10 a 64-bit system |
CPU | AMD Ryzen Threadripper 2990WX 32-Core Processor |
GPU | NVIDA Geforce RTX 2080 Ti |
Memory | 128G |
Programmed environment | Matlab 2021a 64-bit |
Category | Accuracy Rate | Loss Rate | ||
---|---|---|---|---|
Training Dataset (%) | Validation Dataset (%) | Training Dataset | Validation Dataset | |
AlexNet | 91.97 | 90.82 | 0.0267 | 0.1794 |
GoogLeNet | 97.02 | 96.15 | 0.0038 | 0.0687 |
MobileNet-v2 | 99.35 | 95.07 | 0.0063 | 0.0271 |
ResNet-50 | 99.61 | 98.86 | 0.0033 | 0.0123 |
VGG-19 | 99.48 | 96.48 | 0.0042 | 0.0283 |
Dataset Size | Validation Accuracy (%) | Testing Accuracy (%) |
---|---|---|
100 | 95.00 | 90.31 |
500 | 98.02 | 98.04 |
1000 | 99.76 | 99.84 |
1500 | 99.81 | 99.79 |
2500 | 99.82 | 99.90 |
4000 | 99.95 | 99.94 |
Label | Precision | Recall | Specificity |
---|---|---|---|
A | 1.000 | 0.984 | 0.999 |
B | 1.000 | 0.977 | 0.998 |
C | 1.000 | 0.992 | 0.999 |
D | 1.000 | 1.000 | 1.000 |
E | 0.992 | 1.000 | 1.000 |
F | 1.000 | 1.000 | 1.000 |
G | 1.000 | 0.992 | 0.999 |
H | 1.000 | 1.000 | 1.000 |
I | 1.000 | 0.992 | 0.999 |
J | 1.000 | 0.992 | 0.999 |
K | 0.974 | 1.000 | 1.000 |
L | 1.000 | 1.000 | 1.000 |
M | 0.991 | 1.000 | 1.000 |
N | 0.983 | 1.000 | 1.000 |
O | 0.984 | 1.000 | 1.000 |
P | 1.000 | 1.000 | 1.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.-X.; Li, D.; Ren, W.-X.; Zhang, J.-S. Loosening Identification of Multi-Bolt Connections Based on Wavelet Transform and ResNet-50 Convolutional Neural Network. Sensors 2022, 22, 6825. https://doi.org/10.3390/s22186825
Li X-X, Li D, Ren W-X, Zhang J-S. Loosening Identification of Multi-Bolt Connections Based on Wavelet Transform and ResNet-50 Convolutional Neural Network. Sensors. 2022; 22(18):6825. https://doi.org/10.3390/s22186825
Chicago/Turabian StyleLi, Xiao-Xue, Dan Li, Wei-Xin Ren, and Jun-Shu Zhang. 2022. "Loosening Identification of Multi-Bolt Connections Based on Wavelet Transform and ResNet-50 Convolutional Neural Network" Sensors 22, no. 18: 6825. https://doi.org/10.3390/s22186825
APA StyleLi, X. -X., Li, D., Ren, W. -X., & Zhang, J. -S. (2022). Loosening Identification of Multi-Bolt Connections Based on Wavelet Transform and ResNet-50 Convolutional Neural Network. Sensors, 22(18), 6825. https://doi.org/10.3390/s22186825