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Abstract: Features play a critical role in computer vision tasks. Deep learning methods have resulted
in significant breakthroughs in the field of object detection, but it is still an extremely challenging
obstacle when an object is very small. In this work, we propose a feature-enhancement- and channel-
attention-guided single-shot detector called the FCSSD with four modules to improve object detection
performance. Specifically, inspired by the structure of atrous convolution, we built an efficient feature-
extraction module (EFM) in order to explore contextual information along the spatial dimension, and
then pyramidal aggregation module (PAM) is presented to explore the semantic features of deep
layers, thus reducing the semantic gap between multi-scale features. Furthermore, we construct
an effective feature pyramid refinement fusion (FPRF) to refine the multi-scale features and create
benefits for richer object knowledge. Finally, an attention-guided module (AGM) is developed to
balance the channel weights and optimize the final integrated features on each level; this alleviates
the aliasing effects of the FPN with negligible computational costs. The FCSSD exploits richer
information of shallow layers and higher layers by using our designed modules, thus accomplishing
excellent detection performance for multi-scale object detection and reaching a better tradeoff between
accuracy and inference time. Experiments on PASCAL VOC and MS COCO datasets were conducted
to evaluate the performance, showing that our FCSSD achieves competitive detection performance
compared with existing mainstream object detection methods.

Keywords: deep learning; object detection; feature fusion; attention

1. Introduction

Object detection, as a basic, fundamental, and challenging task in computer vision,
aims at the detection various visual instances in the real world. With the rapid development
of deep neural networks, object detection has been significantly improved in comparison
with traditional methods. As the cornerstone of scene understanding and image learning,
object detection builds a solid foundation for dealing with other vision tasks, including
object tracking [1], image captions [2], segmentation [3], and so on. The emergence of
deep learning [4] has provided models with a strong ability to learn sophisticated and
complicated representations, leading to remarkable progress in object detection. Generally
speaking, there are two main categories of object detectors with deep learning; the first
is that of two-stage detectors, which have a higher accuracy but slower inference speed,
such as R-CNN [5], SPPNet [6], Fast R-CNN [7], Faster R-CNN [8], Mask R-CNN [9], and
R-FCN [10]. The other category is that of one-stage detectors, such as YOLO v1 [11], v2 [12],
and its improved versions [13,14], SSD [15], FSSD [16], DSSD [17], and RetinaNet [18],
which run faster but with lower accuracy.

It is notable that the quality of features defines the upper limits of a model’s per-
formance, which has been studied by researchers in recent years. The method of using
low-level features combined with high-level features is effective for collecting rich informa-
tion in order to get better detection performance. The feature pyramid network (FPN) [19]
was the initial work of enhancing the feature representation by combining multi-level
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features by building pyramids of different scales. Specifically, shallow feature maps focus
on the detection of larger instances, while deeper feature layers are used for smaller ones.
Moreover, the design of lateral connections between the bottom-up and top-down layers
was introduced in order to deliver the multi-scale details of various objects. Nevertheless,
there remain some serious problems in FPNs: The first is information decay [20] during
fusion; FPN-based methods adopt 1x1 convolution layers to cause the channel to have the
same numbers between the input and the output, but they lose channel information within
these operations. For the purpose of a lower computational cost and memory burden, a
common practice is the reduction of the number of channels of the feature map, resulting
in serious information loss.The second problem is that of aliasing effects [19] during cross-
scale fusion. However, there are semantic and contextual differences among feature maps
that are to be integrated together. Therefore, simply using element-add or concat fusion will
lead to serious aliasing effects. Although some previous works [20,21] have ameliorated
these issues to a certain degree, there is still much room for further improvement.

In this work, we propose FCSSD in order to enhance the feature representation and al-
leviate the aliasing affects that originate from FPN feature fusion in object detection. Firstly,
inspired by atrous convolution [22], which is expected to capture a larger convolutional
receptive size for more information in image segmentation tasks, we present an efficient
feature-extraction module (EFM) for exploring the contextual information of a target in
the process of a forward pass. The EFM has negligible parameters, has been proven to be
effective in strengthening the representation ability of deep features, and contributes to
fast and accurate detectors. As we all know, semantic information is vital for the detection
of small objects, so a series of downsampling will cause useful details of instances to be
lost, as the receptive field is not able to catch different dependencies in the scene. We
provide a pyramidal aggregation module (PAM), which includes four levels of kernels
with mixed sizes. The PAM improves the ability to process the input features of multi-scale
feature maps for capturing rich semantic knowledge about smaller objects. Traditional FPN
design has intrinsically restricted the model performance by using a single information flow
because of the single lateral connection. In addition, the utilization of element summation
is not an effective way to combine features, as it leads to a lack of refinement of the fused
features. It is known that low-level features are beneficial for small object identification
and detection; however, there is a long pathway for low-level features to reach deeper
ones in order to get enough semantic information, thereby increasing the difficulty of
accessing accurate localization details. We designed a feature pyramid refinement fusion
(FPRF) for generating the refined features for a multi-scale feature map in order to make
the most of the shallower and deeper features. Fusing multi-scale feature maps would
degrade the power of the model’s representation due to the inconsistent information flow.
Furthermore, it would also bring in loss of detail in the information in the highest pyramid
due to its the limited channel numbers. Motivated by these innovations, we designed an
attention-guided module (AGM), which is a channel attention aggregation module. The
AGM aims to optimize the final integrated layers on each level and alleviates the aliasing
effects. To validate the performance of our proposed model, we tested our FCSSD on public
datasets—PASCAL VOC 2007 and MS COCO 2017. The main contributions of this work
can be summarized as follows:

• For feature enhancement, we propose a lightweight efficient feature-extraction module
(EFM) and pyramidal aggregation module (PAM). The EFM applies various dilation
rates, batch normalization (BN), and ReLU to more richly explore the contextual
information of the CNN. The PAM uses different adaptive average pooling sizes to
exploit richer semantic information from the deep layers, and upsampling is embraced
to keep the same feature size as that of the original input feature map.

• Aiming to make full multi-scale features, we built an effective feature pyramid re-
finement fusion (FPRF) to calibrate the multi-scale features during the fusion process.
The FPRF broadens the ways of the single lateral connections of the traditional FPN
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and enriches the approaches of multi-scale feature fusion, thus greatly improving the
detection performance.

• To alleviate the aliasing effects of the FPN, we introduce an attention-guided module
(AGM); an improved channel attention mechanism was developed to ameliorate the
problem of fused features, and it is efficient and speeds up the training process.

• By applying the above four improvements, we designed a feature-enhancement and
channel-attention-guided single-shot detector (FCSSD). Experiments on the PASCAL
VOC2007 and MS COCO2017 datasets showed the effectiveness of our proposed
FCSSD and that it can outperform mainstream object detectors.

2. Related Work
2.1. Deep-Learning-Based Object Detectors

Deep-learning-based object detection can be divided into the categories two-stage
detectors and one-stage detectors. R-CNN [5] was first to show that the use of a convolu-
tional neural network (CNN) could enable one to reach unprecedented object detection
performance on the PASCAL VOC [23] dataset. R-CNN firstly produces fixe-length fea-
tures from generated proposals and then uses linear SVMs and a bounding box regressor
to classify objects for a precise bounding-box prediction. Although R-CNN represents a
breakthrough in object detection, it is a multi-stage pipeline and has a higher computational
cost, and it is slow in its running time because each part of the whole network must be
trained separately. SPPNet [6] introduced a spatial pyramid pool (SPP) module with the
aim of obtaining a fixed length for fully connected layers. In an evaluation, the SPP was
shown to be faster than the R-CNN to some extent, but still could not achieve real-time
object detection. Fast R-CNN [7] makes the combination of classification and regression,
achieving a fast end-to-end training paradigm. Faster R-CNN [8] involved the development
of a region proposal network, requiring nearly cost-free region proposals and boosting the
performance significantly. Cascade R-CNN [24] was used to study the effect of regression
proposals for under different IoU thresholds based on faster R-CNN and achieved better
performance in object detection. In addition to these, there are still many other excellent
two-stage detectors, such as Mask R-CNN [9], R-FCN [10], and CBNet [25].

One-stage detectors usually apply a unified network to directly accomplish localization
and classification with more efficiency but lower accuracy. YOLO [11] frames the detection
task as a regression problem and divides the input image into some grids; thus, extracting
features from the input image results in the direct prediction of the bounding box and
classification from each unit of the grid within a united architecture. For the sake of
achieving real-time detection without giving away much accuracy, SSD [15] combines the
idea of the RPN in Faster R-CNN, YOLO, and multi-scale convolutional features to achieve
fast detection. RetinaNet [18] introduces a new balanced loss function called focal loss
to downweight the contributions of an easy sample v.s. a hard example, thus improving
the detection performance of one-stage detectors. There are also other one-stage detectors,
including the YOLO series [12–14], FSSD [16], and DSSD [17].

2.2. Enhancement of Feature Representation

Deep learning techniques have a powerful ability to learn rich feature representations
with multi-level features directly from raw images. The extraction of effective features is
a critical issue for more accurate classification and localization. Earlier object detectors
usually directly performed predictions based on the pyramid feature hierarchy extracted
from a backbone network [15]. In a pioneering work, the effective extraction of the low-
level features of a network was determined to be a key problem in object detection. The
feature pyramid network (FPN) [19] was the first to enhance a CNN’s representation
by fusing features from different levels and constructing feature pyramids. The FPN
proposes a top-down pathway and uses lateral connections to combine multi-level features.
The design of the FPN shows that fully utilizing the multi-scale features can promote
accuracy in object detection. PFPNet [26] was used to investigate the width of the FPN by
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means of building feature pyramid blocks to widen the network and further improve the
performance. PANet [27] was used to explore an extra bottom-up pathway to improve the
low-level information in deep layers. The proposal of TridentNet [28] was the first to use
the effects of the receptive field in object detection with different scale sizes, and it was
constructed with a parallel multi-branch architecture in which there were three branches
for training, but only one of them was used for testing, which ensured that no additional
parameters or computations were added during forward inference. EfficientDet [21] used a
weighted bi-directional FPN to perform easy and fast feature fusion. RefineDet [29] used an
anchor-refined module and object detection module to get better features after refinement
and fusion, achieving excellent accuracy and high efficiency.

2.3. Attention Mechanisms

Attention mechanisms imitate human cognitive awareness about specific information,
amplifying critical details to focus more on the essential aspects of data. In addition, attention
mechanisms are able to build long-range dependencies within a model and become the
workhorse of many challenging tasks, including image classification [30], semantic and
instance segmentation [31], and natural language processing [32]. Attention mechanisms
have a wide range of applications in object detection because they help the model to better
locate and recognize objects in images, thus further improving detection performance [33,34].
SENet [35] involved a squeeze-and-excitation (SE) block with the aim of collecting global
information along with channel-wise relationships and strengthening the representation ability
of a CNN with efficient operations. ECANet [36] involved an e f f icient-channel-attention
(ECA) block, a local cross-channel interaction strategy without dimensionality reduction
implemented through one-dimensional convolution, which improved the training speed with
a lower model complexity. GENet [37] mainly included two operations, Gather and Excite.
The former efficiently aggregated feature responses over a large spatial area, and the latter
redistributed the combined information to local features in a spatial domain. SKNet [38]
involved selective kernel (SK) convolution, which enabled the network to adjust the kernel
size of the convolution operation according to the input, achieving significant performance
gains at a small computational cost. CBAM [39] was used to study the effects of model
performance in the spatial dimension and channel dimension. For CBAM, two parallel
branches with max pooling and average pooling were designed to explore the interrelations
of features between channels, and a concatenation operation was employed to gather the final
outputs. CABM told the network where to focus and where to pay attention by modeling the
spatial and channel dimensions of the features.

Based on the methods listed above, we focused on building an effective method for
exploring multi-level feature fusion in the FPN; thus, we propose the FCSSD. The FCSSD
consists of four modules—the EFM, PAM, FPRF, and AGM—based on SSD. The details of
FCSSD are introduced in the following sections.

3. Methodology

In this section, each part of the proposed FCSSD, which is shown in Figure 1, is
demonstrated in detail. First, we introduce the specific design of our network in Section 3.1.
Then, the efficient feature-extraction module (EFM) is presented in Section 3.2. Next, the
pyramidal aggregation module (PAM) is shown in Section 3.3. Section 3.4 describes the
feature pyramid refinement fusion (FPRF). Finally, in Section 3.5, the attention-guided
module (AGM) is explained.
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Figure 1. Overall architecture of the proposed FCSSD. Our approach consists of four components: a
standard SSD network; feature-enhancement components: the efficient feature-extraction module
(EFM) and pyramidal aggregation module (PAM); the feature pyramid refinement fusion (FPRF)
process X; the attention-guided module (AGM). Here, Ci denotes the feature map extracted from
the CNN backbone, Pi denotes the corresponding pyramid levels in the FCSSD, and Mi is the final
output of every level. An input image is first downsampled and passed through the EFM and PAM
to produce features with more semantic and rich global contextual information. The FPRF uses an
FPN-style design to refine the previous features for fusion. The AGM adopts a channel attention
scheme to extract channel-balanced weights, and it reduces the aliasing effects of the fused features.

3.1. FCSSD Architecture

In this work, we adopt a one-stage SSD for object detection as our baseline due to
its good tradeoff between high speed and detection accuracy. The SSD predicts layers
to match the output, including both the bounding box regression and classification. Its
object detection results are from six final feature maps; the adjusted VGG-16 is used as the
backbone, and each feature map predicts different scales of an individual object. NMS (non-
maximum suppression) is usually adopted to filter redundant and overlapping predictions
to generate the final detection result.

Figure 1 shows the overall architecture of our proposed method, consisting of four
parts: the standard SSD network; feature enhancement fusion component: the efficient
feature-extraction module (EFM), pyramidal aggregation module (PAM), feature pyra-
mid refinement fusion (FPRF) process X, and attention-guided module (AGM). As we
mentioned before, the standard SSD employs VGG-16 as the network backbone. We
then regard the six layers of the SSD as the prediction feature maps. The strides are
{8, 16, 32, 64, 100, 300} pixels of multiple feature maps with respect to the input image
size of 300× 300. For brevity, we refer to these as C1, C2, C3, C4, C5, and C6. The EFM
exploits rich contextual information from receptive fields with different sizes, and the
PAM collects prior global-scene-level semantic knowledge from the CNN. An effective
FPRF is applied to the multi-scale features to generate a refined map X. The AGM is a
channel-attention-guided module that reduces the aliasing effects for fused feature maps
and accelerates the training speed. We will discuss the above modules and fusion process
in the following subsections.

3.2. Efficient Feature-Extraction Module

As we know, object detection requires contextual information, especially for small
objects [40]. The efficient feature-extraction module (EFM) was inspired by the mode in
which humans distinguish objects by relying on different sizes, colors, backgrounds, and
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shapes. For example, it is difficult for a human to distinguish a bird very high in the sky, but
it is easy to recognize when the sky is taken into consideration as the contextual information.
Therefore, we believe that contextual knowledge is helpful for object detection. The EFM
takes advantage of dilated convolution [22] to exploit larger receptive fields on the feature
map, thus acquiring a considerable contextual information about the detected objects. To
improve the accuracy of the multi-scale object detection, we apply dilated convolution with
three kinds of dilation rates to obtain the contextual information from the receptive fields.
As Figure 2 shows, the EFM has a multi-branch convolutional design, and it has two main
components: a multi-dilated convolution layer and a feature aggregation layer.

BN+ReLUDilated Convolution 

dilation rate=1

dilation rate=3

dilation rate=5

Multi-Dilated Convolution Layer Feature Aggregation  Layer Element-wise Concatenation

Element-wise Summation

Figure 2. The architecture of the efficient feature-extraction module (EFM). The multi-dilated convo-
lution layer has three different dilation rates: 1, 3, and 5. The feature aggregation layer contains two
operations: element-wise concatenation and element-wise summation.

For the input features RC×H×W , the multi-dilated convolution layer has parallel
branches consisting of dilated convolution, a BN layer, and the ReLU activation function.
Three different dilation rates are used, but with the same kernel size. Specifically, the kernel
of the dilated convolution is conv3× 3, and the dilation rates are 1, 3, and 5 for the different
branches. We also use the same padding to keep the input and output feature maps at the
same size. We adopt a scale ratio r to reduce the channels of the feature map for efficiency.
This process can be expressed as:

Fout = Convd(1,3,5)R
C
r ×H×W (1)

where R C
r ×H×W is the input feature map with a reduced channel ratio; C, H, and W refer

to the channel, height, and width of the feature map; r equals 8 as the hyper-parameter;
Convd(1,3,5) indicates conv3× 3 with three different dilation rates of 1, 3, and 5; Fout refers
to the output feature map.

The feature aggregation layer is used to fuse contextual information from different
parallel branches and make the most of the diverse feature details. Element concatenation
and summation are adopted to produce the multi-branch feature representation. It is
notable that stacks of conv1 × 1 and conv3 × 3 are used to reduce the channels of the
concatenation feature map. As residual learning, the input feature map is added to that.
The whole process can be expressed as:

Fout = Conv(Concat[Convd(1,3,5)R
C
r ×H×W ] +RC×H×W) (2)
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3.3. Pyramidal Aggregation Module

Deep convolutional neural network (DCNN) methods have strengthened object de-
tection performance by a great margin, but still face tough challenges when considering
different scenes, object sizes, and backgrounds. Semantic relationships are universal and
important for object detection, especially when the target is very small [21,27]. Prior works
proved that not collecting the necessary semantic information increases the possibility of
misclassification and mislocalization. Overlooking the global scene information may result
in failure to consider an object’s details, such as its pattern, texture, and shape. Therefore,
one should focus on separate subregions that contain inconspicuous information of interest.
In order to learn more suitable prior global-scene-level knowledge for the CNN, we built
a pyramidal aggregation module (PAM). This was aimed at the aggregation of global
semantic information along with subregions, as well as at the reduction of the training loss
between different subregions.

Global average pooling is commonly used in image classification tasks by enforcing
correspondences between feature maps and categories. The PAM fuses features with four
different pyramid scales. As shown in Figure 3, a stack of pyramid levels with four different
AVG sizes is used to separate the input features and form pooled representations for locations;
it is followed by CONV, BN, and ReLU. The input features first go through the average
pooling pyramid to generate the aggregation information. Next, all of the aggregated features
are upsampled through bilinear interpolation, followed by the concatenation of the original
input feature to produce rich semantic information. Finally, a series of conv operations are
used to balance the channel number. The whole process can be formulated as:

Fout = Conv(Concat[Upsample(Avgk=1,2,3,5(Fin)), Fin]) (3)

where Fin and Fout refer to the input and output feature maps, respectively. Conv is
Conv3× 3 operations, and Concat is the concatenation for aggregating all of the feature
maps. Upsamle indicates an upsampling operation for the generated output. Avg is
adaptive average pooling with different sizes of 1, 2, 3, and 5.

AVG(1) AVG(2) AVG(3) AVG(5)

CBL

CONCAT

CONV

CBL CBL CBL

CONCAT

UPSAMPLE

CBL Conv + BN + ReLU

AVG Adaptive Average Pooling

Figure 3. Pyramidal aggregation module (PAM).

3.4. Feature Pyramid Refinement Fusion

Traditional FPN models are inefficient in exploring stacks of feature maps that contain a
wide range of scales, giving rise to inferior detection performance. The SSD [15] introduced
the design of a pyramidal feature hierarchy for detecting multi-scale objects, as shown
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in Figure 4b. However, it failed to exploit the relationships of the information between
shallower layers and deeper layers and just used a single-stage feature map while neglecting
the complementary effects of all layers, which made it hard to achieve good performance
for small object detection. To alleviate this problem, an intuitive notion is that of acquiring
multi-scale features, such as with an FPN [19], as shown in Figure 4c. However, the
information flow in the FPN becomes another critical problem, as the lateral connections
and top-down pathways greatly limit the upper bound of feature utilization. To improve
the model’s efficiency and enrich the single lateral connections of the traditional FPN,
we propose feature pyramid refinement fusion. Different input resolutions contribute
unequally to the final detection results because they carry different characteristic features of
the object. If we gather them together into a refined feature, then they will contain different
information at different scales. Finally, we just apply the refined feature map to previous
features through multiplication to get the final output for detection. This process can be
formulated as:

Pout
4 = Conv(Cin

4 )

Pout
3 = Conv(Cin

3 + Upsample(Pout
4 ))

Pout
2 = Conv(Cin

2 + Upsample(Pout
3 ))

Pout
1 = Conv(Cin

1 + Upsample(Pout
2 ))

(4)

R4 = Resize(Pout
4 , S)

R3 = Resize(Pout
3 , S)

R2 = AMP(Pout
2 , S)

R1 = AMP(Pout
1 , S)

X =
(R1 + R2 + R3 + R4)

4

(5)

Mi = Ri × X, i ∈ {1, 2, 3, 4}
Mj = Pj, j ∈ {5, 6}

(6)

where AMP refers to adaptive max pooling, S is the scale size of feature map C2, X
represents the refined features, and M refers to the final feature maps for prediction.

(a) Feature image pyramid (b) Pyramidal feature hierarchy

(c) Feature  pyramid network (d) Feature pyramid refinement fusion 

Input image Feature map Prediction layer

Figure 4. (a) Using an image pyramid to build a feature pyramid, which is an inefficient method [41].
(b) Reusing the pyramidal feature hierarchy computed by a ConvNet as if it were a featurized image
pyramid, as with a single-shot multi-box detector (SSD) [15]. (c) Bottom-up and top-down pathway
feature fusion, as in an FPN [19]. (d) Our proposed feature pyramid refinement fusion.
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3.5. Attention-Guided Module

The multi-scale features are used to improve small object detection to some extent.
Nevertheless, serious semantic differences exist among features of multiple shapes, espe-
cially in the fusion process. Miscellaneous integrated information may lead to aliasing
effects [19,42], causing the mistakes in localization and classification. In the original FPN,
a series of 1× 1 and 3× 3 convolutions is usually followed by each fused feature map to
reduce these effects. Features generated from the VGG-16 backbone contain more serious
aliasing effects after the EFM and PAM. In order to mitigate the negative influences of the
aliasing effects, it is appropriate to employ an attention mechanism on the fused feature
maps. However, just applying attention modules on integrated features would bring in a
vast computational burden because the SSD takes on six feature maps. We hope that the
attention mechanism will not only alleviate this aliasing effect, but also that it will require
fewer parameters. Inspired by the channel attention design of CBAM [39], we developed
an attention-guided module (AGM), as illustrated in Figure 5, to solve the inconsistency
between layers and mitigate the aliasing effects between multi-scale feature maps. Two
different types of spatial contextual information are generated by employing the two main
pooling paradigms (AMP and AAP). These two kinds of information descriptors indepen-
dently head to the FC layers. Element-wise summation and a sigmoid activation function
are used to get the final output. The whole process can be expressed as:

AFG = σ(FC(GAP(Fin)) + FC(GMP(Fin)))

Mi = AFG(X)× Pi
(7)

where i refers to the index of the pyramid levels in the backbone, Pi refers to fused features,
Mi refers to the final outputs, Fin and AFG are the input and output, respectively, σ is a
sigmoid activation function, FC is the fully connected layer, and GAP and GMP refer to
global average pooling and global max pooling, respectively.

1 1 C 1 1 C

AMP

AAP

Adaptive Average pooling Adaptive Max pooling Fully Connected Layer

FCL

SigmoidSigmoid

FCL

FCLAAP AMP

Figure 5. Structure of the attention-guided module (AGM).

4. Results
4.1. Dataset and Experimental Details

We used the PASCAL VOC 2007 [23] and MS COCO 2017 [40] datasets to validate the
model proposed in this work. Training was performed on the VOC 2007 trainval data with
20 classes, which were in combination with 5k images and the VOC 2012 trainval dataset.
The evaluation was performed on the VOC 2007 test set with 5k images. Here, we used the
mAP as the evaluation criterion for this dataset. The input was 300× 300, the batch size
was set to 16 with a total of 250 epochs during training on a single 2080Ti GPU, and the
learning rate was 4× 10−3 at the beginning. The warming-up training strategy was used
to adjust the learning rate, which gradually increased the learning rate from 6× 10−1 to
4× 10−3 in the first five epochs. It dropped the original point and was divided by 10 at 150,
200, and 230 epochs. The weight decay was set to 1× 10−5, and the momentum was set to
9× 10−1. For the input size of 512× 512, the total of the training epochs was up to 200, the
batch size was decreased to 8, and the other settings were kept unchanged.
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Our FCSSD was trained based on the MS COCO 2017 dataset, which contains
80 classes, 115 k images for training (train2017), 5 k images for validation (val2017),
and 20 k images for testing (testdev). We set the total number of training epochs to 150,
and also adopted the warming-up technique to increasingly raise the learning rate from
6× 10−1 to 4× 10−3 in the first five epochs and then decreasing it after 60 and 100 epochs
by a factor of 10, finishing up at 140 epochs. With these experimental settings, we used
a batch size of 8, and the weight decay, momentum, and other settings were the same as
those with the PASCAL VOC training strategy. Table 1 shows detailed information on the
two datasets. Figure 6 provides a detailed workflow of the training and detection process
for the improved model used in this paper.

Data Input

Data Augmentation

Data Preprocessing

Dataset Loading

Model 
Initialization

Model Training

Loss 
Convergence ?

Completed Model

End

Images Input

Model  Loading

Prediction 
Classification

NMS

Output

End

Model 

Training

Model 

Detection

Data Preprocessing

NO

YES

Figure 6. Flow diagram of the training and detection process [43].

Table 1. Dataset statistics of PASCAL VOC and MS COCO.

Name Train Images Validation Images Test Images Category

VOC 2007 [23] 2501 2510 4952 20
MS COCO 2017 [40] 11287 5000 40670 80

4.2. Evaluation Metric

To evaluate the model’s performance in object detection, the precision, recall, and
mean average precision (mAP) were used. They can be expressed as:

Precision =
TP

TP + FP
(8)
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Recall =
TP

TP + FN
(9)

where TP indicates true positives, FN indicates false negatives, and FP indicates false positives.
The intersection over union (IoU) was used to set the thresholds of the ground-truth

box and the prediction box to determine the truth.

IoU =
area(Bpred ∩ Bgt)

area(Bpred ∪ Bgt)
(10)

where Bpred indicates the predicted bounding box, and Bgt is the ground-truth bounding
box. The IoU threshold in PASCAL VOC was set to 0.5, and the mAP of the MS COCO
dataset ranged from 0.5 to 0.9 with a step size of 0.05.

mAP =
mAP0.50 + mAP0.55 + mAP0.60 + ... + mAP0.90 + mAP0.95

10
(11)

In addition to the basic evaluation of the mAP, the average precision (AP) was also
included. AP, AP50, AP75, APsmall , APmedium, and APlarge depended on different thresholds
from those of the criteria for MS COCO.

4.3. Experimental Analysis
4.3.1. PASCAL VOC 2007

We compared our method with the mainstream one-stage and two-stage object de-
tectors, as shown in Table 2. Obviously, in order to achieve better performance, most
existing two-stage detectors usually have a larger input size (typically 1000× 800). Cou-
pleNet [44] achieved an mAP of 82.7, which was 1.2 higher than the mAP of our method
with a 300× 300 input. For the one-stage methods, we used two input variants for a fair
comparison: 300× 300 and 512× 512 scales. The baseline SSD [15] achieved detection with
an mAP of 77.2 with a 300× 300 input. Our approach provided a considerable increase
of 4.3% in terms of mAP in comparison with the baseline SSD. Our FCSSD surpassed the
DSSD [17], which used a strong feature extraction backbone, ResNet-101, by a large margin
of 2.9%. In comparison with the complicated FPN-style methods, such as PFPNet [26]
and RefineDet [29], our method achieved a slightly higher mAP than they did, and this
highlighted the effectiveness of our proposed FCSSD. With the input size of 512× 512,
RefineDet [29], RFBNet [45], and PFPNet [26] achieved accuracies of 81.8, 82.2, and 82.3,
respectively. With the same input size and backbone, our method outperformed them
with an accuracy of 83.2 mAP. Table 2 shows the results of our FCSSD versus those of
mainstream object detectors on this dataset. The FPS evaluation metric was used to exam-
ine the model’s inference speed, and our FCSSD also achieved a better tradeoff between
accuracy and speed.

Table 2. Comparison of our method with existing detectors on the PASCAL VOC 2007 test set (with
IoU = 0.5); 07 + 12: 07 trainval + 12 trainval.

Method Training Data Backbone Input Size mAP FPS
Two-stage detectors:

Faster R-CNN [8] 07 + 12 VGG-16 ∼1000× 600 73.2 7
Faster R-CNN [8] 07 + 12 ResNet-101 ∼1000× 600 76.4 5

R-FCN [10] 07 + 12 ResNet-101 ∼1000× 600 80.5 9
CoupleNet [44] 07 + 12 VGG-16 ∼1000× 600 82.7 8

ION [46] 07 + 12 VGG-16 ∼1000× 600 79.2 1.3
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Table 2. Cont.

Method Training Data Backbone Input Size mAP FPS
One-stage detectors:

SSD [15] 07 + 12 VGG-16 300× 300 77.2 46
RON320++ [47] 07 + 12 VGG-16 320× 320 76.6 20

DSSD [17] 07 + 12 ResNet-101 321× 321 78.6 10
R-SSD [48] 07 + 12 VGG-16 300× 300 78.5 35

YOLOv2 [12] 07 + 12 DarkNet-19 544× 544 78.6 40
StrairNet [49] 07 + 12 VGG-16 300× 300 78.8 30

DES [50] 07 + 12 VGG-16 300× 300 79.7 76
PFPNet [26] 07 + 12 VGG-16 300× 300 80.0 40
RFBNet [45] 07 + 12 VGG-16 300× 300 80.5 83

RefineDet [29] 07 + 12 VGG-16 320× 320 79.7 76
FCSSD (Ours) 07 + 12 VGG-16 300× 300 81.5 55

SSD [15] 07 + 12 VGG-16 512× 512 77.2 46
FSSD [16] 07 + 12 VGG-16 512× 512 80.9 35.7
DES [50] 07 + 12 VGG-16 300× 300 81.7 31

RefineDet [29] 07 + 12 VGG-16 512× 512 81.8 21
RFBNet [45] 07 + 12 VGG-16 512× 512 82.2 38
PFPNet [26] 07 + 12 VGG-16 512× 512 82.3 26

FCSSD (Ours) 07 + 12 VGG-16 512× 512 83.2 35

4.3.2. MS COCO

Table 3 shows the results on the MS COCO dataset. For a 300× 300 input, the baseline
SSD [15] achieved a detection performance score of 25.1. With the same feature extraction
backbone, our method achieved a notable refinement of 13.1% for the overall detection score
in comparison with the baseline SSD. For large objects (APl), the baseline SSD attained
a pure performance of 41.4 AP. However, it seriously deteriorated to 6.6 AP for small
objects (APs), as it showed inferior quality in small object detection. Significantly, our
FCSSD achieved a detection performance of 15.3 AP for this criterion, which was over
double compared with the SSD baseline. Likewise, we also accomplished a great margin of
improvement in detection performance with medium objects (APm). Among the existing
single-stage detectors, RFBNet [45] and RefineDet320+ [29] provided scores for overall
detection of 30.3 and 35.2, respectively. With the same VGG-16 backbone, our detector
achieved results superior to those obtained with both methods.

Table 3. The results of the mainstream one-stage and two-stage detectors on the MS COCO testdev.

Method Backbone Input Size Time
(ms) AP AP50 AP75 APs APm APl

Two-stage detectors:
Faster R-CNN [8] VGG-16 1000× 600 147 24.2 45.3 23.5 7.7 26.4 37.1
Faster FPN [19] ResNet-101-FPN 1000× 600 240 36.2 59.1 39.0 18.2 39.0 48.2
CoupleNet [44] ResNet-101 1000× 600 121 34.4 54.8 37.2 13.4 38.1 50.8

Mask R-CNN [9] ResNetXt-101-FPN 1280× 800 210 39.8 62.3 43.4 22.1 43.2 51.2
Cascade R-CNN [24] ResNet-101-FPN 1280× 800 141 42.8 62.1 46.3 23.7 45.5 55.2

One-stage detectors:
SSD [15] VGG-16 300× 300 20 25.1 43.1 25.8 6.6 25.9 41.4

DSSD [17] ResNet-101 321× 321 - 28.0 46.1 29.2 7.4 28.1 47.6
RetinaNet [18] ResNet-101 500× 832 90 34.4 53.1 36.8 14.7 38.5 49.1

DES [50] VGG-16 300× 300 - 28.3 47.3 29.4 8.5 29.9 45.2
RFBNet [45] VGG-16 300× 300 15 30.3 49.3 31.8 11.8 31.9 45.9
EFIPNet [51] VGG-16 300× 300 14 30.0 48.8 31.7 10.9 32.8 46.3

RefineDet320+ [29] VGG-16 320× 320 - 35.2 56.1 37.7 19.5 37.2 47.0
M2det [52] VGG-16 320× 320 - 38.9 59.1 42.4 24.4 41.5 47.6

FCSSD(ours) VGG-16 300× 300 35 38.2 59.4 41.5 15.3 40.3 58.6
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Table 3. Cont.

Method Backbone Input Size Time
(ms) AP AP50 AP75 APs APm APl

YOLOv2 [12] DarkNet 544× 544 25 21.6 44.0 19.2 5.0 22.4 35.5
YOLOv3 [13] DarkNet-53 416× 416 35 31.0 55.3 32.3 15.3 33.2 42.8

SSD [15] VGG-16 512× 512 28 28.8 48.5 30.3 10.9 31.8 43.5
DSSD [17] ResNet-101 513× 513 156 33.2 53.3 35.2 13.0 35.4 51.1

RefineDet [29] VGG-16 512× 512 45 33.0 54.5 35.5 16.3 36.3 44.3
RefineDet [29] ResNet-101 512× 512 - 36.4 57.5 39.5 16.6 39.9 51.4
RFBNet-E [45] VGG-16 512× 512 30 34.4 55.7 36.4 17.6 37.0 47.6
TripleNet [53] ResNet-101 512× 512 - 37.4 59.3 39.6 18.5 39.0 52.7

EfficientDet-D1 [21] EfficientNet-B1 640× 640 50 39.6 58.6 42.3 17.9 44.3 56.0
CornerNet [54] Hourglass-104 511× 511 227 40.5 56.5 43.1 19.4 42.7 53.9
YOLOv4 [14] CSPDarkNet53 416× 416 38 41.2 62.8 44.3 20.4 44.4 56.0

M2det [52] VGG-16 512× 512 - 42.9 62.5 47.2 28.0 47.4 52.8
Scaled-YOLOv4 [55] CD53 608× 608 - 45.5 64.1 49.5 27.0 49.0 56.7

YOLOX-M [56] Modified CSP v5 640× 640 - 46.4 65.4 50.6 26.3 51.0 59.9
FCSSD(ours) VGG-16 512× 512 65 41.5 63.1 46.9 21.8 46.2 56.5

For the 512× 512 input size, the baseline SSD achieved an overall detection score of 28.8.
Our method provided a significant gain of 12.7% in terms of AP with the same VGG backbone.
Among the existing methods, EfficientDet-D1 [21] and YOLOv4 [14] provided detection AP
scores of 39.6 and 41.2, respectively, due to their efficient framework design. Compared with
the anchor-free-style method CornerNet [54], our method showed a slightly better performance
in terms of AP and outperformed it in terms of inference time (65 versus 227 ms), which can be
expensive in terms of costs when processing an image. The low quality of feature representations
of small objects was due to their limited size and the general feature extraction, which is still a
tough and challenging problem in both types of detectors. The experiments demonstrated that
the feature representation power could be strengthened through our FCSSD network design. In
the MS COCO dataset, more than 70% of the images are composed of objects, the size of which
is usually less than 32× 32 pixels in one image. In addition, MS COCO contains more detailed
information on the objects than the images in PASCAL VOC do, and this can further enhance
the learning ability of our method.

The two-stage detectors were able to achieve superior accuracy, but with a high
computational cost. They usually require a considerably larger input resolution and
need more than 100 ms to process an image during the inference time. For example,
Mask-RCNN [9] achieved an AP of 39.8, but needed 210 ms to infer an image. Our method
provided competitive accuracy with a high efficiency and achieved excellent performance,
with a detection AP score of 41.5 and an inference time of 65 ms. This shows that our
FCSSD not only achieves better performance, but also operates at high efficiency.

4.3.3. Ablation Study

To verify the effectiveness of the proposed modules in our FCSSD, we conducted
various ablation experiments on the PASCAL VOC 2007 test set and MS COCO minival.
To be specific, we used VGG-16 as the backbone and an input size of 300 × 300 in all
experiments. As shown in Table 4, when we used only the EFM, the mAP was increased
by 1.4% in comparison with that of the baseline SSD (77.2%) [15]. Based on the EFM, we
found that the mAP was further increased from 78.6% to 79.5% with the embedding of
the PAM. The FPRF refined multi-scale features from the shallow layers and deep layers
and showed a more effective feature fusion method, which boosted the performance by
2% in comparison with that of the original SSD. Since the AGM plays an important part in
balancing the channel weights of features and reduces the aliasing effects caused by the
FPN design, it boosted the performance of the model by 1% based on the FPRF, from 79.2%
to 80.2%. Finally, the FCSSD reached an mAP of 81.5% on the PASCAL VOC2007 test set
with the image size of 300× 300. As shown in Table 5, the AP of the baseline SSD gradually
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increased as we added the EFM and PAM to the model. When the FPRF was applied to the
model, the AP underwent a large increase, showing that multi-scale feature pyramids are
beneficial for object detection and provide richer semantic and spatial information. The
AGM was intended to reduce the redundancy and balance the channel weights, and it
further increased the AP to 38.2. These experimental results validate the effectiveness of
our modules; our FCSSD performs accurately and efficiently.

Table 4. Ablation studies of the FCSSD on the PASCAL VOC 2007 test set with an image size of 300× 300.

Method EFM PAM FPRF AGM mAP

Baseline SSD 77.2
(a) X 78.6
(b) X 78.4
(c) X 79.2
(d) X X 79.5
(e) X X 80.2

FCSSD
(ours) X X X X 81.5

Table 5. Ablation studies of the FCSSD on the MS COCO minival with an image size of 300× 300.

Scheme Methods AP AP50 AP75 APs APm APl

A Baseline SSD 25.1 43.1 25.8 6.6 25.9 41.4
B A + EFM 27.2 45.2 27.2 7.9 27.3 44.6
C B + PAM 29.3 47.9 30.6 9.1 30.1 45.2
D C + FPRF 37.5 56.9 38.8 13.5 38.3 54.2
E D + AGM 38.2 59.4 41.5 15.3 40.3 58.6

We show some qualitative results of the SSD [15] in comparison with those of our FCSSD
on the PASCAL VOC 2007 test set and MS COCO minival in Figure 7. The figure compares
images containing objects of various sizes. When the FCSSD was applied to the test images,
even small objects were successfully detected due to the effectiveness our model design.

5. Conclusions

In this work, we proposed a feature-enhancement- and channel-attention-guided
single-shot detector for object detection called the FCSSD. Our method brings in four effec-
tive improvements: an efficient feature-extraction module (EFM), pyramidal aggregation
module (PAM), feature pyramid refinement fusion (FPRF), and attention-guided module
(AGM). The EFM is designed to exploit multi-scale contextual information in the shallow
layers, while the PAM is used to explore richer semantic knowledge in the deep layers. The
FPFR introduces an effective means of feature fusion for a PFN by compressing multi-scale
features into a refined feature. The AGM balances the channel weights and deals with
the aliasing effects of the fused features in the FPN, thus accelerating the training process
and further improving the performance. Experiments on public datasets proved that our
approach achieved competitive results in comparison with those of mainstream one-stage
and two-stage methods, achieving better a tradeoff between accuracy and speed. Since
one-stage object detectors achieve a faster speed and better performance, further research
is needed to move on to lightweight models for real applications that could easily be
embedded into mobile devices.
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Figure 7. Qualitative results of the SSD in comparison with those of the FCSSD on the PASCAL VOC
and MS COCO datasets.
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