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Abstract: This paper proposes a Takagi–Sugeno (TS) fuzzy sliding mode observer (SMO) for simulta-
neous actuator and sensor fault reconstruction in a class of nonlinear systems subjected to unknown
disturbances. First, the nonlinear system is represented by a TS fuzzy model with immeasurable
premise variables. By filtering the output of the TS fuzzy model, an augmented system whose actuator
fault is a combination of the original actuator and sensor faults is constructed. An H∞ performance
criteria is considered to minimize the effect of the disturbance on the state estimations. Then, by
using two further transformation matrices, a non-quadratic Lyapunov function (NQLF), and fmincon
in MATLAB as a nonlinear optimization tool, the gains of the SMO are designed through the stability
analysis of the observer. The main advantages of the proposed approach in comparison to the existing
methods are using nonlinear optimization tools instead of linear matrix inequalities (LMIs), utilizing
NQLF instead of simple quadratic Lyapunov functions (QLF), choosing SMO as the observer, which
is robust to the uncertainties, and assuming that the premise variables are immeasurable. Finally,
a practical continuous stirred tank reactor (CSTR) is considered as a nonlinear dynamic, and the
numerical simulation results illustrate the superiority of the proposed approach compared to the
existing methods.

Keywords: actuator and sensor faults; TS fuzzy system; sliding mode observer (SMO); H∞ perfor-
mance; non-quadratic Lyapunov function (NQLF); fmincon; fault reconstruction

1. Introduction

Over the past few decades, the reliability and safety of industrial systems has attracted
considerable attention. As a consequence, fault-tolerant control (FTC) has received con-
siderable attention in different fields [1,2]. There are different classifications for FTCs. In
general, FTCs are classified into passive and active classifications. Active fault-tolerant
controllers compensate for the effects of the occurred faults by using early information
obtained from fault detection and isolation (FDI) schemes, which leads to a more flexible
dynamic [3]. Consequently, FDI is becoming an attractive topic in different research fields.
Observer-based methods are one of the most popular model-based FDIs. The main idea of
observer-based FDIs is to construct a residual based on the measured output of the systems
or to reconstruct the fault directly. Sliding mode observer (SMO) works based on the second
approach, which detects the faults while determining the dynamic behavior [4,5]. SMOs
are more insensitive to the unknown uncertainties occurring in the system compared to
other observers like unknown input observers (UIOs) [6].

First, SMO observers were developed for linear dynamic systems; however, most ac-
tual physical systems are often nonlinear. Currently, lots of SMO-based fault reconstruction
methods have been developed for uncertain nonlinear systems. In ref. [7], by considering a
filter of the measured output vector, the original system with sensor and actuator faults is
transformed into an augmented system with just the actuator fault and unknown inputs.
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Nevertheless, the classes of nonlinear systems considered in most of the papers are limited
and cannot represent a general model for real systems [8,9].

Takagi–Sugeno (TS) fuzzy models can represent the behavior of nonlinear systems
while keeping the simplicity of the linear models. A TS fuzzy representation is a convex
nonlinear aggregation of several linear systems. Because the parameters of a TS fuzzy
representation satisfy the convex sum, it is interesting to investigate the properties of
the TS system based on its local linear vertices. With the advent of TS fuzzy systems,
TS-based FDI techniques emerged to tackle a broader range of nonlinear systems [10].
By changing a nonlinear system to a TS system, some local linear systems are created,
representing the behavior of the nonlinear system in a specific operating area. These local
linear systems can be aggregated by using an interpolation mechanism. Thus, TS fuzzy
models can represent the actual nonlinear behavior while maintaining the simplicity of
linear models. Thus, an efficient FDI can be obtained by combining the SMO, which is
robust to the uncertainties, and the TS fuzzy model, which causes simplicity in the design
process. Recently, several researchers have utilized TS-based SMOs for fault detection and
isolation in continuous-time and discrete-time systems [11,12]. However, in the methods
developed in these articles, it is assumed that the premise variables are measurable, which
reduces the applicability of these approaches. To deal with this problem, an FDI approach
for stability analysis of the TS fuzzy systems with immeasurable premise variables was
proposed in [13,14].

In [15], simultaneous actuator and sensor faults in a nonlinear system represented by
a TS fuzzy model are reconstructed by using an SMO and considering H∞ performance
criteria to reduce the effect of disturbance, whereas [16] does the same procedure for the
fault reconstructions and both of the exogenous disturbance and the system faults are
reconstructed. However, in refs. [15,16] quadratic Lyapunov functions (QLFs) are used to
design the observers. By using the QLF for TS fuzzy systems with a large number of fuzzy
rules can cause undesired performance or unfeasible solutions. Consequently, refs. [17,18]
offered to use a non-quadratic Lyapunov function (NQLF) to design the TS-based SMO for
the FDI purposes. In all these papers, a linear optimization approach based on linear matrix
inequalities (LMIs) is utilized, making the stability analysis more complex and using some
approximations and lemmas to prove the stability conditions.

In this paper, a TS fuzzy-based SMO with immeasurable premise variables is designed
to reconstruct simultaneous actuator and sensor faults in a nonlinear system exposed
to an unknown disturbance. Then, the states and faults are estimated. The stability of
the proposed observer is guaranteed by using the NQLF and fmincon as a nonlinear
optimization tool in MATLAB. In addition, H∞ performance criteria are considered to
minimize the effect of disturbances and uncertainties on the estimation error and the fault
estimations. By using the NQLF, a generalized eigenvalue problem is proposed, which
maximizes the admissible Lipschitz constant and minimizes the disturbance effects on the
estimation error through a nonlinear optimization problem.

The main advantages of the proposed approach over the existing methods can be
summarized as follows:

• Using nonlinear optimization tools instead of LMIs, which results in better accuracy.
• Utilizing NQLF, which leads to less conservative optimization conditions than simple

quadratic Lyapunov functions.
• Assuming that the premise variables are immeasurable, which makes the proposed

method applicable to a broader class of TS fuzzy systems.

This paper is organized as follows. Section 2 presents a TS fuzzy model with simulta-
neous actuator and sensor faults and disturbance and how to construct a fictitious system
with just an actuator fault. In Section 3, the main results of this paper, including the sliding
mode observer design and the sufficient conditions of stability of the estimation errors,
are proposed and guarantee the H∞ performance simultaneously. Section 4 discusses the
procedure of the actuator and sensor fault reconstructions. In Section 5, simulation results
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are given, and comparisons are discussed. Finally, in Section 6, the concluding remarks
are given.

2. Preliminaries

Assume that a continuous-time nonlinear system affected by actuator and sensor faults
and disturbance is given as{ .

x(t) = f (x(t), u(t), fa(t), d(x(t), u(t), t))
y(t) = Cx(t) + N fs (t)

, (1)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp, fa(t) ∈ Rq, fs(t) ∈ Rh and d(x(t), u(t), t) ∈ Rl are
the state, input, output, unknown actuator, and sensor faults, and the system uncertainty
vectors, respectively. f and g are nonlinear smooth functions. By using sector nonlinearity
transformation, the nonlinear model (1) can be replaced by the following TS fuzzy model

.
x(t) = ∑r

i=1 µi(ξ(t))
{

Aix(t) + Biu(t) + Mi fa(t)
+Did(x(t), u(t), t)

}
y(t) = Cx(t) + N fs(t)

, (2)

where C and N are known full rank matrices with appropriate dimensions. Ai, Bi, Mi,
and Di are real known matrices, r represents the number of fuzzy rules and µi(ξ(t)) are
the fuzzy membership functions depending on the unmeasurable variable vector ξ(t) and
satisfy the following so-called convex sum property{

0 ≤ µi(ξ(t)) ≤ 1

∑r
i=1 µi(ξ(t)) = 1

. (3)

In the rest of the paper, (t) is dropped from the equations, d, µi and µ̂i denote
d(x, u, t), µi(ξ(t)), and µi

(
ξ̂(t)

)
and the mark (∗) denotes the transposed element in a

symmetric matrix.
To build a system with just an actuator fault and then use the actuator fault recon-

struction concepts, the output is passed through an orthogonal matrix Tr ∈ Rp×p and an
augmented TS system of order n + h can be obtained as{ .

X = ∑r
i=1 µi{AiX + Biu +Did +Mi fa +N fs}

Y = CX
, (4)

where X =
[
xT zT]T ∈ Rn+h, Y =

[
yT

1 zT]T ∈ Rp, and

Ai =

[
Ai 0

A f C2 −A f

]
,Bi =

[
Bi
0

]
,Di =

[
Di
0

]
, Mi =

[
Mi
0

]
,N =

[
0

A f N2

]
, C =[

C1 0
0 Ih

]
.

(5)

−A f ∈ Rh×h is an arbitrary stable matrix, z ∈ Rh and N2 ∈ Rh×h. Tr can be obtained
by QR reduction of the matrix N.

By defining

φ := ∑r
i=1(µi − µ̂i){AiX ++Biu +Did +Mi fa +N fs}, (6)

where x̂ is the estimation of the x, the TS system (4) can be derived as{ .
X = ∑r

i=1 µ̂i{AiX + Biu +Did +Mi fa +N fs + φ}
Y = CX

. (7)



Sensors 2022, 22, 6866 4 of 14

Moreover, the nonlinear term φ is assumed to satisfy the Lipschitz condition as

‖ φ ‖≤ γ ‖ x− x̂ ‖ . ∀x, x̂ ∈ Rn. (8)

To design a sliding mode observer, some assumptions and lemmas are needed as
follows.

Assumption 1.
rank(C[Mi N ]) = q + h (9)

Assumption 2.
n > p ≥ q + h (10)

Assumption 3.

rank
[

sIn+h−Ai Mi N
C 0 0

]
= n + 2h + q (11)

for all s satisfyingRe(s) ≥ 0 holds.

Lemma 1.

(a) If Assumptions 1 and 2 are satisfied, then there exist changes of coordinates Ti such that

Ai =

 A11.i A12.i[
A211.i
A212.i

]
A22.i

, Mi =

[
0
M2.i

]
, N =

[
0
N2

]
, Di =

[
D1.i
D2.i

]
, C = [0 T0], (12)

where A11.i ∈ R(n+h−p)×(n+h−p) , A211.i ∈ R(p−q−h)×(n+h−p) , D2.i ∈ Rp×l , and
T0 ∈ Rp×p is an orthogonal matrix. Matrices M2.i ∈ Rp×q,N2 ∈ Rp×h can have the
following structure:

M2.i =

[
0
M0.i

]
, N2 =

[
0
N0

]
. (13)

WithM0.i ∈ R(q+h)×q,N0 ∈ R(q+h)×hare nonsingular.
(b) The pairs (A11.i,A21.i) are detectable if and only if the invariant zeros of {Ai, [Mi N ], C} lie

in C− and it happens if and only if Assumption 3 is satisfied.

Assumption 4. The unknown vectors fa and fs and the derivatives of the µi for i ∈ {1. . . . .r} are
assumed to be norm bounded by some known constants. Therefore,

‖ fa ‖≤ ρa; ‖ fs ‖≤ ρs; ‖
.
µi ‖≤ ρmi. (14)

Lemma 2. Ref. [19] parameterized linear matrix inequality (PLMI) ∑r
i=1 ∑r

j=1 µiµjQij < 0 is
fulfilled if the following conditions hold:{

Rii < 0 f or i = 1, . . . , r
2

r−1 Rii + Rij + Rji < 0 f or i 6= j = 1, . . . , r
. (15)

3. TS Fuzzy-Based Sliding Mode Observer Design

The proposed TS sliding mode observer for the nonlinear system (2) in the new
coordinate (10) is as follows:{ .

X̂ = ∑r
i=1 µ̂i

{
AiX̂ + Biu + Gl.ieY + Gn.iva.i + Gn.ivs

}
Ŷ = CX̂

(16)
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where Gn.i and Gl.i are design matrices of the observer that will be derived through
Theorem 1. eY := Y− Ŷ represents the output error estimation, νa.i and νs are the equiva-
lent output error injections that are used to compensate the errors due to the actuator fault
and sensor fault, respectively, and have the following structure:

νa,i =

{
ηa,i
‖eY‖

eY
eY 6= 0

0 otherwise

νs =

{
ηs
‖eY‖

eY
eY 6= 0

0 otherwise
,

(17)

where ηa.i and ηs are two positive scalars such that

ηa.i ≥ ρa ‖ T0M2.i ‖ max
j

(
‖P2.j‖

λmin(P2.j)
) + wa.i

ηs ≥ ρs ‖ T0N2 ‖ max
j

(
P2.j

λmin(P2.j)
) + ws

∀i, j ∈ {1. . . . .r}. (18)

wa.i and ws are two arbitrary positive constants.
The observer (16) guarantees that the state estimation error converges to a pre-designed

sliding surface in finite time and then, asymptotically to zero. Define state estimation error
as e := X− X̂. By subtracting the observer dynamics from the system dynamic (7) in the
new coordinate (12), the state estimation error dynamic can be given as

.
e = ∑r

i=1 µ̂i

{
(Ai − Gl.i C)e +Mi fa − Gn.iνa.i

+N fs − Gn.iνs +Did + φ

}
. (19)

By partitioning φ as φ =
[
φT

1 φT
2
]T and applying a further change of coordinates

TL.i =

[
In+h−p Li

0 T0

]
, Li =

[
Li 0

]
∈ R(n+h−p)×p

(20)

where Li ∈ R(n+h−p)×(p−q−h) is a stabilizing gain matrix, it is straightforward to see that

Ãi =

[
A11.i + LiA21.i Ã12.i

T0A21.i Ã22.i

]

M̃i =

[
0

T0M2.i

]
Ñ =

[
0

T0N2

]
D̃i =

[
D1.i + LiD2.i

T0D2.i

]
C̃ =

[
0 IP

]
G̃n,i =

[
0
Ip

]
G̃l,i =

[
Ã12,i

Ã22.i −As.i

]

φ̃ =

[
TL.iφ1
TL.iφ2

]

, (21)
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where As.i are arbitrary stable design matrices. Through the new coordinate, the error
dynamic (19) can be re-written as

.
ẽ =

[ .
e1.
eY

]
=

r
∑

i=1
µ̂i

{
Ãt. i ẽ + TL.iφ + M̃i fa−

G̃n.iνa.i + Ñ fs − G̃n.iνs + D̃id

}
(22)

where

Ãt, i =

[
A11.i + LiA21.i 0

T0A21.i As.i

]
. (23)

The goal is to design the matrices Li such that the asymptotic stability of (22) is assured
while the following specified H∞ performance is guaranteed:

‖ ẽ2 ‖≤ ϑ2 ‖ d2 ‖. (24)

The following theorem provides sufficient conditions to ensure asymptotic stability of
the state estimation error (22) with maximized admissible Lipschitz constant γ in (8) and
minimized H∞ performance gain ϑ in (24).

Theorem 1. If there exist feasible solutions for the following optimization problem with a fixed
scalar 0 ≤ λ ≤ 1

min[λ(σ + ε) + (1− λ)θ]

Subject

eig(Rii) < 0 f or i = 1, . . . , r

eig
( 2

r−1 Rii + Rij + Rji
)

f or i 6= j = 1, . . . , r

−eig(P1.i) < 0 f or i = i = 1, . . . , r

−eig(P2.i) < 0 f or i = i = 1, . . . , r

−ε < 0
−σ < 0
−θ < 0

(25)

where

Rij =

 Φ1,ij (P2,jT0A21,i)
T Φ3,ij

P2,jT0A21,i Φ2,ij P2,jT0D2,i

Φ3,ij
T (P2,jT0D2,i)

T −βIl


Φ1.ij = (A11.i + LiA21.i)

T P1j + P1j(A11.i + LiA21i) + ε−1P1.jP1.jr

+
(

σ−1 + 1
)

In+h−p +
r

∑
k=1

qmkP1.k

Φ2ij = AT
s.iP2.j + P2.jAs.i + ε−1P2.jP2.j +

(
σ−1 + 1

)
Ip +

r
∑

k=1
qmkP2.k

Φ3.ij = P1.jD1.i + P1.jLiD2.i

(26)

and eig represents eigenvalues of a matrix, then, the estimation error (22) is asymptotically stable
with the maximized admissible Lipschitz constant γ∗ = max(γ) = 1

‖TL‖‖TL−1‖
√

εσ
and the

derived Li matrices can be used for the purpose of simultaneous fault reconstruction.

Proof. The proof of this theorem is done by using a positive NQLF as follows

V = ẽT
(

∑r
j=1 µ̂jPj

)
ẽ, (27)
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where Pj = diag
(

P1j, P2j
)

with P1j ∈ R(n+h−p)×(n+h−p) and P2j ∈ Rp×p are symmetric
positive definite matrices. The time derivative of the candidate Lyapunov function along
the trajectory (22) is given by

.
V = ∑r

i=1 ∑r
j=1 µ̂iµ̂j{ẽT(At.i

T Pj + PjAt.i + ∑r
k=1

.
µ̂kPk)ẽ + 2ẽT Pj(TL.iφ + M̃i fa−

G̃n.iνa.i + Ñ fs − G̃n.iνs + D̃id)}.
(28)

From (14), (17), (18) and (21), one has:

ẽT Pj

(
M̃i fa − G̃n.iνa.i

)
= eY

T P2.jT0M2.i fa − ηa.i
eY

T P2.jeY
‖eY‖

≤‖ eY
T P2.jT0M2.i fa ‖ −ηa.i

eY
T P2.jeY
‖eY‖

≤‖ eY
T P2.jT0M2.i fa ‖ −ηa.iλmin

(
P2.j
)
‖ eY ‖

≤‖ eY ‖
(
ρa ‖ P2.j ‖‖ T0M2.i ‖ −ηa.iλmin

(
P2.j
))

≤ −wa.iλmin
(

P2.j
)
‖ eY ‖≤ 0

ẽT Pj

(
Ñ fs − G̃n.iνs

)
= eY

T P2.jT0N2 fs − ηs
eY

T P2.jeY
‖eY‖

≤‖ eY
T P2.jT0N2 fs ‖ −ηs

eY
T P2.jeY
‖eY‖

≤‖ eY
T P2.jT0N2 fs ‖ −ηsλmin

(
P2.j
)
‖ eY ‖

≤‖ eY ‖
(
ρs ‖ P2.j ‖‖ T0N2 ‖ −ηsλmin

(
P2.j
))

≤ −wsλmin
(

P2.j
)
‖ eY ‖≤ 0.

(29)

From (14), one has

∑r
k=1

.
µ̂kPk ≤∑r

k=1 ρmiPk. (30)

By considering the fact that 2PTQ ≤ 1
εP

TP+ εQTQ with ε > 0 and using (8), one
obtains

2ẽT PjTLφ ≤ 1
ε

ẽT PjPj ẽ + εφTTL
TTLφ ≤ 1

ε
ẽT PjPj ẽ + εα2‖ ẽ ‖2, (31)

where α :=‖ TL ‖‖ TL
−1 ‖ γ. By Substituting (29)–(31) into (28), one has

.
V ≤ ∑r

i=1 ∑r
j=1 µ̂iµ̂j

{
ẽT
(
At.i

T Pj + PjAt.i +
1
ε PjPj + εα2 In+h +

r
∑

k=1
ρmkPk

)
ẽ+

2ẽT PjD̃id
}

.
(32)

By defining parameter σ :=
(
εα2)−1 and the cost function as J :=

.
V(ẽ) + ẽT ẽ− ϑ2dTd,

one has

J ≤ ∑r
i=1 ∑r

j=1 µ̂iµ̂j{ẽT(At.i
T Pj + PjAt.i + ε−1PjPj + σ−1 In+h + In+h+

∑r
k=1 ρmkPk)ẽ + 2ẽT PjD̃id− βdTd},

(33)

where β := ϑ2. By placing (23)in (33) and considering the diagonal structure of Pj, the
inequality (33) is continued as

J ≤∑r
i=1 ∑r

j=1 µ̂iµ̂j

e1
eY
ξ

T

Λ

e1
ey
ξ

 < 0, (34)
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where

Λ =

 Φ1,ij (P2,jT0A21,i)
T Φ3,ij

P2,jT0A21,i Φ2,ij P2,jT0D2,i

Φ3,ij
T (P2,jT0D2,i)

T −βIl


Φ1.ij = (A11.i + LiA21.i)

T P1.j + P1j(A11.i + LiA21.i) + ε−1P1.jP1j+(
σ−1 + 1

)
In+h−p +

r

∑
k=1

qmkP1.k

Φ2.ij = AT
s.iP2.j + P2.jAs.i + ε−1P2.jP2.j +

(
σ−1 + 1

)
Ip +

r
∑

k=1
qmkP2..k

Φ3.ij = P1.jD1.i + P1.jLiD2.i.

(35)

Based on the Congruence [20], the inequality (35) is satisfied by

∑r
i=1 ∑r

j=1 µ̂iµ̂j

 Φ1,ij (P2,jT0A21,i)
T Φ3,ij

P2,jT0A21,i Φ2,ij P2,jT0D2,i

Φ3,ij
T (P2,jT0D2,i)

T −βIl

 < 0. (36)

By utilizing Lemma 2, the summations and the fuzzy membership functions will be
omitted from inequalities (36). Finally, the results are going to be used for fmincon function
which is a nonlinear optimization tool in MATLAB software and finds the minimum of a
problem specified by

minx f (x)

subject to


c(x) ≤ 0
ceq(x) ≤ 0
A · x ≤ b
Aeq · x = beq
lb ≤ x ≤ ub

.
(37)

The matrix inequalities (36) should be changed to some one-dimensional inequalities,
and the optimization problem can be defined as (25) and (26). In addition, from the α and σ
found by the optimization problem, the maximum admissible Lipschitz constant and the
minimum can be calculated as

γ∗ =
1

‖ TL ‖‖ TL−1 ‖
√

σε
. (38)

�

4. Simultaneous Fault Reconstruction

In Section 3, an H∞ sliding mode observer is designed in which two discontinuous
terms (19) are considered to reconstruct simultaneous faults in the presence of an unknown
disturbance based on the measured signals u and y. Along the sliding surface eY =

.
eY = 0.

Consequently, (22) on the sliding surface changes to

∑r
i=1 µ̂i

{
T0A21.ie1 + T0φ2 + T0M2i fa−

νeqa.i + T0N2 fs − νeqs + T0D2id

}
= 0, (39)

where νeqa,i and νeqs are approximations of the equivalent output error injection terms (17)
required to maintain the sliding motion and can be defined as

νeqa.i = ηa.i
eY

‖ eY ‖ +δa
; νeqs = ηs

eY
‖ eY ‖ +δs

, (40)

where δ f and δd are small positive constants. Consequently, (40) leads to

0 = ∑r
i=1 µ̂i

{
A21.ie1 + φ2 +M2.i fa

−T0
−1νeqa.i +N2 fs − T0

−1νeqs +D2.id

}
. (41)
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On the other hand, using (8) and (24) can show that the term A21.ie1 + φ2 +D2.id is
bounded as

‖ A21.ie1 + φ2 +D2.id ‖
≤
(
‖ A21.i ‖ +γ ‖ TL

−1 ‖
)
‖ e1 ‖ + ‖ D2.i ‖‖ d ‖

≤
(
‖ A21.i ‖ +γ ‖ TL

−1 ‖
)
‖ ẽ ‖ + ‖ D2.i ‖‖ d ‖

≤ ε ‖ d ‖,

(42)

where ε = µ
(
‖ A21,i ‖ +γ ‖ TL

−1 ‖
)
+ ‖ D2,i ‖. Therefore, for small values of ε ‖ d ‖, the

actuator and sensor faults can be estimated as

f̂a = (
r

∑
k=1

µ̂i{M2.i})
†

T0
−1

r

∑
k=1

µ̂i

{
ηa.i

eY
‖ eY ‖ +δa

}
(43)

f̂s = N †
2 T0

−1ηs
eY

‖ eY ‖ +δs
, (44)

where † shows the pseudo-inverse of a matrix.

Remark 1. The numerical solution of Theorem 1 can be summarized as follows:

• Find the orthogonal transfer matrix Tr ∈ Rp×p by using the QR reduction of matrix N and
obtain the augmented TS system (4).

• Find the changes of coordinates Ti and obtain the system matrices in the format(12) and(13).
• Compute the scalars σ, ε, and θ and also the matrices Li using the fmincon function in

MATLAB software and solving the nonlinear optimization problem(25).
• Compute the maximized admissible Lipschitz constant as γ∗ = max(γ) = 1

TLTL−1√εσ
.

• Reconstruct the sensor and actuator faults using Equations(43) and(44).

5. Numerical Example

In this section, a three-state variable continuous stirred tank reactor (CSTR) system is
utilized to show the effectiveness of the proposed sliding mode observer in both actuator
and sensor faults reconstruction in the presence of an unknown disturbance. To show the
performance improvement of the proposed approach, the obtained results are compared to
the LMI approach presented in ref. [17].

Consider a well-mixed variable CSTR in which a multi-component chemical reaction
A 
 B → C is being carried out. The nonlinear dynamics of the CSTR is given by the
following model [21],

.
x =

−4 0.8796 0
3 −3.6388 0
0 1.7592 −1

x +

0
1
0

u +

 0.5x2
2

−1.5x2
2

x2
2

, (45)

where x = [x1 x2 x3]
T , and the states represent the concentrations of the species A, B, and C,

respectively. To check the advantage of the proposed method, two faults and a disturbance
are added to the dynamic (45) as

.
x =

−4 0.8796 + 0.5x2 0
3 −3.6388− 1.5x2 0
0 1.7592 + x2 −1

x +

0
1
0

u

+

1
0
0

 fa +

1
1
1

ξ

y =

0 1 0
1 0 0
0 0 1

x +

1
0
0

 fs

. (46)
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It is supposed that the concentration of B is dimensionless, which means that
x2 ∈ [−1 1]. Consequently, by using TS rules, two membership functions can be defined as

h1 =
1− x2

2
; h2 =

1 + x2

2
. (47)

Therefore, the local linear TS matrices can be determined as

A1 =

−4 0.8796− 0.5 0
3 −3.6388 + 1.5 0
0 1.7592− 1 −1

; B1 =

0
1
0

; M1 =

1
0
0

; D1 =

1
1
1


A2 =

−4 0.8796 + 0.5 0
3 −3.6388− 1.5 0
0 1.7592 + 1 −1

; B2 =

0
1
0

; M2 =

1
0
0

; D2 =

1
1
1

.

(48)

The TS fuzzy system matrices satisfy all the assumptions; therefore, the TS fuzzy
sliding observer (16) can be designed.

For simulation, the parameters and input signal are chosen as u = sin(t), A f = 1,
As = −5I, ηd.i = ηa = 25, ηs = 25, δa = 0.01 and δs = 0.01. and the initial conditions are
chosen as X0 =

[
1 1.2 1 0

]T and X̂0 =
[
1.5 2.8 0.5 0

]T . Moreover, the disturbance
is chosen as d = 0.1 sin(0.2t)x3 and the shape is shown in Figure 1.
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Figure 1. Disturbance d(t).

The maximum Lipschitz constant and the minimum H∞ performance gain obtained
through fmincon function in MATLAB on Theorem 1 are γ∗ = 0.8358 and ϑ∗ = 0.2982. The
observer matrices are derived as

Gl.1 =


0.4499 1 0
3.3912 3 0
4.8998 0 0
1.1852 0 4

, Gl.2 =


2.4723 1 0
−0.2487 3 0
8.9447 0 0
1.7921 0 4

,

Gn.1 =


0 1 0

1.1852 0 0
1 0 0
0 0 1

, Gn.2 =


0 1 0

1.7921 0 0
1 0 0
0 0 1

.

It should be noted that the initial point for fmincon is chosen based on the results of
the related published papers. Figure 2 shows the state estimation error which converges to
a neighborhood close to zero due to the unknown disturbance.
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Figures 3 and 4 show that the proposed TS-based SMO is able to reconstruct the
simultaneous faults with a small error in the presence of an unknown disturbance.
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The proposed approach is compared with another non-quadratic Lyapunov-based
approach using linear optimization analysis based on LMIs [17]. Figure 5 describes the
fault estimation errors using both approaches.



Sensors 2022, 22, 6866 12 of 14

Sensors 2022, 22, x FOR PEER REVIEW 12 of 15 
 

 

 
Figure 3. Actuator fault 𝑓(𝑡) (by blue solid line) and its estimation 𝑓 (𝑡) (by red dashed line). 

 
Figure 4. Sensor fault 𝑓௦(𝑡) (by blue solid line) and its estimation 𝑓௦(𝑡) (by red dashed line). 

The proposed approach is compared with another non-quadratic Lyapunov-based 
approach using linear optimization analysis based on LMIs [17]. Figure 5 describes the 
fault estimation errors using both approaches. 

 
(a) 

Sensors 2022, 22, x FOR PEER REVIEW 13 of 15 
 

 

  
(b) 

Figure 5. Fault estimation errors (a). Actuator fault, (b). Sensor fault (the proposed approach by red 
solid line and ref. [17] by green dashed line). 

As can be seen, the proposed nonlinear approach is less conservative and can esti-
mate both actuator and sensor faults with smaller errors. In addition, the proposed ap-
proach has less computational burden. In Table 1, a quantitative comparison between the 
proposed approach and the LMI approach presented in ref. [17] is considered. In this ta-
ble, the Euclidean and infinity norms of the fault error estimations are compared and the 
improvements are calculated as 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 (%) = ቀிିிி ቁ ∗ 100, (49)

where 𝐹 and 𝐹 represent the ‖𝐸𝑟𝑟𝑜𝑟 𝑜𝑓 𝑓‖ using the LMI approach [17] and the non-
linear proposed approach, respectively. 

Table 1. The norm specifications of the fault reconstruction errors for two different approaches. 

 ‖𝒆𝒇𝒂‖𝟐 ‖𝒆𝒇𝒂‖ஶ ‖𝒆𝒇𝒔‖𝟐 ‖𝒆𝒇𝒔‖ஶ 
Proposed Approach 23.9858 0.3820 15.3073 0.4376 

[17] 53.3519 0.5704 33.6076 0.7679 
Improvement (%) +55.04 +33.03 +54.45 +43.01 

As can be seen in Table 1, the proposed approach improves the fault estimation ac-
curacies by more than 30%. 

6. Discussion 
In this paper, a nonlinear optimization approach for simultaneous actuator and sen-

sor fault reconstruction in nonlinear systems subjected to unknown disturbances was pro-
posed. First, an augmented system with just an actuator fault was created. Then, by using 
the fuzzy Lyapunov stability analysis and two changes of coordinates, the parameters of 
a sliding mode observer were designed through a nonlinear optimization problem while 
maximizing the Lipschitz constant and minimizing the 𝐻ஶ performance index. The opti-
mization problem was solved by using fmincon in MATLAB as a nonlinear optimization 
tool. By utilizing the optimum points, both actuator and sensor faults were reconstructed 
properly. Finally, the simulation results showed a considerable increase in the fault recon-
struction accuracy with constraints with smaller dimensions. 

 
 

Figure 5. Fault estimation errors (a). Actuator fault, (b). Sensor fault (the proposed approach by red
solid line and ref. [17] by green dashed line).

As can be seen, the proposed nonlinear approach is less conservative and can estimate
both actuator and sensor faults with smaller errors. In addition, the proposed approach
has less computational burden. In Table 1, a quantitative comparison between the pro-
posed approach and the LMI approach presented in ref. [17] is considered. In this table,
the Euclidean and infinity norms of the fault error estimations are compared and the
improvements are calculated as

Improvement (%) =

(
Fl − Fn

Fl

)
∗ 100, (49)

where Fn and Fl represent the ‖ Error o f f ‖ using the LMI approach [17] and the nonlinear
proposed approach, respectively.

Table 1. The norm specifications of the fault reconstruction errors for two different approaches.

‖efa‖2 ‖efa‖∞ ‖efs‖2 ‖efs‖∞
Proposed Approach 23.9858 0.3820 15.3073 0.4376

[17] 53.3519 0.5704 33.6076 0.7679
Improvement (%) +55.04 +33.03 +54.45 +43.01

As can be seen in Table 1, the proposed approach improves the fault estimation
accuracies by more than 30%.
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6. Discussion

In this paper, a nonlinear optimization approach for simultaneous actuator and sensor
fault reconstruction in nonlinear systems subjected to unknown disturbances was proposed.
First, an augmented system with just an actuator fault was created. Then, by using the fuzzy
Lyapunov stability analysis and two changes of coordinates, the parameters of a sliding
mode observer were designed through a nonlinear optimization problem while maximizing
the Lipschitz constant and minimizing the H∞ performance index. The optimization
problem was solved by using fmincon in MATLAB as a nonlinear optimization tool. By
utilizing the optimum points, both actuator and sensor faults were reconstructed properly.
Finally, the simulation results showed a considerable increase in the fault reconstruction
accuracy with constraints with smaller dimensions.
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