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Abstract: This paper investigates the problem of source localization using signal time-of-arrival (TOA)
measurements in the presence of unknown start transmission time. Most state-of-art methods are
based on convex relaxation technologies, which possess global solution for the relaxed optimization
problem. However, computational complexity of the convex optimization–based algorithm is usually
large, and need CVX toolbox to solve it. Although the two stage weighted least squares (2SWLS)
algorithm has very low computational complexity, its estimate performance is susceptible to sensor
geometry and threshold phenomenon. A new algorithm that is directly derived from maximum
likelihood estimator (MLE) is developed. The newly proposed algorithm is named as fixed point
iteration (FPI); it only involves simple calculations, such as addition, multiplication, division, and
square-root. Unlike state-of-the-art methods, there is no matrix inversion operation and can avoid
the unstable performance incurred by singular matrix. The FPI algorithm can be easily extended to
the scenario with sensor position errors. Finally, simulation results demonstrate that the proposed
algorithm reaches a good balance between computational complexity and localization accuracy.

Keywords: fixed point iteration (FPI); sensor position errors; source localization; time-of-arrival
(TOA)

1. Introduction

Source localization has a wide range of applications, such as navigation, monitoring,
tracking, rescue and so on. There are lots of methods can be used to determine the
source position, where time-of-arrival (TOA), time-difference-of-arrival (TDOA), time-
delay (TD), received signal strength (RSS), angle-of-arrival (AOA) and their combinations
are commonly positioning schemes [1–8].

A TOA-based localization system requires that the source and sensors be accurately
time synchronized. However, it is hard to maintain the accurate synchronization when the
source is non-cooperative [9]. The pseudo ranges are corrupted with an unknown distance
when the start transmission time is unknown in the asynchronous networks. As a result,
study on the asynchronous TOA (ATOA)-based localization problem is very important in
the practice.

In the work reported in [10–18], the ATOA-based localization problem can be ad-
dressed by two ways: (a) convex optimization methods, including semidefinite program-
ming (SDP) and second-order-cone programming (SOCP) [10–17]; (b) two stage weighted
least squares (2SWLS) method [18].

Convex optimization methods have the merit of global solution, but their compu-
tational complexity is usually huge and need a CVX toolbox to solve the optimization
problem [19]. For example, Xu et al. [10] developed two SDP-based algorithms correspond-
ing to two step least squares (2LS) and min–max (MMA) criterion, respectively. Then
in [14], Zou et al. showed that the original 2LS-based SDP algorithm cannot provide a good
solution because the weighted matrix G is singular. In order to improve the tightness of
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the original SDP algorithm, second-order-cone constraints and penalty term are jointly
added to the original SDP algorithm. However, the algorithm proposed in [14] needs to
calculate SDP problem multiple times and results in great computational burden. Recently,
in [17], Ma et al. formulated an SDP algorithm to address the constraint existing in the
WLS problem, which was formulated by Huang et al. in [18].

In [18], Huang et al. proposed a 2SWLS method to jointly estimate the start trans-
mission time and the location of source. The 2SWLS method has very low computational
complexity, but its localization accuracy is highly susceptible to sensor geometry when it is
uniform circular array and the source is close to the array center. Besides this, the 2SWLS
method presents a threshold phenomenon.

Another challenging issue for ATOA localization is sensor position errors, which could
drastically degrade the accuracy [20]. Several works have addressed this problem [10,13–16],
which have shown that using convex optimization could effectively address the sensor
position errors. However, their computational complexity is also large.

In this paper, we develop a fixed point iteration (FPI) algorithm for the ATOA-based
localization problem. The FPI algorithm is entirely and directly developed from maximum
likelihood estimator (MLE). The FPI solution satisfies the equation that gradient is equal to
zero. It is different from state-of-the-art methods. First, unlike weighted least squares (WLS)
based algorithms, there is no approximation in its derivation. Second, unlike semidefinite
programming (SDP) based algorithms, there is also no convex relaxation in its derivation.
Third, unlike Gauss–Newton or Quasi-Newton based algorithms [21,22], there is no first-
order Taylor series expansion in its derivation. Besides this, the proposed FPI algorithm
can be easily tailored to the scenario with sensor position errors.

The rest of this paper is organized as follows. Section 2 develops an iterative algorithm
when sensors positions are accurate. The algorithm is then extended to the scenario with
non-accurate sensors positions in Section 3. Simulation results are presented in Section 4 to
compare the performances of the proposed algorithm, state-of-art algorithms and Cramér-
Rao lower bound (CRLB).

The following notations are used throughout the paper. Bold lowercase and uppercase
letters denote vectors and matrices, respectively; A(:, i) denotes the ith column of matrix A,
and A(i, :) denotes the ith row of matrix A; tr(A) is the trace of A; IM is the M×M identity
matrix, 1M is the column vector of M ones, and 0M is the column vector of M zeros; ‖·‖ is
the l2 norm; ⊗ is the Kroneker product of two matrices; and E[·] is the expectation.

2. Localization with Accurate Sensor Positions

Consider a network with M sensors and one source whose location u ∈ Rm×1 is
unknown and to be estimated (m = 2 or 3). The ith sensor position si is accurate known.

Under line-of-sight condition, the range-of-arrival (ROA) measurements between
sensor i and the source are expressed as

ri = t0c + ‖u− si‖+ ni, i = 1, · · · , M (1)

where c is the known signal propagation speed, and t0 is unknown start transmission time.
In the next, t0c will be replaced by d0, and Equation (1) can be written as

ri = d0 + ‖u− si‖+ ni (2)

where ni, i = 1, · · · , M, are the ROA measurement noise, which are modeled as zero-mean
Gaussian random variables with covariance matrix Q = diag([σ2

1 , . . . , σ2
M]). The maximum

likelihood estimator (MLE) from Equation (2) is formulated as

min
u,d0

M

∑
i=1

(
ri − d0 − ‖u− si‖

)2

σ2
i

. (3)
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The above formulation can also be written as

min
u,d0,d

(r− d01M − d)TQ−1(r− d01M − d) (4a)

s.t. di = ‖u− si‖. (4b)

where d = [d1, . . . , dM]T . Let gradient of objective function in (4a) with respect to d0 to zero

−21T
MQ−1(r− d01M − d) = 0 (5)

and we can obtain

d0 =
1T

MQ−1(r− d)
1T

MQ−11M
. (6)

Putting above d0 back to Equation (4), we obtain

min
u,d

(r− d)TG(r− d) (7a)

s.t. di = ‖u− si‖ (7b)

where

G = IM −
1M1T

MQ−1

1T
MQ−11M

. (8)

Equation (7) is a non-convex optimization problem, and it can be resorted to convex
relaxation method [14]. However, the convex optimization–based algorithm usually has
very high computational complexity, and need CVX toolkit to solve it. Next, we develop an
alternative solution for the above problem. First, Equation (7) can be expressed as the form
of unconstrained optimization problem

min
u

M

∑
i=1

M

∑
j=1

G(i, j)(ri − ‖u− si‖)(rj −
∥∥u− sj

∥∥). (9)

The gradient of objective function in (9) with respect to u is

g = −2
M

∑
i=1

M

∑
j=1

G(i, j)(ri − ‖u− si‖)
u− sj∥∥u− sj

∥∥ . (10)

The necessary condition for the optimization problem in (9) is

g = 0 (11)

i.e.,

M

∑
i=1

G(i, i)
(
ri

u− si
‖u− si‖

− (u− si)
)
+

M

∑
i=1

M

∑
j 6=i

G(i, j)(ri − ‖u− si‖)
u− sj∥∥u− sj

∥∥ = 0. (12)

Next, move the linear function of u to one side of the equation, and the constant term and
nonlinear function of u to another side of the equation

M

∑
i=1

G(i, i)u =
M

∑
i=1

G(i, i)
(
ri

u− si
‖u− si‖

+ si
)
+

M

∑
i=1

M

∑
j 6=i

G(i, j)(ri − ‖u− si‖)
u− sj∥∥u− sj

∥∥ . (13)
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Then

u =
1

tr(G)

( M

∑
i=1

G(i, i)
(
ri

u− si
‖u− si‖

+ si
)
+

M

∑
i=1

M

∑
j 6=i

G(i, j)(ri − ‖u− si‖)
u− sj∥∥u− sj

∥∥). (14)

Moreover,

tr(G) = tr(IM −
1M1T

MQ−1

1T
MQ−11M

) = M− 1. (15)

As a result, the FPI computation of u is

uk = f (uk−1) =
1

M− 1

( M

∑
i=1

G(i, i)
(
ri

uk−1 − si
‖uk−1 − si‖

+ si
)
+

M

∑
i=1

M

∑
j 6=i

G(i, j)(ri − ‖uk−1 − si‖)
uk−1 − sj∥∥uk−1 − sj

∥∥). (16)

It should be noted that the above derivations are based on the necessary condition. In other
words, the result from above FPI may be a stationary point, i.e., a local maximum, a local
minimum point or a saddle point. In order to obtain the global minimum point, we adopt
the following steps. First is to use multiple initial values to calculate FPI in Equation (16).
Without loss of generality, the set of initial values can be set as follows (from (16), it can
be seen that the initial values should be not equal to the location of sensors. The main
principle for the setting of initial values is that it includes points located inside and outside
the convex hull of sensors).

U0 = [
1
M

M

∑
i=1

si, 2s1 −
1
M

M

∑
i=1

si, . . . , 2sM −
1
M

M

∑
i=1

si]. (17)

Then, we calculate the corresponding cost function for each initial value

c f (n) = (r− d∗n)
TG(r− d∗n), n = 1, . . . , M + 1 (18)

where d∗n = [‖u∗n − s1‖, . . . , ‖u∗n − sM‖]T . Finally, we choose the result that minimizes the
cost function.

Besides this, in order to reduce the calculation amount, we take the following measure.
If c f (n) < µ for a certain n, then we stop calculating the iterations for the rest initial values.
Next, we show how to determine the threshold µ. Reviewing (3), we can obtain

E[
M

∑
i=1

(
ri − d0 − ‖u− si‖

)2

σ2
i

] = E[
M

∑
i=1

n2
i

σ2
i
] = M (19)

and

E[(r− d)TG(r− d)] = M (20)

for true source location u. As a result, the threshold is set to µ = M.
The above proposed algorithm procedures are summarized in Algorithm 1.
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Algorithm 1: Localization with scenario 1: accurate sensor position.
Data: ri, si, G, U0, Kmax, ε;
Result: u∗

1 for n = 1 : M + 1 do
2 u0 ← U0(:, n);
3 u∗ ← u0;
4 k← 1;
5 while k ≤ Kmax do
6 uk ← compute (16);
7 if ‖u∗ − uk‖ ≥ ε then
8 u∗ ← uk;
9 else

10 break;
11 end
12 k← k + 1;
13 end
14 u∗n ← u∗;
15 c f (n)← compute (18);
16 if c f (n) < M then
17 u∗ ← u∗n ;
18 break;
19 end
20 end
21 u∗ ← u∗n that minimizes c f (n);

3. Localization with Non-Accurate Sensor Positions

In this section, we will extend the FPI localization algorithm to the scenario with
non-accurate sensor positions. First, the ith true but unknown sensor location is s0

i . The
available sensor location can be denoted as

si = s0
i + βi, i = 1, · · · , M (21)

where βi is a zero-mean white Gaussian vector with covariance matrix δ2
i Im [23]. The MLE

is formulated as

min
u,d0,s0

i

M

∑
i=1

(
ri − d0 −

∥∥u− s0
i

∥∥)2

σ2
i

+
M

∑
i=1

∥∥si − s0
i

∥∥
δ2

i
. (22)

Putting (6) into (22), this results in

min
u,d,s0

i

(r− d)TG(r− d) +
M

∑
i=1

∥∥si − s0
i

∥∥2

δ2
i

(23a)

s.t. di =
∥∥∥u− s0

i

∥∥∥. (23b)

Let x = [u; s0
1; . . . ; s0

M], s = [s1; . . . ; sM], Ws = Qs ⊗ Im, Qs = diag([ 1
δ2

1
, . . . , 1

δ2
M
]), Pi =

[Im, 0m,m(i−1),−Im, 0m,m(M−i)], B = [0mM,m, ImM]. Equation (23) can be written as

min
x

M

∑
i=1

M

∑
j=1

G(i, j)(ri − ‖Pix‖)(rj −
∥∥Pjx

∥∥) + mM

∑
i=1

Ws(i, i)
(
s(i)− B(i, :)x

)2. (24)
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The gradient of objective function in Equation (24) with respect to x is

g =− 2
M

∑
i=1

M

∑
j=1

G(i, j)(ri − ‖Pix‖)
PT

j Pjx∥∥Pjx
∥∥ − 2

mM

∑
i=1

Ws(i, i)
(
s(i)− B(i, :)x

)
B(i, :)T . (25)

The necessary condition for the optimization problem in (24) is

g = 0. (26)

Equivalent to

M

∑
i=1

G(i, i)ri
PT

i Pix
‖Pix‖

−
M

∑
i=1

G(i, i)PT
i Pix +

M

∑
i=1

M

∑
j 6=i

G(i, j)(ri − ‖Pix‖)
PT

j Pjx∥∥Pjx
∥∥+

mM

∑
i=1

Ws(i, i)s(i)B(i, :)T −
mM

∑
i=1

Ws(i, i)B(i, :)TB(i, :)x = 0 (27)

i.e.,

( M

∑
i=1

G(i, i)PT
i Pi +

mM

∑
i=1

Ws(i, i)B(i, :)TB(i, :)
)

x =
M

∑
i=1

G(i, i)ri
PT

i Pix
‖Pix‖

+
M

∑
i=1

M

∑
j 6=i

G(i, j)(ri − ‖Pix‖)
PT

j Pjx∥∥Pjx
∥∥

+
mM

∑
i=1

Ws(i, i)s(i)B(i, :)T . (28)

Finally,

x =
( M

∑
i=1

G(i, i)PT
i Pi +

mM

∑
i=1

Ws(i, i)B(i, :)TB(i, :)
)−1
·

[
M

∑
i=1

G(i, i)ri
PT

i Pix
‖Pix‖

+
M

∑
i=1

M

∑
j 6=i

G(i, j)(ri − ‖Pix‖)
PT

j Pjx∥∥Pjx
∥∥ +

mM

∑
i=1

Ws(i, i)s(i)B(i, :)T ]. (29)

The FPI computation of x is

xk =
( M

∑
i=1

G(i, i)PT
i Pi +

mM

∑
i=1

Ws(i, i)B(i, :)TB(i, :)
)−1
·

[
M

∑
i=1

G(i, i)ri
PT

i Pixk−1

‖Pixk−1‖
+

mM

∑
i=1

Ws(i, i)s(i)B(i, :)T +
M

∑
i=1

M

∑
j 6=i

G(i, j)(ri − ‖Pixk−1‖)
PT

j Pjxk−1∥∥Pjxk−1
∥∥ ]. (30)

The proposed algorithm for scenario 2 is shown in Algorithm 2. It includes two stages. The
first stage is to carry out Algorithm 1 to obtain an initial guess of source position by using
the non-accurate sensor positions. The second stage is to update x using Equation (30) and
taking the result from stage one as initial value.
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Algorithm 2: Localization with scenario 2: non-accurate sensor positions.
Data: ri, si, s, Ws, G, Pi, B, U0, Kmax, ε;
Result: u∗

1 first stage: deeming si are accurate to obtain an initial value of u;
2 for n = 1 : M + 1 do
3 u0 ← U0(:, n);
4 u∗ ← u0;
5 k← 1;
6 while k ≤ Kmax do
7 uk ← compute (16);
8 if ‖u∗ − uk‖ ≥ ε then
9 u∗ ← uk;

10 else
11 break;
12 end
13 k← k + 1;
14 end
15 c f (n)← compute (18);
16 u∗m ← u∗;
17 if c f (n) < M then
18 break;
19 end
20 end
21 u∗ ← u∗n that minimizes c f (n);
22 second stage: update x;
23 x0 ← [u∗; s];
24 x∗ ← x0;
25 while k ≤ Kmax do
26 xk ← compute (30);
27 if ‖x∗ − xk‖ ≥ ε then
28 x∗ ← xk;
29 else
30 break;
31 end
32 k← k + 1;
33 end

4. Simulation Results

In this section, two scenarios with accurate and non-accurate sensor positions are
respectively considered to demonstrate the performance of two proposed algorithms.

In the first scenario, we compare several algorithms: the proposed Algorithm 1 (with
one middle point as initial value labeled as ‘Proposed-Mid’, with multiple initial values
labeled as ‘Proposed-Multi’), the Gauss–Newton method (in the simulation, the result
of Gauss–Newton method may be NaN due to the matrix is singular in the calculation
of matrix inversion. In order to avoid this case, it is set that, if the distance between the
updated estimate and the initial value is large than 1000, then the iteration will be stopped
and output the initial value as its result) with one middle point as initial value labeled
as ‘Gauss–Newton-Mid’, with multiple initial values labeled as ‘Gauss–Newton-Multi’;
the derivation for the Gauss–Newton method is shown in Appendix A), 2SWLS [18],
SDP-Zou [14], SDP–Ma [17] and CRLB.
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In the second scenario, we compare the proposed Algorithm 2 (labeled as ‘Proposed’)
with the Gauss–Newton method (labeled as ‘Gauss–Newton’), SDP–Zou [14] and CRLB
when sensor positions are non-accurate. The derivation of the Gauss–Newton method with
position errors for the problem of (24) is given in Appendix B.

The setting of parameters are the same as in [14]: a network with four sensors, and
one source is simulated. The positions of the sensors are [−10,−10]Tm, [−10, 10]Tm,
[10,−10]Tm, [10, 10]Tm, and the location of source is randomly chosen from a square
[−15, 15]m× [−15, 15]m. The start transmission time t0 is drawn from uniform distribution
U[10, 40]ns. Sensors’ position covariance matrix is δ2I2. The range measurement covariance
matrix is Q = σ2IM. The initial set for Algorithm 1 is U0 = [0,−20,−20, 20, 20; 0,−20, 20,
−20, 20]. Five penalty factors η1, η2, η3, η4, η5 equal to 10−4, 10−3, 10−2, 10−1, 100 are used
for the SDP–Zou algorithm. The SDP–Zou and SDP–Ma algorithms are implemented by
CVX toolbox using SeDuMi as a solver and with best precision [24]. The Gauss–Newton
methods and the proposed FPI algorithm have same initials. Root mean square errors
(RMSEs) are drawn from 4000 Monte Carlo realizations in the following simulations.

From Figure 1, we have following observations: (1) only the proposed algorithm with
multiple initial values and the SDP–Zou algorithm can reach CRLB; (2) the ‘Proposed-Multi’
algorithm is superior to the ‘Proposed-Mid’ algorithm, which validates the existence of
other stationary point except for the global minimum point in the problem of MLE; (3) the
Gauss–Newton methods have inferior performance due to its first-order approximation in
the derivations; (4) the 2SWLS algorithm has the worst performance even with small noise
condition, which is due to the sensor geometry is uniform circular array and the source is
close to the array center occasionally [25]; (5) the SDP–Ma algorithm has poor performance,
which is due to the number of sensors, namely, 4, which results in rank-1 solution being
hard to obtain [17].
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2SWLS
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Gauss-Newton-Multi

Proposed-Mid

Gauss-Newton-Mid

SDP-Zou

SDP-Ma

Figure 1. RMSE vs. σ in scenario 1.

Besides this, the average running times of different algorithms are given in Table 1.
It can be seen that: (1) the 2SWLS algorithm has the lowest computation time, because it
only involves three times computation of WLS solution; (2) both SDP–Zou and SDP–Ma
algorithms are time-consuming to obtain the solutions by CVX toolbox; moreover, the
SDP–Zou algorithm needs to solve the SDP problem five times; (3) the average running
time of ‘Proposed-Multi’ is large than but less than twice of the ‘Proposed-Mid’, which
validates that the stop criterion in (20) can help to reduce the calculation amount. In the
simulation, we found that if µ = 2M the calculation amount can be further reduced; (4) the
Gauss–Newton algorithms are faster than the proposed FPI algorithms.
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Table 1. The average running time [ms] of the considered algorithms with the two scenarios, in which
a star denotes that the algorithm is not fitting for a certain scenario. CPU: i7-8700 3.2 GHz.

Algorithms
Scenarios

1 2

2SWLS 0.19 *
Proposed-Multi 8.6 *
Gauss–Newton-Multi 0.94 *
Proposed-Mid 5.3 *
Gauss–Newton-Mid 0.67 *
SDP–Ma 412 *
SDP–Zou 1773 1861
Proposed * 28.6
Gauss–Newton * 2.6

Figures 2 and 3, respectively, evaluate the source and sensors estimate performances
of different algorithms versus δ when the locations of sensors are non-accurate. From these
two figures, it is observed that the performance of the proposed algorithm is superior to
the other two algorithms. Besides this, in Table 1, it can be seen that the average running
time of the proposed algorithm is much less than the SDP–Zou algorithm, but greater than
the Gauss–Newton algorithm.
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Figure 2. RMSE of source vs. δ with σ = 0.1 m in scenario 2.
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Figure 3. RMSE of sensors vs. δ with σ = 0.1 m in scenario 2.
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Finally, from the above results and analyses, we can obtain a conclusion: The proposed
FPI algorithms reach a good balance between estimation accuracy and calculation amount.

5. Conclusions

Two FPI algorithms for ATOA-based localization problem are respectively developed
corresponding to the scenarios with accurate and non-accurate sensor positions. First, the
problem of MLE for the unknown start transmission time and source position is formulated.
Next, the gradient of objective function in MLE is derived, then we simplify the equation
with gradient equal to zero. Finally, we extract the linear variable to one side of the equation
and obtain the FPI algorithm. The simulation results validate the performances of the two
proposed algorithms in terms of accuracy and computation.
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Abbreviations
The following abbreviations are used in this manuscript:

TOA Time-of-arrival
2SWLS Two-step weighted least squares
MLE Maximum likelihood
PFI Fixed point iteration
TDOA Time-difference-of-arrival
TD Time delay
RSS Received signal strength
AOA angle-of-arrival
ATOA Asynchronous TOA
SDP Semidefinite programming
SOCP Second-order cone programming
WLS Weighted least squares
CRLB Cramer-Rao lower bound
RMSE Root mean-square error

Appendix A. Gauss–Newton Method for Scenario 1

In this appendix, the Gauss–Newton method for scenario 1 with accurate sensor
positions is derived. Rewriting the MLE problem in (9)

min
u

M

∑
i=1

M

∑
j=1

G(i, j)(ri − ‖u− si‖)(rj −
∥∥u− sj

∥∥) (A1)

The first-order Taylor series expansion of ‖u− si‖ is

‖u− si‖ ≈ ‖u0 − si‖+
(u0 − si)

T(u− u0)

‖u0 − si‖
(A2)
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Then, taking (A2) into (A1) results

min
u

M

∑
i=1

M

∑
j=1

G(i, j)
(
ri − ‖u0 − si‖ −

(u0 − si)
T(u− u0)

‖u0 − si‖
)(

rj −
∥∥u0 − sj

∥∥− (u0 − sj)
T(u− u0)∥∥u0 − sj

∥∥ )
(A3)

Let the gradient of objective function in (A3) with u to zero

M

∑
i=1

M

∑
j=1
− 2G(i, j)

(
ri − ‖u0 − si‖ −

(u0 − si)
T(u− u0)

‖u0 − si‖
) (u0 − sj)∥∥u0 − sj

∥∥ = 0 (A4)

Set

h0 = [r1 − ‖u0 − s1‖, . . . , rM − ‖u0 − sM‖]T (A5a)

H0 = [
(u0 − s1)

‖u0 − s1‖
, . . . ,

(u0 − sM)

‖u0 − sM‖
] (A5b)

Then (A4) can be recast as

H0Gh0 = H0GHT
0 (u− u0) (A6)

Finally, the updating of u is

u = u0 + (H0GHT
0 )
−1H0Gh0 (A7)

Appendix B. Gauss–Newton Method for Scenario 2

In this appendix, the Gauss–Newton method for scenario 2 with non-accurate sensor
positions is derived. Rewriting the MLE problem in (24)

min
x

M

∑
i=1

M

∑
j=1

G(i, j)(ri − ‖Pix‖)(rj −
∥∥Pjx

∥∥) + mM

∑
i=1

Ws(i, i)
(
s(i)− B(i, :)x

)2 (A8)

The first-order Taylor series expansion of ‖Pix‖ is

‖Pix‖ ≈ ‖Pix0‖+
(PT

i Pix0)
T(x− x0)

‖Pix0‖
(A9)

Then, taking (A9) into (A8) results

min
u

M

∑
i=1

M

∑
j=1

G(i, j)
(
ri − ‖Pix0‖ −

(PT
i Pix0)

T(x− x0)

‖Pix0‖
)(

rj −
∥∥Pjx0

∥∥− (PT
j Pjx0)

T(x− x0)∥∥Pjx0
∥∥ )

+

mM

∑
i=1

Ws(i, i)
(
s(i)− B(i, :)x

)2 (A10)

Let the gradient of objective function in (A10) with x to zero

M

∑
i=1

M

∑
j=1
−2G(i, j)

(
ri − ‖Pix0‖ −

(PT
i Pix0)

T(x− x0)

‖Pix0‖
)PT

j Pjx0∥∥Pjx0
∥∥ − mM

∑
i=1

2Ws(i, i)
(
s(i)− B(i, :)x

)
B(i, :)T = 0 (A11)

Set

h0 = [r1 − ‖P1x0‖, . . . , rM − ‖PMx0‖]T (A12a)

H0 = [
PT

1 P1x0

‖P1x0‖
, . . . ,

PT
MPMx0

‖PMx0‖
] (A12b)
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Then (A11) can be recast as

H0G
(
h0 −HT

0 (x− x0)
)
+ BTWs(s− Bx) = 0 (A13)

Finally, the updating of x is

x = (H0GHT
0 + BTWsB)−1(H0G(h0 + HT

0 x0) + BTWss
)

(A14)
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