Industrial Soft Sensor Optimized by Improved PSO: A Deep Representation-Learning Approach
Abstract
:1. Introduction
- Present an improved PSO for the automatic adjustment of hyperparameters of deep neural networks based on the relevance of extracted representations;
- Carry out the extraction of representative features through the analysis of mutual information used in the PSO evaluation function;
- Improve the performance of the SAE model used for feature extraction in the unsupervised learning stage;
- Obtain a neural model with relevant features generated from an optimal combination of hyperparameters using the unlabeled data.
2. Preliminaries
2.1. Autoencoders
2.2. Particle Swarm Optimization
3. The Proposed Method
3.1. Data Preprocessing
3.2. Representation-Based PSO
4. Case Studies and Results
- Deep learning-based methods: SAE with grid search (GS-SAE) and SAE with random search (RS-SAE);
- Deep learning-based method with PSO optimization: SAE with PSO tuning hyperparameters through MSE only (PSO-SAE);
- Proposed relevant representation-based PSO soft sensor model: RBPSO-SAE.
4.1. Industrial Debutanizer Column Process
4.2. RBPSO-SAE
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Souza, F.A.A.; Araújo, R.; Mendes, J. Review of soft sensor methods for regression applications. Chemom. Intell. Lab. Syst. 2015, 152, 69–79. [Google Scholar] [CrossRef]
- Zhong, W.; Yu, J. MIMO Soft Sensors for Estimating Product Quality with On-line Correction. Chem. Eng. Res. Des. 2000, 78, 612–620. [Google Scholar] [CrossRef]
- Yuan, X.; Ge, Z.; Song, Z. Locally Weighted Kernel Principal Component Regression Model for Soft Sensing of Nonlinear Time-Variant Processes. Ind. Eng. Chem. Res. 2014, 53, 13736–13749. [Google Scholar] [CrossRef]
- Ge, Z.; Huang, B.; Song, Z. Mixture semisupervised principal component regression model and soft sensor application. Process. Syst. Eng. 2014, 60, 533–545. [Google Scholar] [CrossRef]
- Yang, X.; Liu, X.; Xu, C. Robust Mixture Probabilistic Partial Least Squares Model for Soft Sensing With Multivariate Laplace Distribution. IEEE Trans. Instrum. Meas. 2021, 70, 1–9. [Google Scholar] [CrossRef]
- Bao, L.; Yuan, X.; Ge, Z. Co-training partial least squares model for semi-supervised soft sensor development. Chemom. Intell. Lab. Syst. 2015, 147, 75–85. [Google Scholar] [CrossRef]
- Yan, W.; Shao, H.; Wang, X. Soft sensing modeling based on support vector machine and Bayesian model selection. Comput. Chem. Eng. 2004, 28, 1489–1498. [Google Scholar] [CrossRef]
- Shang, C.; Gao, X.; Yang, F.; Huang, D. Novel Bayesian Framework for Dynamic Soft Sensor Based on Support Vector Machine With Finite Impulse Response. IEEE Trans. Control. Syst. Technol. 2014, 22, 1550–1557. [Google Scholar] [CrossRef]
- Yang, K.; Jin, H.; Chen, X.; Dai, J.; Wang, L.; Zhang, D. Soft sensor development for online quality prediction of industrial batch rubber mixing process using ensemble just-in-time Gaussian process regression models. Chemom. Intell. Lab. Syst. 2016, 155, 170–182. [Google Scholar] [CrossRef]
- Li, X.; Su, H.; Chu, J. Multiple Model Soft Sensor Based on Affinity Propagation, Gaussian Process and Bayesian Committee Machine. Chin. J. Chem. Eng. 2009, 17, 95–99. [Google Scholar] [CrossRef]
- Wang, G.; Jia, Q.S.; Zhou, M.; Bi, J.; Qiao, J.; Abusorrah, A. Artificial neural networks for water quality soft-sensing in wastewater treatment: A review. Artif. Intell. Rev. 2022, 55, 565–587. [Google Scholar] [CrossRef]
- Pani, A.K.; Amin, K.G.; Mohanta, H.K. Soft sensing of product quality in the debutanizer column with principal component analysis and feed-forward artificial neural network. Alex. Eng. J. 2016, 55, 1667–1674. [Google Scholar] [CrossRef]
- de Lima, J.M.M.; de Araújo, F.M.U. Industrial Semi-Supervised Dynamic Soft-Sensor Modeling Approach Based on Deep Relevant Representation Learning. Sensors 2021, 21, 3430. [Google Scholar] [CrossRef]
- Patterson, J.; Gibson, A. Deep Learning: A Practitioner’s Approach, 1st ed.; O’Reilly: Sebastopol, CA, USA, 2017; p. 214. [Google Scholar]
- Weston, J.; Ratle, F.; Mobahi, H.; Collobert, R. Deep Learning via Semi-supervised Embedding. In Neural Networks: Tricks of the Trade. Lecture Notes in Computer Science; Montavon, G., Orr, G.B., Müller, K.R., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7700. [Google Scholar] [CrossRef]
- Zabalza, J.; Ren, J.; Zheng, J.; Zhao, H.; Qing, C.; Yang, Z.; Marshall, S. Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging. Neurocomputing 2016, 185, 1–10. [Google Scholar] [CrossRef]
- Zhou, P.; Han, J.; Cheng, G.; Zhang, B. Learning Compact and Discriminative Stacked Autoencoder for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4823–4833. [Google Scholar] [CrossRef]
- Qi, Y.; Wang, Y.; Zheng, X.; Wu, Z. Robust feature learning by stacked autoencoder with maximum correntropy criterion. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Florence, Italy, 4–9 May 2014; pp. 6716–6720. [Google Scholar] [CrossRef]
- Wang, L.; You, Z.-H.; Chen, X.; Xia, S.X.; Liu, F.; Yan, X.; Song, K.J. A Computational-Based Method for Predicting Drug–Target Interactions by Using Stacked Autoencoder Deep Neural Network. J. Comput. Biol. 2018, 25, 361–373. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Fu, H.; Yu, L.; Gong, P.; Feng, D.; Li, C.; Clinton, N. Stacked Autoencoder-based deep learning for remote-sensing image classification: A case study of African land-cover mapping. Int. J. Remote Sens. 2016, 37, 5632–5646. [Google Scholar] [CrossRef]
- Blume, S.; Benedens, T.; Schramm, D. Hyperparameter Optimization Techniques for Designing Software Sensors Based on Artificial Neural Networks. Sensors 2021, 21, 8435. [Google Scholar] [CrossRef]
- Kolar, D.; Lisjak, D.; Pająk, M.; Gudlin, M. Intelligent Fault Diagnosis of Rotary Machinery by Convolutional Neural Network with Automatic Hyper-Parameters Tuning Using Bayesian Optimization. Sensors 2021, 21, 2411. [Google Scholar] [CrossRef]
- Aquino-Brítez, D.; Ortiz, A.; Ortega, J.; León, J.; Formoso, M.; Gan, J.Q.; Escobar, J.J. Optimization of Deep Architectures for EEG Signal Classification: An AutoML Approach Using Evolutionary Algorithms. Sensors 2021, 21, 2096. [Google Scholar] [CrossRef]
- Kim, S.-H.; Geem, Z.W.; Han, G.-T. Hyperparameter Optimization Method Based on Harmony Search Algorithm to Improve Performance of 1D CNN Human Respiration Pattern Recognition System. Sensors 2020, 20, 3697. [Google Scholar] [CrossRef]
- Brodzicki, A.; Piekarski, M.; Jaworek-Korjakowska, J. The Whale Optimization Algorithm Approach for Deep Neural Networks. Sensors 2021, 21, 8003. [Google Scholar] [CrossRef] [PubMed]
- Weiming, S.; Xuemin, T.; Ping, W.; Xiaogang, D.; Sheng, C. Online soft sensor design using local partial least squares models with adaptive process state partition. Chemom. Intell. Lab. Syst. 2015, 114, 108–121, ISSN 0169-7439. [Google Scholar] [CrossRef]
- Bank, D.; Koenigstein, N.; Giryes, R. Autoencoders. arXiv 2020. [Google Scholar] [CrossRef]
- Chadha, G.S.; Rabbani, A.; Schwung, A. Comparison of semi-supervised deep neural networks for anomaly detection in industrial processes. In Proceedings of the 2019 IEEE 17th International Conference on Industrial Informatics (INDIN), Helsinki-Espoo, Finland, 22–25 July 2019; Volume 1, pp. 214–219. [Google Scholar]
- Bengio, Y.; Lamblin, P.; Popovici, D.; Larochelle, H. Greedy layer-wise training of deep networks. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2006; p. 19. [Google Scholar]
- Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313, 504–507. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Wang, J.; Jiang, Q. Deep relevant representation learning for soft sensing. Inf. Sci. 2020, 514, 263–274. [Google Scholar] [CrossRef]
- Eberhart, R.C.; Kennedy, J. A new optimizer using particle swarm theory. In Proceedings of the Sixth International Symposium on Micro Machine and Human Science, New York, NY, USA, 4–6 October 1995; pp. 39–43. [Google Scholar]
- Elbes, M.; Alzubi, S.; Kanan, T.; Al-Fuqaha, A.; Hawashin, B. A survey on particle swarm optimization with emphasis on engineering and network applications. Evol. Intel. 2019, 12, 113–129. [Google Scholar] [CrossRef]
- Singh, P.; Chaudhury, S.; Panigrahi, B.K. Hybrid MPSO-CNN: Multi-level Particle Swarm optimized hyperparameters of Convolutional Neural Network. Swarm Evol. Comput. 2021, 63, 100863. [Google Scholar] [CrossRef]
- Sun, Y.; Xue, B.; Zhang, M.; Yen, G.G. An Experimental Study on Hyper-parameter Optimization for Stacked Auto-Encoders. In Proceedings of the 2018 IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–8. [Google Scholar] [CrossRef]
- Haidong, S.; Ziyang, D.; Junsheng, C.; Hongkai, J. Intelligent fault diagnosis among different rotating machines using novel stacked transfer auto-encoder optimized by PSO. ISA Trans. 2020, 105, 308–319. [Google Scholar] [CrossRef]
- Eberhart, R.C.; Shi, Y. Particle swarm optimization: Developments, applications and resources. In Proceedings of the 2001 Congress on Evolutionary Computation, Seoul, Korea, 27–30 May 2001; pp. 81–86. [Google Scholar] [CrossRef]
- Goodfellow, I.; Yoshua, B.; Aaron, C. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Xiaochen, S.; Junxia, M.; Weili, X. Smart Soft Sensor Design with Hierarchical Sampling Strategy of Ensemble Gaussian Process Regression for Fermentation Processes. Sensors 2020, 20, 1957. [Google Scholar] [CrossRef]
- Cofta, P.; Kostas, K.; and Cezary, O. A conceptual model of measurement uncertainty in iot sensor networks. Sensors 2021, 21, 1827. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Wang, Y.; Yang, C.; Gui, W. Stacked isomorphic autoencoder based soft analyzer and its application to sulfur recovery unit. Inf. Sci. 2020, 534, 72–84. [Google Scholar] [CrossRef]
- Pan, B.; Jin, H.; Wang, L.; Qian, B.; Chen, X.; Huang, S.; Li, J. Just-in-time learning based soft sensor with variable selection and weighting optimized by evolutionary optimization for quality prediction of nonlinear processes. Chem. Eng. Res. Des. 2019, 144, 285–299. [Google Scholar] [CrossRef]
- Fortuna, L.; Graziani, S.; Rizzo, A.; Xibilia, M.G. Soft Sensors for Monitoring and Control of Industrial Processes; Springer: London, UK, 2007; Volume 22. [Google Scholar] [CrossRef]
- Zhu, J.; Ge, Z.; Song, Z. Robust semi-supervised mixture probabilistic principal component regression model development and application to soft sensors. J. Process Control 2015, 32, 25–37. [Google Scholar] [CrossRef]
- Fortuna, L.; Rizzo, A.; Sinatra, M.; Xibilia, M.G. Soft analysers for a sulfur recovery unit. Control Eng. Pract. 2003, 11, 1491–1500. [Google Scholar] [CrossRef]
Variable | Variable Description | Unit |
---|---|---|
u1 | Top temperature | °C |
u2 | Top pressure | kg/cm2 |
u3 | Reflux flow | m3/h |
u4 | Flow to next process | m3/h |
u5 | Sixth tray temperature | °C |
u6 | Bottom temperature A | °C |
u7 | Bottom temperature B | °C |
Output | Butane C4 content in IC5 | - |
Model | ||
---|---|---|
RSSAE | ||
GSSAE | ||
PSOSAE | ||
RB-PSOSAE |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Severino, A.G.V.; de Lima, J.M.M.; de Araújo, F.M.U. Industrial Soft Sensor Optimized by Improved PSO: A Deep Representation-Learning Approach. Sensors 2022, 22, 6887. https://doi.org/10.3390/s22186887
Severino AGV, de Lima JMM, de Araújo FMU. Industrial Soft Sensor Optimized by Improved PSO: A Deep Representation-Learning Approach. Sensors. 2022; 22(18):6887. https://doi.org/10.3390/s22186887
Chicago/Turabian StyleSeverino, Alcemy Gabriel Vitor, Jean Mário Moreira de Lima, and Fábio Meneghetti Ugulino de Araújo. 2022. "Industrial Soft Sensor Optimized by Improved PSO: A Deep Representation-Learning Approach" Sensors 22, no. 18: 6887. https://doi.org/10.3390/s22186887
APA StyleSeverino, A. G. V., de Lima, J. M. M., & de Araújo, F. M. U. (2022). Industrial Soft Sensor Optimized by Improved PSO: A Deep Representation-Learning Approach. Sensors, 22(18), 6887. https://doi.org/10.3390/s22186887