
Citation: Severino, A.G.V.; de Lima,

J.M.M.; de Araújo, F.M.U. Industrial

Soft Sensor Optimized by Improved

PSO: A Deep Representation-Learning

Approach. Sensors 2022, 22, 6887.

https://doi.org/10.3390/s22186887

Academic Editor: Viorel Minzu

Received: 1 August 2022

Accepted: 16 August 2022

Published: 13 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Industrial Soft Sensor Optimized by Improved PSO: A Deep
Representation-Learning Approach
Alcemy Gabriel Vitor Severino , Jean Mário Moreira de Lima and Fábio Meneghetti Ugulino de Araújo *

Computer Engineering and Automation Department, Federal University of Rio Grande do Norte,
3000 Senador Salgado Filho Avenue, Natal 59078-970, RN, Brazil
* Correspondence: meneghet@dca.ufrn.br; Tel.: +55-84-98818-5127

Abstract: Soft sensors based on deep learning approaches are growing in popularity due to their
ability to extract high-level features from training, improving soft sensors’ performance. In the
training process of such a deep model, the set of hyperparameters is critical to archive generalization
and reliability. However, choosing the training hyperparameters is a complex task. Usually, a random
approach defines the set of hyperparameters, which may not be adequate regarding the high number
of sets and the soft sensing purposes. This work proposes the RB-PSOSAE, a Representation-Based
Particle Swarm Optimization with a modified evaluation function to optimize the hyperparameter set
of a Stacked AutoEncoder-based soft sensor. The evaluation function considers the mean square error
(MSE) of validation and the representation of the features extracted through mutual information (MI)
analysis in the pre-training step. By doing this, the RB-PSOSAE computes hyperparameters capable of
supporting the training process to generate models with improved generalization and relevant hidden
features. As a result, the proposed method can generate more than 16.4% improvement in RMSE
compared to another standard PSO-based method and, in some cases, more than 50% improvement
compared to traditional methods applied to the same real-world nonlinear industrial process. Thus,
the results demonstrate better prediction performance than traditional and state-of-the-art methods.

Keywords: particle swarm optimization; soft sensors; deep learning; stacked autoencoders;
mutual information

1. Introduction

Numerous key-quality process variables are hard and high-cost to measure in real-time
in complex industrial processes, specifically in the oil and chemical industries. In the lack of
online measurements for such critical variables, efficient monitoring and control strategies
may not be available. In such cases, inference approaches like soft sensors may surpass
the above-cited problem [1]. Soft sensors can estimate the hard-to-measure variables using
secondary variables, which are easy and low-cost to measure [2]. Several proposed methods
have designed soft sensors, and models based on artificial intelligence techniques have
succeeded in various applications, including industrial scenarios. Principal component
regression (PCR), Support vector machine (SVM), Gaussian Process Regression (GPR),
Partial Least Square (PLS), and Artificial Neural Network are among the most thriving and
used methods [3–13].

Generally, in cases of building virtual sensors to measure quality variables in processes,
there is not a lot of labeled data, but there is plenty of unlabeled data. In this case, semi-
supervised methods are more promising alternatives than traditional methods, which
demonstrate unsatisfactory performance when they have a limited amount of labeled
data [14]. The extensive volume of unlabeled data stores latent information, which, when
used correctly, can improve model reliability and prediction performance [13]. Deep
learning strategies are increasingly being used in the implementation of semi-supervised
methods [15]. A deep network architecture, known as a stacked autoencoder (SAE), which

Sensors 2022, 22, 6887. https://doi.org/10.3390/s22186887 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22186887
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-6253-2879
https://orcid.org/0000-0002-2324-9365
https://orcid.org/0000-0001-8671-9507
https://doi.org/10.3390/s22186887
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22186887?type=check_update&version=1


Sensors 2022, 22, 6887 2 of 14

has its weights calculated by unsupervised pre-training and applied to the supervised
fine-tuning step, is successfully used in many soft sensor designs applied in industrial
processes [16–20].

However, one of the difficulties of deep neural networks applications such as SAE
is the definition of your hyperparameters: batch size, learning rate, step hidden features,
among others. Evaluating the many possible hyperparameter configurations would require
a high cost of time. Thus, the task of defining hyperparameters is an optimization problem.

Exact algorithms are methods used to find an optimal solution to a given problem, in
which no time limits are imposed on the search process. Consequently, exact algorithms
require a high computational effort. An alternative to exact algorithms are meta-heuristics.
These algorithms are inspired by nature, i.e., natural phenomena and/or physical laws.
Meta-heuristics propose to combine basic heuristic methods to effectively explore a search
space. For this reason, several meta-heuristics have been applied to the hyperparam-
eters’ definition of deep neural networks, such as Bayesian Optimization (BO) [21,22],
Genetic Algorithm (GA) [21,23], Harmony Search (HS) [24], Whale Optimization Algo-
rithm (WOA) [25], and Particle Swarm Optimization (PSO) [26].

The work of [21] used four hyperparameter optimization methods to design a rotation
angle estimator based on an artificial neural network: Random Search (RS), Hyperband
(HB), BO, and GA. Among the methods, the BO and GA metaheuristics showed better re-
sults in selecting the hyperparameters in vast search space and strongly nonlinear problems.
Ref. [22], meanwhile, optimized the hyperparameters and structure of a convolutional
neural network (CNN) applied in a data-driven intelligent fault diagnosis technique for
rotating machines. The results demonstrate the efficiency of BO in optimizing the hy-
perparameters and the network structure when the objective function is time, which is
computationally expensive in the cases of CNNs. In [23], the authors proposed a strategy
of hyperparameter optimization based on Non-dominated Sorting Genetic Algorithm-II
(NSGA-II) in the training process of a deep learning model. The obtained results showed
improved generalization error and lowered overfitting incidence ranting. Furthermore,
the proposal [24] applies an HS metaheuristic to optimize the hyperparameters of a 1D
CNN model, aiming for accuracy improvements in pattern recognition. The improved
model has shown a better precision rate than the non-optimized CNN model. Ref. [25]
presents the WOA metaheuristic for optimizing the hyperparameters of a neural network.
The search behavior of humpback whales inspires the method. WOA found a good set of
hyperparameters in a shorter period when compared to the GS method while being of simi-
lar quality to the more straightforward RS method. Ref. [26] proposes a novel soft sensing
approach based on semi-supervised ensemble learning. A novel online model adaptation
criterion approach accurately describes the relationships among samples and local models
and can provide higher mensuration exactness. The parameters of the presented technique
are completed automatically by the PSO method. The simulation outcomes reveal the
significance of the suggested process in dealing with nonlinear regression problems.

The evaluation functions of the previously-mentioned methods only regard informa-
tion based on error indices between the output generated by the models and the actual
output of the systems as mean squared error. However, the evaluation functions do not
consider the representation relevance of the features extracted in the pre-training stage,
an essential metric for soft sensors based on deep learning. This work proposes the RB-
PSOSAE, a Representation-Based Particle Swarm Optimization with a modified evaluation
function to optimize the hyperparameter set of an SAE-based soft sensor. The evaluation
function considers the mean square error (MSE), as in previous works, and the relevance of
the information extracted from the unlabeled data set through mutual information (MI)
analysis in the pre-training step. Doing so enhances PSO to compute hyperparameters
capable of generating models with improved generalization and relevant hidden features,
and then better performance than traditional-based PSO.

The main contributions of this research are as follows:



Sensors 2022, 22, 6887 3 of 14

1. Present an improved PSO for the automatic adjustment of hyperparameters of deep
neural networks based on the relevance of extracted representations;

2. Carry out the extraction of representative features through the analysis of mutual
information used in the PSO evaluation function;

3. Improve the performance of the SAE model used for feature extraction in the unsu-
pervised learning stage;

4. Obtain a neural model with relevant features generated from an optimal combination
of hyperparameters using the unlabeled data.

The contributions mentioned above have been demonstrated to be acceptable and
successful for the automatic adjustment of hyperparameters for an industrial plant of a
debutanizer column. The work sections are as follows: Section 2 introduces theoretical
fundaments. Section 3 explains the proposal in details. Furthermore, Section 4 presents
the obtained results. Finally, Section 5 shows the conclusions and future perspectives of
this work.

2. Preliminaries
2.1. Autoencoders

Autoencoder (AE) is an artificial neural network composed of two components: the
encoder and the decoder [27]. The encoder aims to map its input into a low-dimensional,
high-level, meaningful representation. Conversely, the decoder receives the encoder’s
output and tries to rebuild the original input. In this process, the autoencoder can learn
high-relevant features from input data in reconstructing the input by using extracted hidden
features. Figure 1 illustrates an AE architecture [13].

Figure 1. Basic AE schematic.

The encoder receives input x = [x1, x2, · · · , xn]T ∈ Rn and transforms it into a
low-dimensional hidden features h = [h1, h2, · · · , hm]T ∈ Rm. Additionally, the de-
coder computes the previous-obtained hidden features to try to map out the input data.
Equations (1) and (2) characterize the above-cited encoder and decoder operations:

h = f (Wex + be), (1)

x̂ = g(Wdh + bd), (2)

where We ∈ Rn×m, be ∈ Rm, Wd ∈ Rm×n and be ∈ Rn are the weight matrices and bias of
the encoder and decoder, respectively. Terms f and g are the commonly-used activation
functions sigmoide or ReLU [28]. Figure 2 demonstrates the schematic diagram of an SAE.

The mean square error (MSE) among x and x̂ represents the training loss function of AE
as Equation (3) illustrates. The learning process adjusts the parameters set (We, be, Wd, bd)
to minimize the reconstruction error:

JAE =
1
m

m

∑
i=1

(
1
2
‖x̂i − xi‖2

)
(3)



Sensors 2022, 22, 6887 4 of 14

Figure 2. Stacked Autoencoders schematic diagram.

When several AE are stacked, it builds a deep structure named stacked autoencoder
(SAE), which is able to learn high-level features since each AE is an SAE layer. Basically, an
SAE architecture uses the previous layer output as input to feed the next layer. Training such
a model normally takes two stages: the unsupervised pre-training and the supervised fine-
tuning. In the first stage, layer-by-layer pre-training tries to minimize the reconstruction
loss function as Equation (3) illustrates. On the other hand, the second phase fine-tunes all
SAE parameters by minimizing the prediction error [29,30].

An SAE model uses unlabeled and labeled data samples to develop semi-supervised
soft sensors, but the model does not necessarily learn high-level representations for soft-
sensing purposes. Naturally, unsupervised pre-training does not regard targeted-output
data, which might degrade the prediction’s performance even when a successful fine-
tuning performs [31]. In addition, an SAE model has several hyperparameters to be chosen,
and each one of them can impact the model’s performance and extracted-features quality.
Furthermore, the optimization of an SAE’s hyperparameters regarding the relevance of
the extracted hidden features is critical to build a suitable SAE-based soft sensor. In this
work, an enhanced particle swarm optimization, which considers features’ representation
relevance, optimizes an SAE’s hyperparameters.

2.2. Particle Swarm Optimization

PSO was inspired by nature, based on the social characteristics of bands of birds
and schools of fish in search of a nest or food [32]. PSO is widely applied in solving
optimization problems [33] due to the characteristics of few parameters, simple formulas,
easy implementation, and good convergence speed. Recent advances in the application
of PSO are emerging in the optimization of hyperparameters of SAEs [34–36]. According
to [37], the PSO is similar to the GA, as the system is initialized with a population of
random candidate solutions, here called a swarm. However, this population presents
differences because a velocity vi, Equation (4), is assigned for each potential solution, and
the potential solutions, called particles, are guided through the solution space. Each particle
has a position xi, Equation (5), within the search space. The best solution found by the i-th
particle up to the iteration k, pbesti, is linked to this position. Another critical variable in
the algorithm execution is the best global solution, gbest, which is the best solution found
by the i-th swarm up to the iteration k. The velocity updating of each particle through
pbest and gbest and, later, its position is the base of PSO operation:

vk+1
i = ωvk

i + r1φ1(pbestk
i − xk

i ) + r2φ2(gbest− xk
i ), (4)

xk+1
i = xk

i + vk+1
i , (5)

in which ω is the inertia factor, responsible for promoting a balance between global and
local exploration. The inertia factor is related to the step of the method. If its value is too
high, particles can pass through acceptable solutions without visiting them; on the other
hand, if its value is too low, the particles may not sufficiently explore places that have
acceptable solutions. The terms φ1 and φ2 represent the degree of confidence of the particle
in the best solution found by it, pbesti, and in the best solution found by the swarm, gbest.
If their values are too low, the particles will “fly” for more distant routes towards the target



Sensors 2022, 22, 6887 5 of 14

region, or if their values are too high, the particles will make abrupt movements towards
the potential region. r1 and r2 are random numbers that range between 0 and 1.

3. The Proposed Method

This section details the proposal step-by-step. First, the proposed representation-based
PSO performs hyperparameter optimization in the unsupervised pretraining of an SAE
model, generating an optimized SAE named RBPSO-SAE. In the next stage, an LSTM
structure couples with the RBPSO-SAE to proceed with the supervised fine-tuning.

3.1. Data Preprocessing

As the first step, the dataset {X, Y} is standardized into a range of [0, 1]. Such prepro-
cessing can improve the overall stability of the model. Unlabeled {XU} and labeled {XL, Y}
data compose the dataset with ratios of 90% data and 10%, respectively. This scenario emu-
lates real industrial scenarios where labeled is scarce, but the number of unlabeled samples
is abundant. The large set of non-labeled data can hide relevant features about the process
that traditional techniques do not exploit. Then, the unsupervised pretraining uses the
unlabeled data to train the RBPSO-SAE models, aiming extraction of meaningful features.

The training set {XL, Y}Tr represents 40% of the labeled set, and a total of 10% of the
labeled set forms the validation set {XL, Y}V , and, finally, the testing set {XL, Y}Te takes
50% from the labeled set. The supervised fine-tuning uses the three above-cited labeled
subsets to train, validate, and test the entire deep architecture composed by the RBPSO-SAE
coupled to an LSTM.

3.2. Representation-Based PSO

A regular AE aims to reconstruct the input data at its output, and in this process, it
learns meaningful representations of the input data. In the learning process, a regular
AE treats all available data similarly. However, it is not true that all variables are equally
relevant to building AEs for soft sensing purposes. Once irrelevant information is on an
AE-based soft sensor, it can damage prediction performance.

This work presents a representation-based PSO to optimize the hyperparameters for
SAE’s pretraining. The proposed PSO evaluates two critical points: the test mean square
error (MSE), which measures the capacity of reconstructing the inputs, and the mutual
information (MI) between features and targeted outputs to analyze how relevant extracted
features are.

Choosing hyperparameters is one of the most complex parts of training deep learning
models due to their magnitude, variables’ volume, and underlying correlation. In addition,
there is not a formal method to do it beyond empirical methods such as random and
grid search, which does not guarantee the optimal hyperparameter set. Therefore, the
representation-based PSO tries to balance MSE and MI to get an optimized hyperparameter
set capable of generating an enhanced AE with relevant features and, then, better adapted
for soft-sensing.

The following steps detail the proposal:
Step 1. MI analysis evaluates the nonlinear relationship between each extracted feature

and target outputs. Suppose the calculated MI is not greater than an early-defined threshold
value, representing the minimum required relevance. In that case, the computed feature xi
is irrelevant to inferring the desired outputs as follows:

MI(xi, y) ≤ th, (6)

where th is the threshold value.
As the first step, the proposal determines the MI threshold value. A uniform distribu-

tion generates a 1000 random vectors with values in the range of [0, 1]. MI analysis among
each generated arbitrary vector and the targeted output is computed. After that, calculated
MI values are ordered in a descending way, and the 50th value points to the th. As a result,
when computed MI values are greater than th, the confidence level is 95%.



Sensors 2022, 22, 6887 6 of 14

Step 2. The second step specifies the hyperparameters. The selected training hyperpa-
rameters are the batch size BS, the learning rate LR, and the number of hidden features
HF. As an AE has an intrinsic characteristic to extract hidden features by reconstructing
its input, reducing the number of hidden features by each layer boosts AE ability and
representations as the model gets deep. Therefore, this proposal does not use a HF for each
layer but one HF that decreases for each model layer proportionally.

Another concern is that the range of hyperparameters needs to be defined. There is no
formal method to set up the hyperparameters to define their searching space. Determined
inferior and superior range limits have to guarantee that PSO can use all relevant-available
searching space.

Step 3. The third step defines the early-needed PSO parameters for running the
optimization attempts: the number of swarms NSW , the number of particles Npr, the
inertial factor ω, and confidence parameters Φ1 and Φ2. The NSW and Npr relate to the
number of evaluated models. The higher these values, the greater the time spent and the
computational cost. For this reason, choosing these values is a task where balance among
the number of models and performance matters. The inertia factor ω relates to the search
step of the optimization algorithms. A low inertia factor will result in a lower speed of the
particles, that is, a smaller displacement. In comparison, a high value will cause a higher
speed of the particles, consequently a more expressive displacement in the search space.
Finally, Φ1 and Φ2 represent the particle’s confidence in itself and the best solution found
by the group, respectively. These values relate to the degree of exploration of the search
space, influencing particles’ convergence speed to find the best solution.

Step 4. Step four explains the representation-based PSO as follows:
Step 4.1. Once the PSO parameters are defined, we randomly generate a set of initial

hyperparameters, the swarm S0 with PS0 = {P0, P1, ...PNpr} particles set regarding hyperpa-
rameters’ ranges. Each particle of PS0 represents a set with values of BS, LR, and HF that
set up the hyperparameters for the SAE’s pretraining.

Step 4.2. By applying the first particle of PS0 set, the pretraining of the first stacked
autoencoder gets started. The process applies all available particles in PS0 until the training
process of Npr-th model ends. In sequence, the proposal evaluates the set of representation-
based PSO stacked autoencoders (RBPSO-SAE).

Step 4.3. This work evaluates each of the obtained RBPSO-SAE models regarding
their ability to extract features and how relevant those features are for the main goal of the
model, which is virtual sensing tasks. First, the proposal calculates the MSE between real
and targeted outputs from the test set, evaluating the model’s performance. Second, MI
analysis among target outputs and the model’s output performs the representation-based
evaluation. All of the RBPSO-SAE models receive the labeled dataset {XL, Y} as input,
then they generate a representation-based output Φ, which are the high-level extracted
features from the input data. The MI analysis of the nonlinear relationship among features
of Φ and the targeted-output values Y regarding Equation (6). The higher the MI value
is, the greater the relevance of the analyzed feature to estimate desired outputs. By using
MSE and the mean of MI values, MImean, the approach presents a fitness function (Figure 3)
used to measure the appropriate level of each model as follows:

f itness = α ∗MSE +
1

β ∗MImean
(7)

where α and β are values to tune the importance level of MSE and MI values in obtaining
an optimized model. The lower the value of the fitness function, the better the solution.
The proposed method updates the best global solution gbest and the pbest, which is the
best solution found by the i-th particle up to the iteration k.

The above-described representation-based PSO process repeats itself, generates a new
swarm, and evaluates the new particle-generated models.

Step 5. When the representation-based PSO finishes, the best generated global model
composes the soft sensor’s architecture. An LSTM structure couples to the best-found



Sensors 2022, 22, 6887 7 of 14

RBPSO-SAE to accomplish the regression task. An LSTM model has the intrinsic ability to
handle time-series input and its dynamics. As an industrial process is highly nonlinear and
dynamic, LSTM suits soft-sensing purposes well. The LSTM receives the highly in-depth
and relevant features from the RBPSO-SAE and then estimates the targeted-output values.

ENCODER

DENCODER

Figure 3. Fitness function flowchart.

4. Case Studies and Results

The RBPSO-SAE-based soft sensor evaluation proceeds through an industrial-based
plant debutanizer column case study. For comparison, this work utilizes the following models:

1. Deep learning-based methods: SAE with grid search (GS-SAE) and SAE with random
search (RS-SAE);

2. Deep learning-based method with PSO optimization: SAE with PSO tuning hyperpa-
rameters through MSE only (PSO-SAE);

3. Proposed relevant representation-based PSO soft sensor model: RBPSO-SAE.

The root-mean-square error (RMSE) and coefficient of determination (R2) are the
chosen metrics for comparing the above-cited methods’ prediction efficiency:

RMSE =

√√√√ 1
NTs

NTs

∑
i=1

(ŷi − yi)
2, (8)

R2 = 1− ∑NTs
i=1(ŷi − yi)

2

∑NTs
i=1(yi − yi)

2 . (9)

Equations (8) and (9) compute RMSE and R2, respectively. The terms yi and ŷi
represent the real and estimated output, while the y represents the mean value of actual
outputs. The NTs represents the number of samples in the testing set. The RMSE indicates
the error between targeted and estimated values. It is a metric usually used to evaluate soft
sensor performance, and it quantifies the deviation between predicted and actual values
in a squared error sense [38]. Therefore, RMSE quantifies reliability and the prediction



Sensors 2022, 22, 6887 8 of 14

performance [39]. Beyond that, predicting quality variables has inherent uncertainty. The
standard deviation (SD) of RMSE is the adopted metric to measure the uncertainty range
of the attained results over different runs [40].

The R2 represents a correlation between predicted and actual outputs, in the form of a
variance value over the desired outputs, where a high value represents better performance
and higher reliability of the model [41].

4.1. Industrial Debutanizer Column Process

The debutanizer columns are regular devices that process desulfurization and naphtha
cracking in oil and gas refineries [42]. Withdrawing propane (C5) and butane (C4) from
naphtha steam is the primary goal of such an apparatus. Consequently, the lower the
amount of butane, the better the quality of the naphtha end products. However, no physical
sensors can measure the amount of butane in real-time. One solution is to use soft sensors
to estimate the butane concentration simultaneously. Figure 4 illustrates the debutanizer
column and its devices. The squares containing gray circles represent the hardware sensors
that measure process variables such as flow, pressure, and temperature. The purpose of
the debutanizer column used is to remove C3 and C4 from naphtha steam. Reducing
the C4 concentration increases the quality of the final product located at the bottom of
the debutanizer column. Gas chromatographs measure C4 concentration. However, due
to a long measurement interval, they cannot provide real-time C4 concentrations for
monitoring and control purposes. As explained earlier, soft sensors can estimate real-time
measurements unavailable from physical sensors, such as C4 concentration. In [43], the
dataset and more process details are available.

Figure 4. Schematic representation of the debutanizer column process [13].

Table 1 lists the process variables present in the debutanizer column process. The study-
case debutanizer offers 2384 data samples for each process variable, with a sampling time
Ts = 6 min. However, in a real distillation column scenario, not all of the data are labeled.
Therefore, the proposal uses only a tiny part of the data samples as labeled in order to repro-
duce real scenarios where labeled data are scarce. The fine-tuning stage utilizes 240 samples,
representing only 10% of the total data. Then, the non-labeled dataset has 2144 data samples,
representing 90% of available data applied in the unsupervised pretraining.

As a regular dynamic system, the study-case debutanizer column outputs are a prod-
uct of current inputs and past outputs. A feature engineering approach can handle the
dynamicity of the process: past input and output values incorporate the current input.
For the proposed model, the input blends to X = [u(t), ..., u(t− dx), y(t− 1), ..., y(t− dy)],
where u and y are inputs and outputs, and dx and dy time-delay of inputs and outputs,
respectively. This work employs dx = dy = 6.



Sensors 2022, 22, 6887 9 of 14

Table 1. Description of debutanizer column process variables.

Variable Variable Description Unit

u1 Top temperature °C
u2 Top pressure kg/cm2

u3 Reflux flow m3/h
u4 Flow to next process m3/h
u5 Sixth tray temperature °C
u6 Bottom temperature A °C
u7 Bottom temperature B °C
Output Butane C4 content in IC5 -

4.2. RBPSO-SAE

To get started with RBPSO-SAE strategy, the proposal set has a total of 30 swarms with
10 particles each, thus adding up to 300 model evaluations. It is important to note that this
does not necessarily mean that this approach trained 300 distinct models since particles
with the same sets of hyperparameters are present in all swarms. A value of ω is equal to
0.01. This value is related to the search step of the optimization algorithms, so, interestingly,
its value is neither high nor low considering the magnitudes of the hyperparameters.
Furthermore, all hyperparameters use the same ω. The values 1.2 and 2.4 were set for
φ1 and φ2, respectively. The chosen set-values mean that the particle has twice as much
confidence in the best solution found by the swarms as in the best solution found by itself.
Finally, the values that the hyperparameters can take belong to the ranges [0.0005, 0.0100],
[10, 500], and [2, 15] for learning rate (LR), batch size (BS), and hidden features (HF),
respectively. However, they were normalized to the range [0, 1] so that only one value
of ω is necessary to set. Since all the parameters are properly set, the proposed RBPSO-
SAE approach starts to build SAE’s model with optimized hyperparameters based on the
mean square error between estimated and actual outputs, and the MI-based relevance of
extracted features.

Figure 5 illustrates the behavior of g-best particle, which means the best-obtained SAE
model through the generated swarms, regarding the fitness criteria: mean square error
and mean of MI values between extracted features and targeted output. By observing the
graph of the evolution of the MSE, the mean, and the standard deviation of the MI, we can
notice the following: There is a sharp drop in the MSE value between the first and the fifth
swarm, stabilizing between the sixth and the sixteenth swarm. Finally, it decreases from
the seventeenth swarm and returns to stability at the twenty-sixth. The mean MI value
starts stable, but there is a noticeable increase between the third and fourth swarm. Soon
after, it remains stable between the fifth and the sixteenth swarm and then acquires a rising
behavior until the twenty-sixth swarm. MI’s mean and standard deviation values start
stable, showing a decrease between the second and third swarms. Next, its value remains
stable between the fourth and fifteenth swarm. Finally, it shows a falling behavior between
the sixteenth and twenty-first swarm, and then remains stable. The increase in the mean
MI value and the decrease in the MSE value and MI standard deviation along the swarm’s
evolution imply improvements in the projected SAE performance. A lower MSE value of
the validation implies a better generalization. As well as a higher value of the mean of the
MI, we obtain more representative features. A smaller value of the MI standard deviation
means minor variation in the quality of the features extracted from the data. Thus, the
previous graph proves the efficiency of enhanced-proposed PSO application in adjusting
hyperparameters considering its evaluation of MI.



Sensors 2022, 22, 6887 10 of 14

Figure 5. MSE, mean, and sd MI between input representations and output variables for the
debutanizer column.

Table 2 compares the prediction performance of the models obtained by fitting the
hyperparameters found by the algorithms applying traditional search methods of RSSAE
and GSSAE, applying the PSOSAE meta-heuristic, and applying the proposed search
method RS-PSOSAE. The algorithms that use the traditional search methods, RSSAE and
GSSAE, obtain the worst results compared to the other methods. However, when using
search methods that consider past results to find new solutions, the algorithms that apply
metaheuristics have better results than traditional search methods. RB-PSOSAE obtains
an improved result compared to the PSOSAE method, which is explained due to PSOSAE
considering only MSE information in its evaluation function. The better result of the RB-
PSOSAE happens because its evaluation function considers information from MSE and
MI. Thus, only relevant representations are present in its acquired knowledge, making
it more suitable for soft sensor applications. In addition, the prediction performance of
the other methods was tested with the same debutanizer column process employed in
this paper. Looking at Table 2, which contains the qualitative comparison of the methods,
RB-PSOSAE showed the best result. PSOSAE, GSSAE, and RSSAE are methods that only
consider the MSE in their evaluations. However, RB-PSOSAE, besides considering the
MSE, also evaluates the searched solutions through MI analysis, explaining its improved
performance. Furthermore, RB-PSOSAE has the lowest standard deviation (SD) of RMSE,
which points to its stability under uncertain conditions. RB-PSOSAE, when compared to
PSOSAE, showed a 16.4% improvement in RMSE value. Meanwhile, compared to GSSAE
and RSSAE, it showed an improvement in RMSE values of 54.7% and 49.4%, respectively.



Sensors 2022, 22, 6887 11 of 14

Table 2. Prediction performance of debutanizer column soft-sensor models.

Model RSME ± SD R2

RSSAE 0.050626± 0.0034 0.929491
GSSAE 0.056583± 0.0041 0.902333
PSOSAE 0.030635± 0.0023 0.974181
RB-PSOSAE 0.025604± 0.0014 0.981965

Figure 6 demonstrates the prediction results from the test dataset using parity plots.
Again, RB-PSOSAE showed higher accuracy, as expected, compared to the other methods.
In addition, Figure 7 illustrates the relative prediction errors with boxplots of the four
methods, RB-PSOSAE, PSOSAE, GSSAE, and RSSAE, in descending order of performance.
The box edges indicate the 25th and 75th percentiles, while the red mark in the center
represents the median value within each box. The larger the box’s width, the more dispersed
the prediction errors. The upper and lower whiskers represent maximum and minimum
values. The narrower box range of RB-PSOSAE indicates better prediction performance
among the four compared methods mainly because RB-PSOSAE, through its evaluation
function, can select the most relevant representations, extract nonlinear features, and handle
process dynamics. Nonetheless, there are uncertainties to be considered in industrial
processes [13,44], so Figure 7 shows some outlines represented individually by red dots.
Inadequate initial parameters and discrepant values result in improper soft sensors with
high relative prediction error. In contrast, acceptable soft sensors obtain stationary relative
prediction errors for the same data set. Thus, stationary error values show the robustness of
the model [13,45]. Therefore, the soft sensor designed by the RB-PSOSAE achieved better
performance, reliability, and robustness.

Figure 6. Real values of butane content and the predicted values using RB-PSOSAE, PSOSAE,
GSSAE, and RSSAE search methods.



Sensors 2022, 22, 6887 12 of 14

Figure 7. Relative prediction error of testing results for the debutanizer column process using
RB-PSOSAE, PSOSAE, GSSAE, and RSSAE search methods.

5. Conclusions

An improved PSO based on representational learning has been proposed and tested
for automatic tuning hyperparameters of deep neural networks. The RB-PSOSAE combines
the search strategies of the PSO meta-heuristic, high-level feature extraction, and mines
relevant representations in the SAE layers through MI analysis. In the PSOSAE method,
particle swarms search for hyperparameter sets of an SAE using massive amounts of
unlabeled data. However, unsupervised SAE modeling does not guarantee to learn relevant
representations for soft-sensing purposes. Therefore, the RB-PSOSAE aims to highlight
the most significant features, retain the relevant ones, and remove the irrelevant ones.
The obtained results demonstrated that RB-PSOSAE improved prediction performance
compared to traditional search methods and meta-heuristics that only consider information
from the MSE and do not deal with the dynamics of the process. Furthermore, RB-PSOSAE
was more reliable and robust, as demonstrated in the same case study and under the same
conditions. However, despite the contributions presented, future work could analyze
the performance of the proposed method in other case studies, besides investigating the
implementation of different metaheuristics and improving the evaluation function used.

Author Contributions: Conceptualization, A.G.V.S., J.M.M.d.L. and F.M.U.d.A.; methodology, A.G.V.S.
and J.M.M.d.L.; software, A.G.V.S. and J.M.M.d.L.; validation, A.G.V.S., J.M.M.d.L. and F.M.U.d.A.;
formal analysis, A.G.V.S., J.M.M.d.L. and F.M.U.d.A.; investigation, A.G.V.S. and J.M.M.d.L.; re-
sources, A.G.V.S., J.M.M.d.L. and F.M.U.d.A.; data curation, A.G.V.S. and J.M.M.d.L.; writing—
original draft preparation, A.G.V.S. and J.M.M.d.L.; writing—review and editing, A.G.V.S., J.M.M.d.L.
and F.M.U.d.A.; visualization, A.G.V.S., J.M.M.d.L. and F.M.U.d.A.; supervision, A.G.V.S., J.M.M.d.L.
and F.M.U.d.A.; project administration, A.G.V.S., J.M.M.d.L. and F.M.U.d.A. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Original debutanizer column and SRU datasets are available http://
www.springer.com/cda/content/document/cda_downloaddocument/9781846284793_material.zip?
SGWID=0-0-45-349600-p168288081 (accessed on 3 January 2022).

Conflicts of Interest: The authors declare no conflict of interest.

http://www.springer.com/cda/content/document/cda_downloaddocument/9781846284793_material.zip?SGWID=0-0-45-349600-p168288081
http://www.springer.com/cda/content/document/cda_downloaddocument/9781846284793_material.zip?SGWID=0-0-45-349600-p168288081
http://www.springer.com/cda/content/document/cda_downloaddocument/9781846284793_material.zip?SGWID=0-0-45-349600-p168288081


Sensors 2022, 22, 6887 13 of 14

References
1. Souza, F.A.A.; Araújo, R.; Mendes, J. Review of soft sensor methods for regression applications. Chemom. Intell. Lab. Syst. 2015,

152, 69–79. [CrossRef]
2. Zhong, W.; Yu, J. MIMO Soft Sensors for Estimating Product Quality with On-line Correction. Chem. Eng. Res. Des. 2000, 78,

612–620. [CrossRef]
3. Yuan, X.; Ge, Z.; Song, Z. Locally Weighted Kernel Principal Component Regression Model for Soft Sensing of Nonlinear

Time-Variant Processes. Ind. Eng. Chem. Res. 2014, 53, 13736–13749. [CrossRef]
4. Ge, Z.; Huang, B.; Song, Z. Mixture semisupervised principal component regression model and soft sensor application. Process.

Syst. Eng. 2014, 60, 533–545. [CrossRef]
5. Yang, X.; Liu, X.; Xu, C. Robust Mixture Probabilistic Partial Least Squares Model for Soft Sensing with Multivariate Laplace

Distribution. IEEE Trans. Instrum. Meas. 2021, 70, 1–9. [CrossRef]
6. Bao, L.; Yuan, X.; Ge, Z. Co-training partial least squares model for semi-supervised soft sensor development. Chemom. Intell. Lab.

Syst. 2015, 147, 75–85. [CrossRef]
7. Yan, W.; Shao, H.; Wang, X. Soft sensing modeling based on support vector machine and Bayesian model selection. Comput. Chem.

Eng. 2004, 28, 1489–1498. [CrossRef]
8. Shang, C.; Gao, X.; Yang, F.; Huang, D. Novel Bayesian Framework for Dynamic Soft Sensor Based on Support Vector Machine

with Finite Impulse Response. IEEE Trans. Control. Syst. Technol. 2014, 22, 1550–1557. [CrossRef]
9. Yang, K.; Jin, H.; Chen, X.; Dai, J.; Wang, L.; Zhang, D. Soft sensor development for online quality prediction of industrial batch

rubber mixing process using ensemble just-in-time Gaussian process regression models. Chemom. Intell. Lab. Syst. 2016, 155,
170–182. [CrossRef]

10. Li, X.; Su, H.; Chu, J. Multiple Model Soft Sensor Based on Affinity Propagation, Gaussian Process and Bayesian Committee
Machine. Chin. J. Chem. Eng. 2009, 17, 95–99. [CrossRef]

11. Wang, G.; Jia, Q.S.; Zhou, M.; Bi, J.; Qiao, J.; Abusorrah, A. Artificial neural networks for water quality soft-sensing in wastewater
treatment: A review. Artif. Intell. Rev. 2022, 55, 565–587. [CrossRef]

12. Pani, A.K.; Amin, K.G.; Mohanta, H.K. Soft sensing of product quality in the debutanizer column with principal component
analysis and feed-forward artificial neural network. Alex. Eng. J. 2016, 55, 1667–1674. [CrossRef]

13. de Lima, J.M.M.; de Araújo, F.M.U. Industrial Semi-Supervised Dynamic Soft-Sensor Modeling Approach Based on Deep Relevant
Representation Learning. Sensors 2021, 21, 3430. [CrossRef]

14. Patterson, J.; Gibson, A. Deep Learning: A Practitioner’s Approach, 1st ed.; O’Reilly: Sebastopol, CA, USA, 2017; p. 214.
15. Weston, J.; Ratle, F.; Mobahi, H.; Collobert, R. Deep Learning via Semi-supervised Embedding. In Neural Networks: Tricks of the

Trade. Lecture Notes in Computer Science; Montavon, G., Orr, G.B., Müller, K.R., Eds.; Springer: Berlin/Heidelberg, Germany, 2012;
Volume 7700._34 [CrossRef]

16. Zabalza, J.; Ren, J.; Zheng, J.; Zhao, H.; Qing, C.; Yang, Z.; Marshall, S. Novel segmented stacked autoencoder for effective
dimensionality reduction and feature extraction in hyperspectral imaging. Neurocomputing 2016, 185, 1–10. [CrossRef]

17. Zhou, P.; Han, J.; Cheng, G.; Zhang, B. Learning Compact and Discriminative Stacked Autoencoder for Hyperspectral Image
Classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4823–4833. [CrossRef]

18. Qi, Y.; Wang, Y.; Zheng, X.; Wu, Z. Robust feature learning by stacked autoencoder with maximum correntropy criterion. In
Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Florence, Italy, 4–9 May 2014;
pp. 6716–6720. [CrossRef]

19. Wang, L.; You, Z.-H.; Chen, X.; Xia, S.X.; Liu, F.; Yan, X.; Song, K.J. A Computational-Based Method for Predicting Drug–Target
Interactions by Using Stacked Autoencoder Deep Neural Network. J. Comput. Biol. 2018, 25, 361–373. [CrossRef] [PubMed]

20. Li, W.; Fu, H.; Yu, L.; Gong, P.; Feng, D.; Li, C.; Clinton, N. Stacked Autoencoder-based deep learning for remote-sensing image
classification: A case study of African land-cover mapping. Int. J. Remote Sens. 2016, 37, 5632–5646. [CrossRef]

21. Blume, S.; Benedens, T.; Schramm, D. Hyperparameter Optimization Techniques for Designing Software Sensors Based on
Artificial Neural Networks. Sensors 2021, 21, 8435. [CrossRef]

22. Kolar, D.; Lisjak, D.; Pająk, M.; Gudlin, M. Intelligent Fault Diagnosis of Rotary Machinery by Convolutional Neural Network
with Automatic Hyper-Parameters Tuning Using Bayesian Optimization. Sensors 2021, 21, 2411. [CrossRef]

23. Aquino-Brítez, D.; Ortiz, A.; Ortega, J.; León, J.; Formoso, M.; Gan, J.Q.; Escobar, J.J. Optimization of Deep Architectures for EEG
Signal Classification: An AutoML Approach Using Evolutionary Algorithms. Sensors 2021, 21, 2096. [CrossRef]

24. Kim, S.-H.; Geem, Z.W.; Han, G.-T. Hyperparameter Optimization Method Based on Harmony Search Algorithm to Improve
Performance of 1D CNN Human Respiration Pattern Recognition System. Sensors 2020, 20, 3697. [CrossRef]

25. Brodzicki, A.; Piekarski, M.; Jaworek-Korjakowska, J. The Whale Optimization Algorithm Approach for Deep Neural Networks.
Sensors 2021, 21, 8003. [CrossRef] [PubMed]

26. Weiming, S.; Xuemin, T.; Ping, W.; Xiaogang, D.; Sheng, C. Online soft sensor design using local partial least squares models with
adaptive process state partition. Chemom. Intell. Lab. Syst. 2015, 114, 108–121. ISSN 0169-7439. j.chemolab.2015.04.003. [CrossRef]

27. Bank, D.; Koenigstein, N.; Giryes, R. Autoencoders. arXiv 2020. [CrossRef]
28. Chadha, G.S.; Rabbani, A.; Schwung, A. Comparison of semi-supervised deep neural networks for anomaly detection in industrial

processes. In Proceedings of the 2019 IEEE 17th International Conference on Industrial Informatics (INDIN), Helsinki-Espoo,
Finland, 22–25 July 2019; Volume 1, pp. 214–219.

http://doi.org/10.1016/j.chemolab.2015.12.011
http://dx.doi.org/10.1205/026387600527554
http://dx.doi.org/10.1021/ie4041252
http://dx.doi.org/10.1002/aic.14270
http://dx.doi.org/10.1109/TIM.2020.3009354
http://dx.doi.org/10.1016/j.chemolab.2015.08.002
http://dx.doi.org/10.1016/j.compchemeng.2003.11.004
http://dx.doi.org/10.1109/TCST.2013.2278412
http://dx.doi.org/10.1016/j.chemolab.2016.04.009
http://dx.doi.org/10.1016/S1004-9541(09)60039-2
http://dx.doi.org/10.1007/s10462-021-10038-8
http://dx.doi.org/10.1016/j.aej.2016.02.016
http://dx.doi.org/10.3390/s21103430
http://dx.doi.org/10.1007/978-3-642-35289-8_34
http://dx.doi.org/10.1016/j.neucom.2015.11.044
http://dx.doi.org/10.1109/TGRS.2019.2893180
http://dx.doi.org/10.1109/ICASSP.2014.6854900
http://dx.doi.org/10.1089/cmb.2017.0135
http://www.ncbi.nlm.nih.gov/pubmed/28891684
http://dx.doi.org/10.1080/01431161.2016.1246775
http://dx.doi.org/10.3390/s21248435
http://dx.doi.org/10.3390/s21072411
http://dx.doi.org/10.3390/s21062096
http://dx.doi.org/10.3390/s20133697
http://dx.doi.org/10.3390/s21238003
http://www.ncbi.nlm.nih.gov/pubmed/34884004
http://dx.doi.org/10.1016/ j.chemolab.2015.04.003
http://dx.doi.org/10.48550/ARXIV.2003.05991


Sensors 2022, 22, 6887 14 of 14

29. Bengio, Y.; Lamblin, P.; Popovici, D.; Larochelle, H. Greedy layer-wise training of deep networks. In Advances in Neural Information
Processing Systems; MIT Press: Cambridge, MA, USA, 2006; p. 19.

30. Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313, 504–507.
[CrossRef] [PubMed]

31. Yan, X.; Wang, J.; Jiang, Q. Deep relevant representation learning for soft sensing. Inf. Sci. 2020, 514, 263–274. [CrossRef]
32. Eberhart, R.C.; Kennedy, J. A new optimizer using particle swarm theory. In Proceedings of the Sixth International Symposium

on Micro Machine and Human Science, New York, NY, USA, 4–6 October 1995; pp. 39–43.
33. Elbes, M.; Alzubi, S.; Kanan, T.; Al-Fuqaha, A.; Hawashin, B. A survey on particle swarm optimization with emphasis on

engineering and network applications. Evol. Intel. 2019, 12, 113–129. [CrossRef]
34. Singh, P.; Chaudhury, S.; Panigrahi, B.K. Hybrid MPSO-CNN: Multi-level Particle Swarm optimized hyperparameters of

Convolutional Neural Network. Swarm Evol. Comput. 2021, 63, 100863. [CrossRef]
35. Sun, Y.; Xue, B.; Zhang, M.; Yen, G.G. An Experimental Study on Hyper-parameter Optimization for Stacked Auto-Encoders.

In Proceedings of the 2018 IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–8.
[CrossRef]

36. Haidong, S.; Ziyang, D.; Junsheng, C.; Hongkai, J. Intelligent fault diagnosis among different rotating machines using novel
stacked transfer auto-encoder optimized by PSO. ISA Trans. 2020, 105, 308–319. [CrossRef]

37. Eberhart, R.C.; Shi, Y. Particle swarm optimization: Developments, applications and resources. In Proceedings of the 2001
Congress on Evolutionary Computation, Seoul, Korea, 27–30 May 2001; pp. 81–86. [CrossRef]

38. Goodfellow, I.; Yoshua, B.; Aaron, C. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
39. Xiaochen, S.; Junxia, M.; Weili, X. Smart Soft Sensor Design with Hierarchical Sampling Strategy of Ensemble Gaussian Process

Regression for Fermentation Processes. Sensors 2020, 20, 1957. [CrossRef]
40. Cofta, P.; Kostas, K.; and Cezary, O. A conceptual model of measurement uncertainty in iot sensor networks. Sensors 2021, 21,

1827. [CrossRef] [PubMed]
41. Yuan, X.; Wang, Y.; Yang, C.; Gui, W. Stacked isomorphic autoencoder based soft analyzer and its application to sulfur recovery

unit. Inf. Sci. 2020, 534, 72–84. [CrossRef]
42. Pan, B.; Jin, H.; Wang, L.; Qian, B.; Chen, X.; Huang, S.; Li, J. Just-in-time learning based soft sensor with variable selection and

weighting optimized by evolutionary optimization for quality prediction of nonlinear processes. Chem. Eng. Res. Des. 2019, 144,
285–299. [CrossRef]

43. Fortuna, L.; Graziani, S.; Rizzo, A.; Xibilia, M.G. Soft Sensors for Monitoring and Control of Industrial Processes; Springer: London,
UK, 2007; Volume 22. [CrossRef]

44. Zhu, J.; Ge, Z.; Song, Z. Robust semi-supervised mixture probabilistic principal component regression model development and
application to soft sensors. J. Process Control 2015, 32, 25–37. [CrossRef]

45. Fortuna, L.; Rizzo, A.; Sinatra, M.; Xibilia, M.G. Soft analysers for a sulfur recovery unit. Control Eng. Pract. 2003, 11, 1491–1500.
[CrossRef]

http://dx.doi.org/10.1126/science.1127647
http://www.ncbi.nlm.nih.gov/pubmed/16873662
http://dx.doi.org/10.1016/j.ins.2019.11.039
http://dx.doi.org/10.1007/s12065-019-00210-z
http://dx.doi.org/10.1016/j.swevo.2021.100863
http://dx.doi.org/10.1109/CEC.2018.8477921
http://dx.doi.org/10.1016/j.isatra.2020.05.041
http://dx.doi.org/10.1109/CEC.2001.934374
http://dx.doi.org/10.3390/s20071957
http://dx.doi.org/10.3390/s21051827
http://www.ncbi.nlm.nih.gov/pubmed/33807912
http://dx.doi.org/10.1016/j.ins.2020.03.018
http://dx.doi.org/10.1016/j.cherd.2019.02.004
http://dx.doi.org/10.1007/978-1-84628-480-9
http://dx.doi.org/10.1016/j.jprocont.2015.04.015
http://dx.doi.org/10.1016/S0967-0661(03)00079-0

	Introduction 
	Preliminaries 
	Autoencoders
	Particle Swarm Optimization

	The Proposed Method 
	Data Preprocessing
	Representation-Based PSO

	Case Studies and Results 
	Industrial Debutanizer Column Process
	RBPSO-SAE

	Conclusions 
	References

