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Abstract: Traffic flow forecasting is a critical input to intelligent transportation systems. Accurate
traffic flow forecasting can provide an effective reference for implementing traffic management
strategies, developing travel route planning, and public transportation risk assessment. Recent deep
learning approaches of spatiotemporal neural networks to predict traffic flow show promise, but could
be difficult to separately model the spatiotemporal aggregation in traffic data and intrinsic correlation
or redundancy of spatiotemporal features extracted by the filter of the convolutional network. This can
introduce biases in the predictions that interfere with subsequent planning decisions in transportation.
To solve the mentioned problem, the filter attention-based spatiotemporal neural network (FASTNN)
was proposed in this paper. First, the model used 3-dimensional convolutional neural networks to
extract universal spatiotemporal dependencies from three types of historical traffic flow, the residual
units were employed to prevent network degradation. Then, the filter spatial attention module
was constructed to quantify the spatiotemporal aggregation of the features, thus enabling dynamic
adjustment of the spatial weights. To model the intrinsic correlation and redundancy of features, this
paper also constructed a lightweight module, named matrix factorization based resample module,
which automatically learned the intrinsic correlation of the same features to enhance the concentration
of the model on information-rich features, and used matrix factorization to reduce the redundant
information between different features. The FASTNN has experimented on two large-scale real
datasets (TaxiBJ and BikeNYC), and the experimental results show that the FASTNN has better
prediction performance than various baselines and variant models.

Keywords: traffic flow prediction; spatiotemporal neural networks; spatiotemporal aggregation;
filter spatial attention; matrix factorization based resample

1. Introduction

Intelligent transportation system (ITS) is a critical input to the development of trans-
portation systems. It can effectively integrate advanced information and communication
technologies to form a real-time, accurate, and efficient traffic management system [1–4].
Traffic flow prediction (TFP) is an important part component of ITS [5–7], whose objective
is to predict short-term or long-term traffic flow based on historical traffic data (e.g., traffic
flow, vehicle speed, etc.). In terms of traffic flow forecasting applications, take for example
the more passenger-centric transportation systems of recent years, namely mobility on
demand (MoD), which allows passengers to proactively submit travel requests specifying
their pick-up and drop-off locations. However, the negative side of this transportation
system is that if there is an imbalance between vehicle supply and order requests in a
region, the system may have to allocate a distant vehicle to meet passenger travel demand,
and passenger waiting time increases [8,9]. If the above occurs during peak periods or
in a congested area, it may increase the travel burden in that area. Therefore, TFP for
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the region can pre-allocate the required vehicles to areas with high travel demand, which
not only reduces passenger waiting time and improves travel service quality, but also
provide references for implementing traffic management strategies, developing travel route
planning, and public transportation risk assessment.

The key issue to achieving accurate predictions is modeling the high-dimensional and
nonlinear spatiotemporal (ST) dependencies of massive traffic ST big data. Initially, re-
searchers applied traditional machine learning methods for predictions, such as the ARIMA
model [10], SVM [11], and SVR [12] models, etc. However, these models cannot effectively
extract the ST dependencies between multi-source traffic data given their invariable model
structures and weights. Moreover, the label features of machine learning models are depen-
dent on intensive manual analysis, which also increases the subjective error of prediction
results. Deep learning methods overcome these disadvantages through stacking neural
network infrastructure and training the network with gradient descent [13]. It can realize
automatic extraction of diverse ST dependencies by designing various neural networks.
Thus, how to design the corresponding neural network to capture its complex spatial
dependence and temporal dynamics is a current research hotspot. Zhang [14] extracted
the ST features of the data based on deep neural networks; Niu [15] modeled the spatial
dependence of the traffic data using convolutional neural networks (CNN) and long short-
term memory (LSTM); Saxena [16] employed generative adversarial networks to model the
multimodality of the data; Wang [17] used attention mechanisms to model the local and
global temporal dynamics. Guo [18] captures the ST correlation and heterogeneity through
3D convolutional neural networks. While these methods have shown promise in improving
TFP accuracy, it appears less capable of modeling ST aggregation and quantifying intrinsic
correlation and redundancy of ST features.

To solve the mentioned problems, this paper proposed a deep learning-based ST
prediction network model for predicting traffic flow, named the filter attention-based spa-
tiotemporal neural network (FASTNN), which can sufficiently model the ST agglomeration
of data, automatically learn the intrinsic correlation of ST features, and reduce the redun-
dancy among diverse ST features. Specifically, based on 3D CNN and the residual unit, this
paper proposed a filter spatial attention module (FSA) to model the ST agglomeration and
dynamically adjust the region weights of each ST feature. Second, the matrix factorization
based resample module (MFR) was proposed to automatically learn the intrinsic correlation
of the same ST feature, and this module also reduces the redundant information contained
between different ST features. Finally, this paper experimented with the FASTNN on two
large-scale real datasets, including Taxi trip data in Beijing and bike-sharing data in New
York, and the performance results with the baseline show the effectiveness of the FASTNN.
The contributions of this paper can be summarized as follows:

(1) This paper proposed a traffic flow prediction model based on a deep learning frame-
work, the FASTNN, which can model ST aggregation and quantify intrinsic correlation
and redundancy of ST features.

(2) In this paper, filter spatial attention (FSA) was proposed to model the ST agglom-
eration of traffic data, and this module can implement dynamic adjustment of spa-
tial weights.

(3) This paper proposed a lightweight module, the matrix factorization based resample
module (MFR), which can model the intrinsic correlation of the same ST feature and
reduce the redundant information between different ST features.

In the next section, the paper reviewed the existing literature on TFP and attention
mechanisms in TFP research. Section 3 introduced the key concepts of the ST agglomeration
and intrinsic correlation of the same ST feature, and also described the definitions related to
TFP in this paper. In Section 4, the paper presented the framework of the proposed FASTNN
model and the structure of the various components in the FASTNN. Experimental data and
results were presented in Section 5. Finally, the conclusions were discussed in Section 6.
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2. Related Works

Future traffic information is critical for MoD systems to improve their service quality
and for policymakers to conduct effective transportation planning. Many researchers have
investigated the related TFP problem [19]. TFP not only balances the supply and demand of
future travel demand but also improves the operational efficiency of public transportation
by formulating effective travel strategies based on the forecasted traffic information.

2.1. Traffic Flow Prediction

Traffic flow prediction (TFP) is a key problem in the field of data mining in urban
computing [15,16]. Early TFP models were mainly based on statistical (e.g., autoregressive
integrated moving average (ARIMA) [20], vector autoregression [21], etc.) or machine
learning-based methods (including K-nearest neighbors [22], support vector machines [23],
vector autoregressive moving average [24], etc.). For example, to address the sparsity
and travel time uncertainty of real-time traffic data, Zhang [25] used the gradient-boosted
regression tree method to extract the ST correlation of neighboring and target links of the
road network to achieve temporal prediction of traffic flow; Cheng [26] proposed a multi-
view learning algorithm for short-term traffic flow prediction, which can account for the
temporal fluctuations and patterns of traffic in addition to the general spatial characteristics;
Zhang [27] implemented a linear model with coefficients varying as a smoothing function
of departure time to predict short-time travel times. However, it is difficult to extract the
complex patterns hidden in the traffic flow because the above models have limited capacity
to model complex traffic relationships nonlinearly. The scarcity of autonomous ability to
learn combinational embeddings of ST features also represents a major challenge to these
model-based approaches.

Given the complexity and variability of the actual traffic situation, the prediction
accuracy of such models in the actual application requires to be improved to meet the
requirements of ITS. To improve the model performance and achieve the depth extraction
of ST dependencies, deep learning techniques with powerful feature extraction and non-
linear fitting capabilities were widely accepted in TFP research. In time-dependent mining,
Wu [28] used a Wave Net based on a one-dimensional temporal convolutional neural
network to model the temporal correlation in traffic data; Fu [29] predicted traffic flow with
LSTM and GRU networks; He [30] applied the sequence to sequence architecture to model
the similarity of historical traffic flow between multiple time steps; To solve the subway
traffic prediction problem, Liu [31] improved the LSTM network by using exogenous data,
features of subway data, and temporal correlation; Du [32] proposed a deep irregular
convolutional residual LSTM network model for urban traffic flow prediction to handle
mixed traffic routes, mixed traffic, interchange stations, and some extreme weather; To
predict the traffic congestion status of cities, Zhang [33] proposed a deep autoencoder
neural networks to efficiently learn the temporal correlation of traffic networks.

The TFP deep learning method for mining time-dependent features has fewer training
parameters and is highly efficient. However, the accuracy results of the prediction task
for ST data still require to be improved because of its own inability to model the spatial
correlation in the data. In spatial-dependent mining, TFP generally presents traffic data in
a grid or pixel form in the spatial dimension [34,35]. Accordingly, the high dimensionality
of traffic data can be analogized to the multi-channel of image data. Applying the 2-
dimensional convolutional neural network (2D CNN) in computer vision to the TFP
problem can model the spatial correlation. For instance, Zhang [34] employed a 2Dconv to
predict the inflow and outflow of taxis, and Yao [36] also calculated the demand for cabs in
urban areas using 2D CNN; Sun [37] performed mutual correlation calculations using a
multilayer fully convolutional network to simulate the spatial correlation between current
and neighboring sections, local and global scales.

All the above approaches showed comparatively better prediction performance for
TFP than traditional model-based approaches. Nevertheless, the complex temporal and
spatial characteristics of traffic data will not be limited to a single dimension in practical
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applications but will be synthesized in a 3-dimensional space [38]. Therefore, compre-
hensive mining of ST-dependent features is a crucial research component to improve the
performance of TFP. Zhang [34,39] proposed a learning method called ST-ResNet to model
the closeness, periodicity, and trend of spatiotemporal data using historical flows. Chen [40]
and Guo [35] applied 3D convolutional neural networks (3D CNN) to extract the spatiotem-
poral correlation of data from multi-dimensions. Zhang [41] split the traffic prediction task
into node and edge traffic prediction and proposed a multi-task deep learning framework
that models the ST interaction from a graph-theoretic perspective. Liu [42] proposed a novel
network to learn the dynamic similarity between regions, fully considering the complex
spatial dependence and temporal dynamics. Yan [43] dynamically extracted ST features
through multiple attention and masked multiple attention mechanisms and determined the
significant influential parts of the road network by analyzing the attention weight matrix.
Zheng et al. [44] developed a framework that combines CNN and LSTM networks to more
effectively extract features of traffic data through an embedding module to fuse external
information (e.g., weather, date). For the extraction and modeling of more complicated
ST dependencies, Zambrano-Martinez [4] used logistic regression and cluster analysis
to predict the geographic distribution of urban traffic behavior, creating a realistic traffic
model for a specific target city; to extract the global ST features of traffic information,
Fang [45] proposed a neural network method that includes multilayer ST blocks to obtain
both global spatial correlation and dynamic temporal features.

In sum, that this may prove fruitful is motivated by the fact that deep learning can
obtain more accurate results, not only by eliminating the subjective factors caused by the
manual designing of model-driven methods but also by enhancing the nonlinear fitting
ability of ST dependencies. A more effective and comprehensive representation of the ST
dependencies embedded in traffic data is a crucial part of TFP research to obtain promising
prediction results.

2.2. Attention for TFP

Attention is essentially an assignment mechanism [46]. The controlling idea is to deter-
mine the correlation between them based on the original data, then emphasize important
features and realize the reallocation of weights.

Attentional mechanisms enable us to utilize limited attentional resources by filtering
out distracting information from the large volume of data, thus significantly reducing
information processing errors [42,47,48]. Essentially, the attention mechanism in deep
learning is similar to the human visual system in that its purpose is to determine which
part of the information may be more valuable for the task. Liu [29] demonstrated the
effectiveness of the attention mechanism for TFP by merging three attention modules,
channel attention, spatial attention, and location attention, via a deep integration network
to achieve adaptive feature refinement. Hao [47] used the sequence-to-sequence model with
the attention mechanism to model sequence data of different lengths, and the results have
proven that the attention mechanism enhances the ability of the model to capture remote
dependencies. Wang [48] proposed a hard attention module that strengthened neuronal
memory by learning similar patterns, thus diminishing the accumulation of errors. To re-
duce error propagation between prediction time steps, Zheng [49] developed a transformed
attention module to learn the direct correlation between historical and predicted flows.
Do [50] proposed a temporal and spatial attention module for traffic flow prediction, which
contributes to extracting the spatiotemporal dependencies between distinct time steps
and road networks. Guo [35] designed a spatiotemporal attention module that adaptively
adjusts the correlations of graph signal sequences in the temporal and spatial dimensions.
Yu [51] used a cross-attention mechanism to fuse ST features to model global information.
Jia [52] used a rectified block equipped with the attention mechanism to automatically
reweight the measurements for different time intervals. Liu [53] proposed hierarchical
attention to extracting features for each time step.
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3. Problem and Definition
3.1. Problem

(1) ST aggregation:

Figure 1 shows the hotspot aggregation characteristics of traffic flow at four moments,
T represents the traffic flow at the current time and the time interval between Tc and T is an
hour, the time interval between Tp and T is a complete day, the time interval between Tt
and T is a week. The higher z-score indicates a stronger degree of agglomeration. It can be
observed from Figure 1 that the similarity of the flow distribution at T with Tc, Tp, and Tt
are decreasing in order from the time perspective. From the spatial perspective, the traffic
flow at the four times is not evenly distributed, but concentrated in the city center with
significant spatial agglomeration.
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Therefore, the general deep learning method that shares parameter weights for all
time steps or regions has limitations. Traffic data has agglomeration at different times,
which also means that the weights of congested or sparse areas should be different. Given
the dynamism of traffic conditions, dynamic adjustment of the weights is also necessary
for the prediction task.

(2) Intrinsic correlation of the same ST features and redundancy between different
ST features:

The ST data obtained at neighboring locations and adjacent time steps are not inde-
pendent but are interrelated. Taking the traffic congestion situation as an example, traffic
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congestion does not occur in isolation and generally covers a continuous area and traffic
congestion also moves along a 3-dimensional ST domain as time has passed. In this paper,
3D CNN was used to automatically extract the ST features of data, but the extracted ST
features remain some problems: In CNN because the kernel is continuously moved to
sense the data, the ST feature is extracted by a single filter (a single filter contains n kernel)
extracted has intrinsic correlation. As shown in Figure 2, the time intervals t1 to t2 were
consecutive. The road is congested at t1 and the congestion state propagates eastward
along the road network until t2, when the congestion state was extended, and all the above
information can be sensed by kernel 1 in 3-dimensions. For the next consecutive time
intervals, t3~t4, 3D CNN perceives it with kernel 2. Although kernel 1 senses a different
ST domain, the congestion at t3 appears not abruptly but was closely related to the traffic
state from t1 to t2. Thus, there is an inherent correlation in the ST features captured by the
convolution operation.
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In addition, in kernel n, the same road was in a passable state in the long-term, and the
ST features learned by the kernel of any size were consistent, so there also exists redundant
information between multiple ST features. Therefore, it is not reasonable to share weights
for all ST features. Learning the intrinsic correlation in ST features, adjusting the weights of
the same ST feature to regions, concentrating on information-rich regions, and quantifying
the contributions among different ST features to reduce the redundant information were
critical issues to improve the prediction performance.

3.2. Definition

Data Definition: This paper defined urban traffic data as a 4-dimensional (4D) tensor
X = [X1, X2, . . . , XT ] ∈ RT×F×H×W . XT is the OD matrix that counts the outflows or
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inflows at time T. First, the region was divided into a 2D non-overlapping raster of size
H ×W according to latitude and longitude, where H and W were the height and width
of the regional grid. Secondly, the flow data were stacked to 3D according to F, the total
number of types of flow data. Finally, the data were stacked to 4D according to the total
number of timestamps T of the flow data.

Problem Definition: The objective of this paper is to build a TFP model: the historical
traffic with 3-time intervals of closeness, trend, and period at time t was applied as input
Xin =

[
Xc

t , Xp
t , Xt

t

]
to predict multiple types of traffic flow at time t. The summary of the

notation can be found in Table 1.

Table 1. Summary of Notation.

Notations Description

T The time length of the data
F Data channels
H The height of regions
W The width of regions
N The gird number of regions
Xc

t Input data of c time intervals adjacent to time interval t
Xp

t The adjacent data of p-day for the same time intervals as t.
Xt

t The adjacent data of t-week for the same time intervals as t.
X′t Final prediction at time t.
Cr Number of ST features of the rth layer network
Tr Data time length of rth layer network

4. Methodology

Figure 3 shows the framework of FASTNN, this model consists of three basic compo-
nents of closeness, period, and trend, which intercept three time series of length Tc, Tp, and

Tw along the time as the three component inputs Xin =
{

Xc
t , Xp

t , Xt
t

}
.

1. The closeness component;

Xc
t = (Xt−Tc+1, Xt−Tc+2, . . . , Xt) ∈ RI×J×F×Tc

2. The period component;

Xp
t =

(
Xt−Tp∗q, Xt−(Tp−1)∗q, . . . , Xt−q

)
∈ RI×J×F×Tp

3. The trend component;

Xt
t =

(
Xt−l∗Tt∗q, Xt−l∗(Tt−1)∗q, . . . , Xt−l∗q

)
∈ RI×J×F×Tt

where p and q are the period and trend span. Tc, Tp, and Tt are the time lengths of three
components.

The intrinsic structure of each component remains consistent, and these components
can extract universal ST dependencies in the data. Taking the closeness component as an
example, to extract deep-level spatiotemporal correlations, FASTNN input the historical
traffic of closeness into the 3D CNN, and appended the FSA component after the 3D CNN
to model the spatiotemporal agglomeration of each feature extracted, thus achieving the
dynamic adjustment of the spatial weights. The ST dependencies of the traffic data have
been comprehensively modeled after Lc replications. To prevent network degradation,
FASTNN added residual units after the FSA in the last layer. The ST features processed by
residual units still have inherent correlation and redundancy, and these dependencies were
modeled by the lightweight MFR proposed in this paper.
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4.1. 3D Convolutional Neural Network

3D Convolutional neural network (3D CNN) contributes to the model to capture the
dependence in the spatiotemporal dimension. Observations obtained at neighboring loca-
tions and adjacent time steps are not independent but interrelated and this spatiotemporal
correlation can be effectively captured by 3D CNN.

The weights of 3D Convolutional can be expressed as 5-Dimension filters: F ∈
RC′×C×T×M×N , where C′ is the number of filters, C is the number of input filters or chan-
nels, is the number of input filters or channels, T, M, and N is the temporal length, height,
and width of the 3D convolutional filter. Take the closeness component as an example, the

input flow was denoted as Xl−1 ∈ RC′l−1×T×H×W .The calculation of each 3D Convolutional
filter Ff ∈ RC×T×M×N , f = 1, . . . , C′ can be expressed as:

Φ(l, i, j) = Xl−1 ∗ Ff = ∑C
c=1 ∑T

t=1 ∑M
m=1 ∑N

n=1 Xl−1(c, l − t, i−m, j− n)Ff(c, t, m, n) (1)

where l = 1, . . . , T, m = 1, . . . , M and n = 1, . . . , N. The output flow can be denoted

as Xl ∈ RC′l ×L×M×N . The structure of 3D CNN is shown in Figure 4. Take the input
data with the number of channels as 1 as an example, the input data can be expressed
as X ∈ R1×T×M×N , after the convolution of filters Ff = [F1, F2, . . . , Fc], Fc ∈ RC×T×M×N ,
the output channel data X′ ∈ RC×T×H×W equal to the number of Filters was obtained.
If the input data X contains more than one channel, the number of dimensions of the
output data X′ channels increase accordingly. In the period and trend component, the 3D
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CNN layer was calculated similarly to the closeness component. After stacking multiple
layers of 3D CNN, the critical information of traffic data in the time dimension has been
effectively mined.
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4.2. Filter Spatial Attention

The 3D CNN shows promise in mining information along the ST dimensions but
could be difficult to detect the ST agglomeration of traffic data and the agglomeration is
dynamically changing, it is also difficult to adaptively adjust the region weight. Conse-
quently, this paper used the filter spatial attention (FSA) module to dynamically adjust the
intensity of ST agglomeration based on the input data. To compare the model performance
of different attention mechanisms, this paper also compared the experimental performances
of two different mechanisms, namely, multi-headed attention, self-attention, and the FSA
proposed in this paper. The equation for calculating FSA was as follows:

Sk = Vs·σ(Qs·Ks + bs) = Vs·σ
((

X(r−1)W1

)
W2

(
W3X(r−1)

)T
+ bs

)
(2)

S =
exp(Sk)

∑N
j=1 exp(Sk)

(3)

In Equation (2), Vs, bs ∈ RN×N , W1, W2 and W3 were learn-able parameters, which
is trained using gradient descent, W1 ∈ RTr−1×1, W2 ∈ RCr−1×Tr−1 , W3 ∈ RCr−1×1 and
X(r−1) =

(
X1, X2, . . . , XTr−1

)
∈ RN×Cr−1×Tr−1 , σ is the sigmoid function and X(r−1) is the

output of rth 3D CNN. Tr−1 is the output time length of (r− 1)th 3D CNN and Cr−1 is the
output filter length of (r− 1)th 3D CNN. N = H ×W is the total number of regional grids.

The calculation flow and structure of FSA were presented in Figure 5. In Figure 5a,
take the closeness component as an example, the 3D CNN input of the lth layer is x̂l

c
and x̂l

c = x̂l−1
c ◦ S was used to model ST agglomeration, which ◦ denotes the Hadamard

product and S is the spatial weight matrix calculated by the FSA module. When l = 1,
x̂l

c ∈ RF×Tc×H×W , Tc is the input time length of the closeness component. When l + n, n ≥ 1,
to realize the fusion with the FSA module, the input X̂(l+n)

c ∈ RF×C(l+n−1)×H×W was re-
shaped as X̂(l+n)

c ∈ RF×C(l+n−1)×N , where C(l+n−1) was the filter number of the (l + n− 1)th

3D CNN layer. After multiplying the output X̂(l+n)
c with S can obtained the input x̂(l+n+1)

c

of (l + n + 1)th 3D CNN, the input was then reshaped back to x̂(l+n+1)
c ∈ RF×C(l+n)×H×W .

In the period and trend components, the calculation was completely consistent.
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Figure 5b shows the structure of FSA. The structure of FSA is referenced to the general
attention mechanism, in which the feature matrices are calculated by Qs, Ks, and Vs. The
difference with the general attention is the difference between the calculation method and
data dimensionality: The attention uses the method of vector intersection to determine the
similarity, while FSA uses multi-dimensional learning parameters and more dot product
operations to determine the similarity more comprehensively.

4.3. Residual Unit

After stacking multiple layers of 3D CNN and modules of FSA, the dependencies of
traffic data in ST dimensions have been comprehensively mined. As the number of neural
network layers deepens, the training of the network becomes more difficult and even leads
to performance degradation in the network.

As the depth of the neural network layers deepens, the training of the network could
become more difficult and result in even degradation of the network performance. To
alleviate the degradation phenomenon caused by the deepening of neural network layers,
the residual unit proposed by He [54] was employed in this paper to guarantee the training
performance of the model. In this paper, Lr residual units were stacked after the last layer
of 3D CNN, which were calculated as follows:

x̂(Lc+l) = x̂(Lc+l−1) + F
(

X(Lc+l−1)
c ; θl

c

)
, l = 1, . . . , Lr (4)

In Equation (4), θl
c is the set of all learnable parameters in the lth residual unit. x̂(Lc+l)

is the output of (Lc)
th residual unit and x̂(Lc+l−1) is the input. When Lc = 1, to make the

residual unit fuse with the FSA module output, the input of (Lc)th the residual unit was
reconstructed as x̂(Lc) ∈ RCl×H×W , and Cl is the feature number of the FSA output of the
last module.
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4.4. Matrix Factorization Based Resample Module

Quantifying and adjusting the weights of regions for the same ST feature, enhancing
the focus on information-rich regions, and reducing the redundant information in different
ST features was a critical aspect to improve the performance of the TFP model. However,
modeling spatiotemporal features using a single set of parameter weights cannot model the
nonlinear relationships among multiple spatiotemporal features. It is necessary to enable
each filter to correspond to a separate prediction network. However, independent training
of each filter’s prediction network introduces new problems:

• Independent training cannot model the correlation between multiple ST features, nor
can it eliminate redundant ST features [35,55,56];

• Direct training using fully-connected layers introduces excessive training parameters
that can lead to difficult optimization or overfitting of the model.

To address this problem, the matrix factorization-based resample module (MFR) was
proposed in this paper. This module can automatically learn the contribution of each region
in the same spatiotemporal features and the correlation between different spatiotemporal
features, thus improving the model representation and prediction capability. The input to

the MFR module was xi
c ∈ RRF×C′Lr×H×W . The output after training was the x̂R

c ∈ RF×H×W .
FR was the set of learnable parameters, FR = [ f1, . . . , fCR ], fi ∈ RF×H×W , where CR was
the number of ST features (i.e filters). As Figure 6 shown, this paper used a Filter Matrix

F ∈ RH×W×K and a Parameter Matrix P ∈ RC′Lr×F×K to approximate FR ∈ RRC′Lr×F×H×W ,
where K is a constant less than C′Lr × F.

FR = reshape
(

W(C)T
)

(5)

Xc = FR · XLr
c + bi (6)
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In Equation (6), bi represents the bias term of the ith ST features, b = [b1, . . . , bi] ∈
RF×W×K, also calculated by the matrix factorization.

4.5. Fusion Component

When fusing the outputs of components closeness, period, and trend, the fully-
connected neural network (FNN) was used to automatically learn the importance of the
three types of outputs. The output of the closeness component, the period component,
and the trend component can be expressed as [x̂ f c, x̂ f p, x̂ f t]. The fusion component can be
expressed as follows:

X′t = Wt ◦ x̂ f t + Wp ◦ x̂ f p + Wt ◦ x̂ f t (7)

where Wt, Wc and Wp is the learnable parameter, ◦ representing the Hadamard product.
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4.6. Loss Function

The model was trained by minimizing the loss function, which is defined as the mean
root error (MSE) between the true traffic raster values and the predicted values. MSE was
used for the reason that it is continuously derivable, which facilitates the use of gradient
descent algorithms and also facilitates the convergence of the function. The formula for
MSE is as follows:

L(θ) =‖ X′t − X̂t ‖2
2 (8)

where θ is the learnable parameters, X′t is the predicted traffic flow at time t and X̂t is the
true traffic flow at time t.

5. Experiments

The main objective of the urban traffic flow predicting task was to build an accurate
model to predict multiple flows for a specific demand in each time and region of the
city. This paper demonstrated the application of the FASTNN to an urban traffic flow
forecasting task on two large-scale datasets (TaxiBJ and BikeNYC). The results of the paper
were intended to answer the following questions:

1. How does the FASTNN proposed in this paper perform compared to the baselines?
2. What is the performance of the FASTNN variants with different modules?
3. How effective are the FSA module and the MFR module proposed in this paper?
4. Why are FSA and MFR effective?

5.1. Dataset

In this paper, two traffic flow datasets, TaxiBJ and BikeNYC, were used to verify the
performance of the FASTNN, and the details of the two datasets were shown in Table 2. The
common feature of both datasets is that the area was transformed into an H ×W grid, and
the traffic flow data was transformed into raster data with 2 channels. The two channels
were traffic inflow and outflow.

• TaxiBJ dataset is crowd flow data obtained from GPS trajectory data of Beijing cabs,
which contains four-time intervals: 1 July 2013, to 30 October 2013; 1 March 2014 to
30 June 2014; 1 March 2015, to 30 June 2015; and 1 November 2015, to 10 April 2016.
This dataset firstly divides the main urban area of Beijing into 32 × 32 grid areas, and
secondly counts the origin and destination points of each vehicle trajectory in the
above four time periods according to the 0.5 h interval. Because the dataset has ST
continuity, the dataset can detect all traffic conditions under a specific region;

• BikeNYC dataset is obtained from 1 April to 30 September 2014, New York City Bicycle
System [39]. This dataset divides the main city of New York into a 16 × 8 grid, and
counts the inflow and outflow of crowds within the area at one-hour time intervals,
with a total number of time timestamps of 4392. This dataset is based on the 2014 NYC
Bike system bike-sharing trip data and counts the traffic flow within the 16 × 8 grid
according to the bike-sharing orders in each area, by latitude and longitude.

Table 2. Details of the dataset.

Dataset TaxiBJ BikeNYC

City Beijing New York

Time-span

7/1/2013–10/30/2013
3/1/2014–6/30/2014
3/1/2015–6/30/2015

11/1/2015–4/10/2016

4/1/2014–9/30/2014

Time interval 30 min 1 h
Map size 32 × 32 16 × 8

Number of timestamps 22,459 4392
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5.2. Baselines

In this paper, the FASTNN was compared with the following baselines:

• History Average Model (HA): The predicted flow of the model is the average of the
recent historical traffic data at the corresponding time;

• Autoregressive Integrated Moving Average Model (ARIMA): ARIMA regards the data
series of the prediction object over time as a random sequence, and uses a certain
mathematical model to describe this sequence approximately;

• Support Vector Regression (SVR): SVR utilizes linear support vector machines for
regression tasks, and the central idea of the model is to find a regression plane such
that all the data in a set are closest to that plane;

• Long Short-Term Memory (LSTM): LSTM is a neural network with the ability to
remember long and short-term information, consisting of a unit, input gates, output
gates, and forgetting gates, for solving the problem of long-term dependencies;

• Gated Recurrent Unit (GRU): GRU [57] is a variant of LSTM. A gating mechanism is
used to control the input, memory, and other information, while making predictions
at the current time step;

• ConvLSTM: The convolution mechanism [58], which can extract spatial features, is
added to the LSTM network, which can extract temporal features and can capture
ST relationships;

• ST-ResNet: Spatiotemporal residual network [39], which utilizes three residual neural
network components to model the temporal closeness, period, and trend properties of
urban flows;

• ST3Dnet: An end-to-end deep learning model [18], ST3Dnet uses the 3D CNN and
recalibration module to model the local and global dependencies.

5.3. Evaluation Metrics

To better evaluate the performance improvement of the FASTNN, this paper used the
following two metrics for evaluation.

Root Mean Squared Error (RMSE):

RMSE =

√
1
T ∑t

i(ŷi − yi)
2 (9)

Mean Absolute Error (MAE):

MAE =
1
T ∑t

i |ŷi − yi| (10)

In Equations (9) and (10), where ŷi is the predicted traffic flow, yi is the real traffic flow
in the region, and T is the total number of time intervals, which also is the total number
of samples.

5.4. Model Training

The FASTNN was constructed based on the TensorFlow framework and was trained
and tested on an Ubuntu 16.04 server with a single graphics card (NVIDIA GTX 3060Ti). In
the model training, the batch size was set to 16, the learning rate was set to 0.002, and the
early stopping strategy was used to prevent overfitting. The two datasets were divided
into respective training dataset, validation dataset, and test dataset in time order. These
two datasets did not overlap with each other and were divided in a proportion of 8:1:1 on
the time series.

The adaptive moment estimation (Adam) optimization algorithm was used in the
model for end-to-end gradient descent training. The RMSE and MAE curves during model
training were shown in Figure 7. It can be observed that the FASTNN was properly trained
and not overfitted on the two large-scale traffic datasets.
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5.5. Performance Comparison with Baselines (Q1)

Table 3 presents the variation in the performance of the FASTNN and other baselines
on the two datasets. For the FASTNN and all baselines, this paper used different random
seeds for training, tested three times, and record the experimental results and error margin
in the format of “mean ± error margin”. From Table 3, the following conclusions can
be derived.

Table 3. Comparison of performance under different baselines. (Note: Bold represents the best
performance).

Baselines
BikeNYC TaxiBJ

RMSE MAE RMSE MAE

HA 12.56 ± 0.00 6.35 ± 0.00 53.21 ± 0.00 26.70 ± 0.00
ARIMA 11.56 ± 0.00 6.79 ± 0.00 28.65 ± 0.00 19.32 ± 0.00

SVR 11.02 ± 0.01 6.32 ± 0.07 26.75 ± 0.15 18.42 ± 0.09
LSTM 9.12 ± 0.69 5.31 ± 0.42 24.34 ± 0.50 16.76 ± 0.56
CNN 9.04 ± 0.57 4.98 ± 0.11 26.58 ± 0.23 14.02 ± 0.12

ConvLSTM 8.23 ± 2.49 4.36 ± 1.27 23.42 ± 1.36 13.24 ± 3.11
ST-ResNet 7.03 ± 0.72 3.94 ± 1.05 19.21 ± 0.56 12.97 ± 2.01
ST3Dnet 6.54 ± 1.03 3.62 ± 0.74 18.56 ± 0.59 11.06 ± 1.56

FASTNN [ours] 5.04 ± 0.68 2.46 ± 0.58 16.73 ± 0.36 10.49 ± 0.91

Compared to traditional time series analysis methods and machine learning methods
(e.g., HA, ARIMA, and SVR), deep learning-based baselines have better predictive per-
formance for all evaluation metrics. These findings are understandable because machine
learning methods have limited capability to model nonlinear ST features. Moreover, for
LSTM and CNN, which can only model temporal or spatial features from a single dimen-
sion, models, such as ConvLSTM and ST-ResNet, which can model ST dependencies from
multiple dimensions, evidently achieve better performance.

In the TFP, the FASTNN achieves better prediction performance than existing baseline
approaches. Compared to the best performance in traditional baselines (i.e., HA, ARIMA,
and SVR) for the BikeNYC and TaxiBJ datasets, the FASTNN achieved relative improve-
ments of 54.26% and 37.45% (RMSE), while MAE achieved a relative improvement of
61.08% and 43.05%. Compared to the best performance in deep learning-based baselines,
the FASTNN achieved relative improvements of 22.94% and 9.86% (RMSE) in BikeNYC
and TaxiBJ datasets. Similar improvement results were presented in the comparison of
MAE metrics, and the improvement of MAE was 32.04% and 5.15%.

The architectural modules of FASTNN contribute to these improvements. Other
baseline methods disregard the spatial agglomeration of traffic flow at different time
intervals and use a weight-sharing training strategy for all regions. The FASTNN, on the
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contrary, incorporated the FSA module, which can dynamically adjust the region weights
in each training step, and effectively distinguishes the traffic agglomeration regions from
the sparse regions. Moreover, based on the concept of intrinsic correlation of the same
ST features and redundancy between different ST features proposed in this paper, the
FASTNN used the MFR module to automatically learn the intrinsic correlations in the
same ST features and calculate their spatial weights. This module also can enhance the
importance of information-rich features and reduce the impact of redundant information
features, thus improving the prediction performance of the model.

5.6. Evaluations on Variants of the Module (Q2)

To investigate what is the performance of FASTNN variants with different modules,
the FSA and MFR modules were varied and replaced in the FASTNN. The FSA module
was based on the attention mechanism; thus, this paper evaluated the performance of
two general variants, the multi-headed attention mechanism (MA), and the self-attention
mechanism (SA) [46]. For the MFR module, which is capable of automatic learning intrinsic
correlation and disregarding redundant information, this paper has compared it using the
forward neural network (FNN) and the adding layer. Detailed variant model descriptions
were shown as follows:

• STNN: This model has removed all FSA modules and MFR modules from the FASTNN,
remaining the components of 3D CNN and the residual unit;

• FASTNN-MA: This model has replaced the FSA module in the FASTNN with the MA;
• FASTNN-SA: This model has replaced the FSA module in the FASTNN with the SA;
• FASTNN-FNN: This model has replaced the MFR module in the FASTNN with

the FNN;
• FASTNN-add: The FASTNN-add model has replaced the MFR module in the FASTNN

with the adding layer, the adding layer can sum the ST features by filters.

Table 4 shows the performance of FASTNN compared with other variants of the model.
It can be observed that FASTNN proposed in this paper achieves the best performance
compared to all variants.

Table 4. Comparison of performance under different variants. (Note: Bold represents the best performance).

Variant
TaxiBJ BikeNYC

RMSE MAE RMSE MAE

FASTNN 16.73 ± 0.36 10.49 ± 0.91 5.04 ± 0.68 2.46 ± 0.58
STNN 23.56 ± 0.69 13.36 ± 0.33 9.94 ± 0.50 5.02 ± 0.23

FASTNN-SA 21.18 ± 0.53 11.47 ± 0.47 8.14 ± 0.27 4.26 ± 0.16
FASTNN-MA 20.87 ± 0.69 10.13 ± 0.35 9.04 ± 0.48 4.88 ± 0.20
FASTNN-FNN 17.50 ± 0.35 10.93 ± 0.16 5.93 ± 0.25 3.56 ± 0.11
FASTNN-add 18.87 ± 0.15 11.51 ± 0.04 7.83 ± 0.23 3.98 ± 0.09

In the attention variants, a possible explanation for this is that FASTNN-MA and
FASTNN-SA not only required reconstructing the learnable parameters to sequence length
but also relied on manually setting the sequence length, which resulted in the possibility of
dropping critical information for a shorter length during the computation. Longer sequence
length, on the other hand, will increase the number of parameters in the model and result
in overfitting problems in the model. For example, the FASTNN-MA model outperforms
FASTNN-SA in the TaxiBJ dataset, which has a larger volume of data, while the opposite
prediction performance was observed in the BikeNYC dataset, which has a smaller volume.
Meanwhile, the MAE metric of FASTN-MA is slightly better than that of FASTNN in the
TaxiBJ dataset, a possible explanation for this is that FASTNN-MA produced outliers in
the prediction task of the TaxiBJ dataset with a larger data volume, which was detected by
RMSE but not by MAE due to the different metric calculation.
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In the MFR variant, the performance of FNN was better than that of the adding layer,
which indicates that each ST feature contains information of different importance to the
model. However, the direct calculation of contribution using FNN will ignore the intrinsic
correlation in the same ST feature and introduce redundant information between different
ST features, which results in the reduction of model accuracy.

5.7. Evaluations on Ablation Analysis (Q3)

To quantify the effectiveness of the FSA module and MFR module proposed in this
paper, the following ablation analysis was conducted. This paper evaluated the prediction
performance of the original model, the model without the FSA module (FASTNN-without
FSA), and the model without the MFR module (FASTNN-without MFR), on the datasets
using two metrics.

As shown in Figure 8, the accuracy of FASTNN-without FSA was consistently lower
than that of the FASTNN given the lack of display modeling of the ST aggregation. Si-
multaneously, the accuracy of FASTNN-without FSA was additionally lower than that of
FASTNN-without MFR, indicating a greater degree of importance for ST agglomerative
deep mining in the TFP, and the quantification of the intrinsic correlation and redundancy
brought the performance improvement less than its obvious effect.
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Figure 9 visualized the real traffic flow and the prediction results of each model.
Among them, Figure 9a showed the visualization results of the original real traffic flow
at moment t + 1, and Figure 9b–d show the traffic flow prediction results of FASTNN,
FASTNN-without MFR, and FASTNN-without FSA at moment t + 1. The prediction result
of FASTNN was the closest to the real traffic flow, which restores the real state of traffic flow
to the greatest extent, and the prediction result of FASTNN-without MFR is secondary. The
prediction of FASTNN-without FSA is underperforming, and the congestion characteristics
in the center and the traffic flow in the edge part are not detectable efficiently.

5.8. Effective of the Module (Q4)

This paper visualized the FSA weight matrix of the output of the FSA module of the
last layer of the three components of closeness period and trend using the TaxiBJ dataset
as an example. As shown in Figure 10, the weights of all regions were greater than 0,
indicating that all regions have a positive effect on the TFP. The closeness component has
the maximum weight with a mean value of 0.000455 and the period component has the
minimum weight with a mean value of 0.000301. In addition, the distribution pattern of
the hotspot of the closeness component was similar to that of the period component, which
indicated that the closer the input historical time is to the predicted time, the greater the
contribution to the prediction.
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To visualize the effectiveness of the MFR module, the weight matrices of the outflows
and inflows of the three components closeness, period, and trend in the MFR layer were
visualized on its 32 × 32 grid using the TaxiBJ dataset as an example.

The results were shown in Figure 11. In each weight matrix, the value of grid (i, j)
indicated the MFR module weight of the corresponding ST feature to the (i, j) region, which
has modeled the intrinsic correlation of each ST feature and the redundancy between all ST
features. It can be observed that the same ST features have different contributions to each
region, as in Figure 11a, each region has different weight values, which also represents the
successful modeling of the intrinsic correlation. Simultaneously, different ST features also
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have different contributions to the same region, as in Figure 11a–c, the weight values of
the same region were different in different components, which represents the successful
modeling of redundancy for different ST features.
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6. Conclusions

Traffic flow prediction is a key input to intelligent transportation systems, intending
to predict short-term or long-term traffic flow based on historical traffic data. Accurate
TFP for the region can pre-allocate the required vehicles to areas with high travel demand,
which not only reduces passenger waiting time and improves travel service quality but
also provide references for implementing traffic management strategies, developing travel
route planning, and public transportation risk assessment.

The starting point of this paper is to build an accurate deep learning model for traf-
fic flow prediction. The motivation of this paper is to model the two key problems of
spatial-temporal aggregation in traffic data and intrinsic correlation or redundancy of the
spatialtemporal features and thus implement the deep mining of the spatiotemporal depen-
dence of traffic data to improve the prediction accuracy. To solve mentioned problem, this
paper proposed a novel deep learning model, named filter attention-based spatiotemporal
neural network. This model used the filter spatial attention module, which can implement
the dynamic adjustment of spatial weights of ST features under different times and regions.
This model also constructed a lightweight matrix factorization-based resample module that
models the intrinsic correlation in the ST feature, which also enhances the concentration
of the model to information-rich ST features and reduces redundancy among different ST
features. Meanwhile, this paper employed three types of historical traffic data-closeness,
period, and trend- and 3D-convolutional neural networks to mine generic spatiotemporal
dependencies. The specific experimental conclusions were as follows:

(1) In the comparison of the baseline models, the deep learning-based baselines have
better predictive performance than the traditional baselines, which indicates that
deep learning-based baselines are capable of eliminating the subjective factors caused
by the artificial design compared to traditional baselines and also have enhanced
spatiotemporal dependent nonlinear fitting capability;

(2) The performance of the FASTNN was evaluated using two large-scale real datasets,
and the results indicate that the FASTNN achieves more accurate predictions than the
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existing baselines, and the performance of FASTNN improves by 22.94% and 9.86%
(RMSE) on the BikeNYC and TaxiBJ datasets compared to the baseline with optimal
performance. Simultaneously, the same predicted performance results also appear in
the variant experiments;

(3) In the ablation analysis, the FASTNN model with FSA predicted better performance
than the model with MFR, indicating that modeling of spatiotemporal aggregation is
more critical than the modeling of intrinsic correlation and redundancy of spatiotem-
poral features.

It is noteworthy that the FASTNN can run without extensive external features and
achieve better results. This suggests that modeling the spatiotemporal aggregation of traffic
data and quantifying the intrinsic correlation and redundancy between ST features can
contribute positively to the extraction of nonlinear spatiotemporal dependencies. The
FASTNN proposed in this paper can provide reliable traffic guidance information to
intelligent transportation systems. In future work, we consider incorporating the extensive
multi-source data (e.g., transit, bike) into the traffic flow prediction to mine and model the
interactions and correlations between spatiotemporal data. Meanwhile, the incorporation
of external traffic information, such as road networks and traffic lights, is also an important
direction for TFP to consider. Limited by the availability of data, external features were not
considered here in this paper.
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