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Abstract: This work addresses the problem of non-blind image deblurring for arbitrary input noise. 
The problem arises in the context of sensors with strong chromatic aberrations, as well as in standard 
cameras, in low-light and high-speed scenarios. A short description of two common classical ap-
proaches to regularized image deconvolution is provided, and common issues arising in this context 
are described. It is shown how a pre-deconvolved deep neural network (DNN) based image en-
hancement can be improved by joint optimization of regularization parameters and network weights. 
Furthermore, a two-step approach to deblurring based on two DNNs is proposed, with the first 
network estimating deconvolution regularization parameters, and the second one performing image 
enhancement and residual artifact removal. For the first network, a novel RegParamNet architecture 
is introduced and its performance is examined for both direct and indirect regularization parameter 
estimation. The system is shown to operate well for input noise in a three orders of magnitude range 
(0.01–10.0) and a wide spectrum of 1D or 2D Gaussian blur kernels, well outside the scope of most 
previously explored image blur and noise degrees. The proposed method is found to significantly 
outperform several leading state-of-the-art approaches.

Keywords: convolutional neural networks; image restoration; non-blind deconvolution; regularization 
parameter

1. Introduction

Video cameras are the most common sensing modality in modern vehicles.
The number of cameras per vehicle is constantly growing, both in the retail sector, e.g., in
Advanced Driver Assistance Systems (ADAS), and in the Autonomous Vehicle (AV) domain.
There is a constant demand to reduce the cost of imaging systems without compromising
the quality.

Raw images acquired by digital image sensors pass through a rather long image signal
processing (ISP) chain [1] before they are handed over to a perception system for object
detection, recognition, tracking, or a variety of other generic or domain-specific tasks [2].
Success of perception systems critically depends on image quality [3], and is therefore
constantly pushing the requirements for resolution, frame rate, dynamic range etc. For the
last decade or so, we have witnessed a staggering improvement in image quality of mobile
phone and automotive-grade cameras, often comparable to image quality of professional-
grade cameras. This improvement came mainly from the direction of ISP modules, driven
by rapid progress in image processing algorithms, which in turn was possible due to a
significant increase in the available processing hardware. Many such algorithms were
invented to compensate for artifacts introduced by relatively cheap optics (e.g., aberrations
and distortions) or small pixel size (e.g., noise and cross-talk).

In this work, the problem of image blur is addressed. This is a rather old and cross-
disciplinary topic—people have been dealing with blurry images more or less since the
invention of photography, in most imaging domains and at all scales—from astronomy [4]
to microscopy [5]. Typically, image blur is motion-induced [6] or caused by optical aber-
rations [7,8]. For instance, maybe the most well-known imaging system optimization
challenge deals with choosing a correct value for the exposure time. If it is too short, the
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image appears very noisy, if it is too long—camera motion or intrinsic motions in the scene
smear the image and it becomes too blurry. Thus, long-range cameras designed for high-
way usage and high-speed driving tend to produce noisy images in low-light conditions,
whereas short-range surround view cameras are more lenient when it comes to exposure
times. In any case, to achieve less noise means using more expensive sensors or longer
exposure times, which means image blur.

Until the introduction of digital imaging more than half a century ago, probably the
only way to deal with image blur was to avoid it by using high-grade optics and sensitive
photographic film. Digital imaging allows us to build image formation models, to isolate
degradation stages, and to formulate image restoration as an inverse numerical problem [9].
As the following sections show, such formulation often paves way to using well-known
techniques from other, more established fields. The first publications on digital image
deblurring appeared in the late 60’s and early 70’s [10–12]. Since then, image deblurring
has flourished into a rather wide field that can be roughly divided into two main sub-fields.
The first kind of deblurring problems are referred to as “non-blind deblurring”. In this class
of problems it is assumed that all components of image formation model are known. In
particular, the blur kernel (often referred to as the point-spread function, or PSF) is assumed
to be either directly measured in some calibration procedure or inferred from auxiliary
measurements, e.g., from motion sensors readings [13]. The second class of problems is
called “blind deblurring”, which means that the PSF is not known. As often happens, there
is also a rather dense spectrum of problems that fall somewhere in between the two classes.
For instance, the exact shape of the PSF may not be known, but assumptions can be made
regarding its origin, extent, regularity etc. To appreciate the vast progress in the field up
until 2014, the reader is referred to a comprehensive review article by Wang and Tao [14].

Naturally, blind deblurring problems are more challenging than non-blind deblurring
ones. For many approaches, the latter can be considered as a central block in a generic
solution flow for blind deblurring: find a deblurred image given a PSF, estimate the error,
refine the PSF etc. Still, as the next sections show, even if one is fortunate enough to know
the PSF, finding a reliable solution is a rather non-trivial task. In particular, the solution
should be properly regularized to be of any use, which requires inference of regularization
parameters. The latter, in turn, are strongly influenced by the level of noise in the blurred
image as well as by intricate texture statistics of the image. Often, regularized solutions
exhibit common artifacts, such as boundary artifacts or Gibbs phenomena that inevitably
accompany most solutions to ill-posed inverse problems. Much effort has been invested in
fighting these artifacts, either as a post-processing step or by devising specialized boundary
conditions and inverse operators.

As with almost every field in image processing and computer vision, application of
deep learning techniques to image deblurring during the last decade, generated a great
number of impressive results [15,16]. Most researchers are interested in blind deblurring
since this is where most challenges are. Although there was quite impressive progress
on that front [17–19], existing deep neural networks (DNNs) are able to learn PSFs of a
rather limited extent, so that the problem of blind deblurring remains largely unsolved.
Non-blind deblurring has benefited from deep learning as well. For instance, there has
been much activity around designing suitable architectures and ways to incorporate known
PSF kernels into them [20–22]. Another approach proposed by Xu et al. [23] is to use
classical deconvolution followed by a DNN trained to remove residual deconvolution
artifacts. This approach was further explored by Wang and Tao [24], who proposed using
very deep architectures to predict residuals between a pre-deconvolved image and the
corresponding sharp image. It is argued that this approach is noise-blind in the sense that
it is able to handle different blur kernels and various noise levels. However, in both cases it
is assumed that the pre-deconvolved image actually exists, which implies knowledge of
suitable regularization parameters, or at least, knowledge of input noise [9].
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This work addresses the problem of non-blind image deblurring for almost arbitrary
levels of input noise. The two-step approach is generalized to the case of arbitrary noise in
a three orders of magnitude range (10−2–10.0) and arbitrary 1D or 2D blur kernels.

This paper is organized as follows. First, a short review of classical approaches to
regularized image deconvolution is provided, and common issues arising in this context
are described. Then it is demonstrated how a two-step DNN based deblurring works, and
how it can be improved by treating regularization parameters as trainable neural network
weights. Next, the two-step approach is generalized by introducing RegParamNet, a 1D
convolutional network that estimates optimal regularization parameters for a given blurred
and noisy input. Finally, the results of the generalized approach are analyzed and possible
extensions are discussed.

2. Regularized Deconvolution
2.1. Tikhonov Regularization

In this work it is assumed that the blurred image JB is related to the original image J
through a linear convolution with additive noise:

JB = K ∗ J + Ξ, (1)

where K is the blur kernel and Ξ is a random Gaussian noise matrix. It is also assumed that
K is known. To avoid noise amplification, Tikhonov [25] suggested to reformulate (1) as a
regularized least-squares (LS) problem, such that

J(LS)
λ = argmin

{
‖K ∗ J− JB‖2 + λ2‖L ∗ J‖2

}
(2)

Here, L is a linear operator (usually, an identity operator or a derivative) that is chosen
in accordance with the property of the solution that needs to be regularized. For 1D blur,
the convolution operation can be expressed as multiplication of the image J by a blur matrix.
For instance, the solution for horizontal blur is

J(LS)
λ = JBKT

(
KTK + λ2LTL

)−1
(3)

Throughout this work, the identity operator L = I will be used. In this way, the
λ2-term controls the magnitude of the solution and prevents it from diverging. Thus (in
what follows, the superscript (LS) will be omitted),

Jλ = JBKT
(

KKT + λ2I
)−1

= JBVS
(

S2 + λ2I
)−1

UT
(4)

where
K = USVT (5)

is the SVD decomposition of the blur matrix. Tikhonov regularization is a very efficient
approach for 1D and 2D separable kernels. Non-separable 2D blurring kernels are less
friendly to Tikhonov regularization. The blurring is given by

JB[i, j] = ∑
k,m

J[i + m, j + k]K[m, k] (6)

In principle, this equation can be rewritten in the form:

Ax = b

and thus it is amenable to Tikhonov regularization. However, the images should be then
converted to 1D vectors such that a W × H image becomes a WH × 1 vector. The blur
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matrix A becomes a WH ×WH sparse matrix. It is clear that the storage and processing
requirements are significantly higher than for a separable case (if W = H = 256, we have
216 values in x and 232 values in A).

Wiener Regularization

A well-known alternative way to solve the blurring Equation (6) is to move to Fourier
space, where the equation becomes simply

JB(k) = J(k)K(k) + η(k), (7)

with η(k) being the Fourier transform of image noise. Wiener [26] proposed a solution to
this problem in the context of stationary time series. His solution applied to the domain of
image deblurring has the following form:

JW(k) =

[
K∗(k)

|K(k)|2 + α2(k)

]
JB(k). (8)

The expression in parentheses is called the Wiener Filter and the term α(k) is the inverse
of the original signal SNR

α(k) =
∣∣∣∣η(k)J(k)

∣∣∣∣. (9)

Since the α-term is in general unknown, it is usually replaced by a constant, which is
denoted by λ2, so that

Jλ(r) =
1

WH ∑
k

[
K∗(k)

|K(k)|2 + λ2

]
JB(k)eikr, (10)

where K∗(k) is the complex conjugate of K(k). Equation (10) will be henceforth referred to
as the Wiener-regularized solution.

2.2. Optimal Regularization Parameter—MSE Approach

For real images, analytical estimation of the optimal value for λ is not possible. Thus,
the following experiment is performed:

1. Take an image
2. Design a blur kernel; blur the image; add noise
3. Perform regularized deconvolution using different values of λ
4. For each value of λ, calculate the mean squared error (MSE) between the deblurred

image and the original one

This procedure is repeated for a set of images with varying illumination, content, size and
texture. First, a blur kernel is fixed and plot the mean error for various values of λ. Then,
the analysis is performed for different blur kernels. In this section, one-dimensional kernels
and Tikhonov-regularized deblurring are used. This approach can be readily extended to
include 2D kernels and Wiener-regularized deblurring.

For a given image J and a blur kernel K, the mean squared deblurring error Q is
given by

Q[K; λ, η] =
1
Ω

∥∥∥(JK + Ξ)K†
λ − J

∥∥∥2
, (11)

where Ω is the number of pixels in the image, Ξ is the random Gaussian noise matrix of the
same dimensions as the image

Ξij ∼ N (0; η), (12)

and
K†

λ = KT
(

KTK + λ2LTL
)−1

(13)
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is the regularized deblur matrix. Figure 1a shows a typical dependence of Q on λ calculated
for a set of images {J}. Gaussian blur with σ = 30 is used, and the added noise intensity is
η = 0.1.

(a) (b)

Figure 1. Deblurring Error for (a) single kernel, different images; (b) single image, various kernels.

First, one can see that the error varies over several orders of magnitude, it is large for
small and large λ, and reaches a minimum for some intermediate value. For λ smaller than
the optimum value λopt, the error comes mainly from noise amplification; for larger values,
it comes from image residual blur (see Figure 2). The actual numbers vary for different
images, however, the main qualitative characteristics of the dependency Q(λ) remain the
same. Now, the above procedure is repeated for different blur kernels. The same Gaussian
blur as above is used, with σ uniformly distributed between 5 and 50. The results are
shown in Figure 1b. As one can see, both the minimal attainable error and the optimal
value λopt vary as the size of the blur is varied. The variation of λopt is not large (∼30%),
thus, a single value of λopt can be used for most cases.

In practice, the reference images are not available, so Q(λ) cannot be minimized to
estimate the optimal value for λ. Correct estimation of λ has been a rather active research
topic for quite a few decades [27], and produced several semi-heuristic approaches. Two
most popular methods: Generalized cross-validation (GCV) [28] and the L-Curve [29]
usually produce values of λ that are within an order of magnitude of Q(λ)-minimizing
value. The resulting deconvolution is therefore sub-optimal. In Section 3.2 it will be shown
how the problem of λ estimation can be solved using machine learning techniques.

(a) λ = 0.1λopt (d) σ = 6

Figure 2. Cont.
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(b) λ = λopt (e) σ = 30

(c) λ = 10λopt (f) σ = 45

Figure 2. Deconvolved images: (a–c) single blur kernel, different λ values; (d–f) different blur kernels,
λ = λopt for each kernel.

2.3. Common Artifacts in Image Deblurring

Regularized image deblurring techniques described above belong to a category of
deconvolution algorithms appearing in various signal estimation contexts [25]. More
often than not, such regularized solutions exhibit artifacts of varying severity. In addition
to random noise and over-smoothing, the most common types of artifacts appearing in
deconvolved images are ringing and boundary artifacts. Both types appear as quasi-
periodic modulations of image intensity. Sometimes, both types of artifacts are referred to
as “ringing”, although their origins are somewhat different.

Ringing artifacts are a manifestation of the well-known Gibbs phenomenon: overshoots
of Fourier sums at signal discontinuities. Regularization effectively removes high frequen-
cies from the reconstructed image, thus exacerbating the phenomenon. In practice, ringing
is more visible around objects surrounded by non-textured background such as the sky or
uniform highway surface.

In a blurred image, pixels close to the image boundary contain information from the
area outside of the image borders. Thus, deconvolution will not have this information
available for proper reconstruction. As a result, the effect of missing boundary pixels
propagates throughout the image, sometimes corrupting it beyond recognition. This
phenomenon is referred to as boundary artifacts. Typical modulation length will be of the
order of PSF size, since this is the extent of unknown pixels to be filled in. At the same
time, intensity modulation frequency associated with ringing depends on PSF spectrum
rather than on its size. Deconvolved images in Figure 2 clearly exhibit boundary artifacts
of varying intensity.

Many tricks were proposed in the past to properly handle deconvolution artifacts. For
example, a standard approach to fight boundary artifacts is to design suitable boundary
conditions—from naïve pixel replication to sophisticated variation-minimization tiling [30].
Other approaches [31–34] incorporate artifact prevention into reconstruction algorithms.
Finally, some researchers have proposed to post-process deconvolved images for detection
and removal of unwanted spatial modulations [35].
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3. Deblurring with Deep Learning

This section describes how deep neural networks can be trained to remove deconvo-
lution artifacts. Following [23], throughout the rest of this work a two-step approach to
deblurring is adopted:

1. Perform regularized deconvolution of the blurred image
2. Pass the deconvolved image through a deep neural network to remove residual artifacts.

In order for this approach to work, one needs to select a good value for λ for the first
step, and a suitable network architecture for the second step.

This section is organized as follows. First, the two-step approach is described for the
case of fixed input noise. It is then extended to incorporate joint parameter optimization for
overall deblurring performance improvement. Next, it is demonstrated that there can be no
single optimal parameter λ that could handle regularized deconvolution of variable-noise
input. Finally, as a solution, the two-step approach is generalized to include two deep
neural networks: one for estimating the regularization parameter λ from the input images,
and another one to enhance the intermediate deconvolved images.

3.1. Known Input Noise

As shown in Section 2.2, for a fixed level of noise in the blurred set, slight variations in
the value of λ around λopt do not increase the deblur error significantly. It is reasonable
to assume that these variations can be handled by subsequent processing in the DNN.
Therefore, the deblur error is calculated using (11) averaged over the training set:

〈Q[K; λ, η]〉 = 1
NTΩ ∑

J∈{J}T

∥∥∥(JK + Ξ)K†
λ − J

∥∥∥2
, (14)

where {J}T is the training set and NT is its size. The parameter λ is set at the value that
minimizes 〈Q[K; λ, η]〉:

λ = λopt = argminλ〈Q[K; λ, η]〉 (15)

3.1.1. Neural Network Architectures

Throughout the rest of this paper, the post-processing neural network will be referred
to as the image enhancement network (IEN).. Unlike the well-known classification-oriented
architectures, input and output of the IEN should have identical dimensions. Two simple
choices for building such a network would be either to keep the image dimensions uniform
in all the layers, or to use an encoder-decoder architecture [36]. In this section, both options
are examined. Also, in both cases, the aim is to estimate the residual between a pre-
deconvolved image and the corresponding sharp image, similarly to [24].

Uniform Width CNN

The first tested IEN architecture is the uniform width (UW) CNN. The input image
dimensions are halved in the first (7× 7) convolutional layer producing NF feature images.
The first layer is followed by NL (3× 3) convolutional layers with the same number of
features NF, and then a (7× 7) convolution transpose layer restoring the image dimensions
to their original value. The output of the convolution transpose layer is added to the
input image so that the network learns to extract the residual image from the input. Every
convolution layer is followed by batch normalization and a ReLU activation function.

U-Net

The second examined IEN architecture is a variant of the U-Net [37] proposed by Jin
et al. [16] for solving various kinds of ill-posed inverse problems in imaging. In particular,
it was used for removing reconstruction artifacts from medical imagery. Network hyper-
parameters are chosen such that input image dimensions should be divisible by 26.
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3.1.2. Joint Parameter Optimization

It was previously shown that CNNs do a decent job removing artifacts generated
by regularized deconvolution for a carefully chosen value of λ. This value strikes the
balance between producing a deconvolved image that is too noisy and one that is too blurry.
However, it is known that DNNs have a capacity for residual denoising and deblurring of
images [38]. Therefore, the following question can be asked: Is it possible to move away
from λopt and still improve the overall performance of the system? In order to do that, the
regularized deconvolution (RD) block should be treated as an optimizable module. Then,
λ would be initialized at the value found in (15), and would vary together with the IEN
weights during the end-to-end performance optimization process.

To proceed with the joint numerical optimization, it must be specified how to cal-
culate the derivatives of the neural network cost with respect to λ. Within a standard
gradient-based cost function optimization scheme such as stochastic gradient descent
(SGD) optimization, the update relation for any NN parameter θ (from step n − 1 to
step n) is:

θn = θn−1 − ε

(
∂L
∂θ

)
, (16)

where L is the cost function of the NN and ε is the learning rate. Typically, since the
dependence of the cost function on any NN parameter θ is manifested through a chain-like
dependence scheme, the required gradients are calculated by a back-propagation algorithm.
Specifically, if

L = g0(g1(g2(. . . (gN(θ))))) (17)

Then
∂L
∂θ

=
∂L

∂gN

∂gN
∂θ

=
∂L

∂gN−1

∂gN−1

∂gN

∂gN
∂θ

, (18)

and so on. The overall cost as a function of the regularization parameter λ is

L = L(JD(λ)) (19)

with J(λ) being the input of the CNN, i.e., the regularized deblurred image.
Now, since for the Tikhonov-regularized deconvolution case

JD(λ) = JBK†(λ) = JBVS
(

S2 + λ2I
)−1

UT (20)

it follows that
∂L
∂λ

= −2λ

(
∂L
∂JD

)
JBVS

(
S2 + λ2I

)−2
UT , (21)

so that the update scheme for λ will be

∆λn = 2ελn−1

(
∂L
∂JD

)
JBVS

(
S2 + λ2

n−1I
)−2

UT . (22)

The input gradients ∂L/∂JD are fed back from the CNN part of the overall NN scheme.
The above idea can be readily extended to the Wiener filter case. Since

JD = IFFT
[

JB(k)
K∗(k)

|K(k)|2 + λ2

]
, (23)

it follows that

∆λn = 2ελn−1

(
∂L
∂JD

)
IFFT

[
JB(k)K∗(k)(
|K(k)|2 + λ2

n−1
)2

]
(24)
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3.2. Noise-Adaptive Deblurring
3.2.1. Deblurring Error for Varying Noise

In real life, noise levels of input images can vary quite significantly. A number
of researchers tried to address this point previously. For instance, Schmidt et al. [39]
proposed a MAP approach to non-blind deconvolution that incorporates noise estimation
in the algorithm.

To quantify the effect of noise variation on regularized image deconvolution, Figure 3
depicts the deblur error (11) as a function of λ for a random image from the training set, for
noise levels varying over three orders of magnitude: from η = 10−2 to η = 10.0. As before
(Figure 1), the deblur error spans several orders of magnitude. The variation, however, is
significantly larger for higher levels of noise, mainly to the left of λopt(η) due to practically
unbounded noise amplification. On the other hand, the residual blur does not exhibit
strong dependence on the noise, therefore, the graphs tend to converge for larger values of
λ. The minima of Qη(λ) appear rather flat in the context of overall error variation, however,
they are sufficiently pronounced, more so for higher levels of noise. This is to be expected,
since for low noise levels, regularized deconvolution is quite tolerant to the value of λ.

The main observation that is rather obvious from Figure 3, is that there can be no
single optimal parameter λ∗opt that can handle regularized deconvolution of variable-noise
input. The deconvolved images will be either buried in noise (if λ∗opt < λopt(η)) or will
have excessive residual blur (if λ∗opt > λopt(η)). It can be predicted with a high degree
of confidence, that repeating training procedures from the previous section for variable-
noise input will strongly bias the value of λ∗opt towards higher values therefore producing
over-smoothed images. On the other hand, it is also clear that the minimal attainable error
Q[λopt(η)] does not vary as much for different levels of noise. Thus, even for strong noise,
if a corresponding λopt can be found, reasonable output may still be produced.

Figure 3. Deblur error for different levels of input noise.

Next, the connection between the input noise and the corresponding λopt calculated
from Equation (15) is examined. To quantify the amount of noise in the corrupted image a
metric called SNRB is used. It is defined as a ratio between average blurred image intensity
and added noise intensity. Note that SNRB is by no means an image quality metric; it is
merely a normalized characteristic of noise contamination for input images. Figure 4 shows
a log-log plot of SNRB vs λopt for 100 blurred images corrupted with 50 different noise
levels each, with intensities ranging between η = 10−3 and η = 10.0. Estimated correlation
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for SNRB and λopt data is found to be very strong (–0.98), and the linear fit to the log-log
data suggests the following empirical dependence:

λopt ∝ (SNRB)
−3/4 (25)

Figure 4. Dependence of λopt on the input SNRB.

However, for this relation to be useful, a reliable estimate for SNRB is needed. Unfor-
tunately, SNR estimation is in itself not a trivial problem. There are a number of ways to 
estimate SNR of an image without a reference [40,41], but using them will only increase the 
uncertainty of λopt estimation.

3.2.2. The General Idea
If one could find a way to generate a proper value of λ for any blurred and noisy image, 

then, in principle, the problem will be reduced to the two-step solution described above.
It is therefore proposed to train a deep neural net to estimate λopt from the blurred 

image itself. Thus, the overall deblurring system will include two DNNs - the first network 
for estimating λopt, and the second one for image enhancement after regularized decon-
volution, as described in Section 3.1. The first network will be henceforth referred to as 
regularization parameter estimation network, or RegParamNet. Figure 5 shows the concept 
of the proposed solution. A blurred image is fed into a network that generates a value for
λ. Then, using this value and the known PSF, the image is deconvolved and the result is
fed into the IEN.
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Figure 5. The proposed concept for noise-sensitive solution. Blue blocks/arrows describe the method
for self-supervised end-to-end training of the system.

3.2.3. RegParam Network Architecture

As Hansen points out in [9], blurred images have much faster decaying singular value
(SV) spectra than corresponding sharp ones. Adding noise boosts the small SV part of the
spectrum so that noisy blurred images decay have SV spectrum decaying slower than clean
ones. Following Hansen, it is assumed that the SV spectrum of an image contains enough
information regarding the relationship between high-frequency noise and high-frequency
features in the image. Thus, the aim is to build a DNN that would take SV spectrum of
an image as an input and would output λopt. The ResNet architecture [42] is taken as
a reference, and its 1D analogue is built: while ResNet works with 2D images and 2D
convolutions, RegParamNet processes 1D inputs. Figure 6 shows the final architecture
that was chosen after several rounds of experimenting with network hyperparameters,
such as depth and number of features. The input signal is a 1D vector composed of image
SV logarithms. The input is then converted in the first convolutional layer to 64 feature
vectors. The next four stages of RegParamNet are cascades of five residual blocks as shown
in Figure 6. There is a feature number doubling convolutional layer and a max-pooling
layer following each cascade. Finally, 1024 feature vectors are fed into a fully connected
layer to produce the output vector.

Figure 6. RegParamNet architecture.
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Here, two options for λopt estimation using RegParamNet are considered:

1. Direct regression of λopt
2. Selection of λopt from a set of values.

In both cases, network training consists of two steps. First, RegParamNet is pre-trained
to generate λopt that minimizes the deblur error Qη(λ) of (11). Then, it is connected to the
IEN as shown in Figure 5 for end-to-end (E2E) system training.

3.2.4. RegParamNet Training Schemes
Training Data Generation

RegParamNet should be able to handle a wide range of noise magnitudes and blur
kernels. For this purpose, the image corruption module (ICM) is introduced, generating
blur and noise in a random manner for each training iteration. For instance, 1D blur kernels
(Figure 7a) are generated according to the following scheme:

Kn =
pn

∑m pm
, pn = e−(n−µ)2/2σ2

, 0 ≤ n ≤ L− 1

L ∼ U(16, 64) σ ∼ U
(

L
4

, L
)

µ ∼ U
(

L
4

,
3L
4

) (26)

In addition, ICM randomly picks a value η from a log-uniform distribution such that
10−2 ≤ η ≤ 10.0

log10 η ∼ U(−2, 1), (27)

and adds random noise of this magnitude to the blurred image. For 2D Wiener deconvolu-
tion, blur functions are generated as 2D Gaussians with random covariance:

Kn =
pn

∑n′ pn′
, pn = e−

1
2 nTΓ−1n, (28)

where

−
Lx,y

2
≤ nx,y <

Lx,y

2
. (29)

and

Γxx = αLxLy, Γyy = βLxLy

Γxy = Γyx = 0.9δ
√

ΓxxΓyy (30)

α, β ∼ U(0, 1), δ ∼ U(−1, 1)

The factor 0.9 in Γxy ensures the invertibility of Γ; Lx = 64 and Ly = 32 were used.
For each training iteration, ICM provides data to generate blurred image from a sharp

one. Using blur data from ICM and a vector of λ-values, an array of deconvolved images
(DeconvArray) is created. The entries of λ-vector are incremented exponentially such that

log10 λi = −3 +
3

Nλ − 1
i, 0 ≤ i ≤ Nλ − 1 (31)

Calculating MSE of DeconvArray relatively to the sharp image gives us the function
Q(λ). At the same time, SVD of the blurred image is calculated and the array of SV
logarithms is fed to the RegParamNet. The schemes for Tikhonov and Wiener cases are
shown in Figure 7.
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(a) (b)

Figure 7. RegParamNet training data generation: (a) Tikhonov deconvolution; (b) Wiener deconvolution.

RegParamNet Modes

The scheme used for pre-training RegParamNet to directly regress λopt is shown in
Figure 8a. The fully connected layer of RegParamNet outputs a single float number that is
passed to MSE loss module together with log λopt. Regression of log λ is much more stable
than regression of λ since for all practical purposes λ < 1 and often it is very small.

An additional way to estimate λopt is to train the network to generate the function
Q(λ) given the SV spectrum of the blurred image and find its minimum. In this case, the
FC layer of RegParamNet produces a real-valued vector, the size of which equals the length
of the λ-vector. Since Q(λ) can reach extremely large values, it is more practical to work
with another function g(λ):

g(λ) = softmin[Q(λ)] =
exp[−Q(λ)]

∑λ′ exp[−Q(λ′)]
(32)

Then,
λopt = argmin[Q(λ)] = argmax[g(λ)] (33)

To train RegParamNet to generate a function similar to g(λ) a setup shown in Figure 8b
is used. Blurred images and corresponding MSE vector Q(λ) are created like in the previous
section. Then, Q(λ) is converted to g(λ) using (32). The output of RegParamNet passes
through a softmax layer to produce a vector f (λ). Since both g(λ) and f (λ) vectors are
normalized, they can be treated as probability distributions. A well-known similarity
measure for two distributions is their Kullback–Leibler divergence [43]:

DKL[g‖ f ] = ∑
λ

g(λ) log
[

g(λ)
f (λ)

]
(34)

DKL[g‖ f ] is always non-negative and is only zero when the two distributions are
identical. Thus, setting DKL[g‖ f ] as the RegParamNet loss and minimizing it, the network
is trained to approximate g(λ). Then, to use RegParamNet to estimate λopt, one just needs
to find the maximum of f (λ).
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(a) (b)

Figure 8. RegParamNet training: (a) Direct λ regression; (b) g(λ) approximation (“λ-weights”).

4. Experiments
4.1. Known Input Noise
4.1.1. Training

For training, images from Berkeley DeepDrive (BDD) database [44] were used. Orig-
inal images were converted to grayscale and down-scaled by a factor of 0.5 to produce
360× 640 images. To make the images compliant with the U-Net architecture described
above, they were further cropped to 320× 640. Sharp images were blurred using a va-
riety of 1D Gaussian blur kernels with σ varying from 30 to 64. Blurred images were
then additionally corrupted by Gaussian noise with RMS intensity η = 0.1. The optimal
regularization factor for η = 0.1 was found by the technique described in Section 2.2 to be
λopt = 7.5× 10−3. The blurred images were deconvolved using Tikhonov regularization.
The deconvolved images were used as inputs to the CNNs. MSE between CNN output and
the original sharp images was used as the network loss.

The networks were implemented in the PyTorch framework [45] and initialized using
Kaiming-normal initialization [46]. The networks were trained on 40,000 images and
validated on 10,000 images for 30 epochs. SGD algorithm was used, with initial learning
rate of 10−3 that was reduced to 10−4 after 15 epochs.

4.1.2. Quality Metrics

Assessment of image quality is not a very well defined task, especially in the absence
of reference images [47]. Depending on the final goal of image processing chain in question,
different metrics may be more or less well suited for quantifying algorithm performance.
Tasks like image compression, color balancing, or de-noising can be (and usually are)
evaluated differently by a group of human testers compared to some objective metric. In
our rather reduced scope, deblurring is treated as a standalone module; also, reference
images are available for testing. Therefore, deblurred image quality is assessed using the
commonly accepted peak signal-to-noise ratio (PSNR) metric. For the sake of completeness,
structural similarity (SSIM) [48] for deblurred images was evaluated as well; SSIM values
correlate rather well with PSNR values and strongly support the main findings.

4.1.3. Results

For testing, a separate subset of 10,000 images from the BDD dataset was used. The
images were converted to grayscale, resized and cropped as described in Section 4.1.1.

Three CNN configurations were tested: uniform width (UW) architecture with NF = 64
and NF = 128 and residual U-Net architecture. Mean PSNR values are summarized in
Table 1.

First of all, it is clear that just using a deep neural net increases the image PSNR
by about 4 dB on average. Figure 9 shows that this large PSNR increase can be mainly
attributed to deconvolution artifact removal and some image denoising. Secondly, the
difference between UW-64 and UW-128 is not significant. It is also clear that residual U-Net
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outperforms the UW networks. Thus, throughout the rest of this work, the residual U-Net
architecture is used.

Figure 9. Two-step image deblurring for a set of images: (a) Tikhonov Deconvolution with
λ = 7.5× 10−3; (b) Initial + UW-64; (c) Initial + UW-128; (d) Initial + residual U-Net.

Table 1. Typical performance for different test configurations.

Deblurring Configuration PSNR [dB]/SSIM

Initial: Tikhonov Deconvolution λ = 7.5× 10−3 30.13 ± 3.04/0.926 ± 0.025

Initial + UW-64 34.11 ±3.14/0.964 ± 0.015

Initial + UW-128 34.46 ± 3.55/0.968 ± 0.016

Initial + residual U-Net 35.65 ± 3.95/0.974 ± 0.015

4.1.4. Joint Parameter Optimization

The regularized deconvolution (RD) module was implemented using PyTorch frame-
work using AutoGrad functionality [49]. The regularization parameter λ was initialized
at λopt = 7.5 × 10−3. The entire network (RD+residual U-Net) was trained using the
procedure outlined in Section 4.1.1.

The statistics for 10,000 test images are outlined in Table 2 below. The new value of the
regularization parameter is λ∗opt = 3.3× 10−3, so that we expect the deconvolved image
to be on the noisy side. Indeed, the mean PSNR for deconvolved images drops by 2.5 dB
relatively to λopt = 7.5× 10−3 case. However, the IEN is able to remove the additional
noise rather effectively demonstrating better overall performance than for λ = λopt.
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Finally, Figure 10 demonstrates image quality improvement from deconvolved images,
through standalone two-stage image enhancement to the joint end-to-end system optimization.

Table 2. Typical deblur quality before and after joint optimization.

Deblurring Configuration PSNR [dB]/SSIM

Tikhonov Deconvolution λopt = 7.5× 10−3 30.13 ± 3.04/0.926 ± 0.024

Tikhonov Deconvolution λ∗opt = 3.3× 10−3 (after joint training) 27.66 ± 1.46/0.818 ± 0.014

Initial + residual U-Net λopt = 7.5× 10−3 35.65 ± 3.95/0.974 ± 0.015

Initial + residual U-Net: Jointly Trained 36.90 ± 3.93/0.980 ± 0.012

Figure 10. Effect of joint training for a set of images: (a) Deconvolved image with λ = λopt; (b) Decon-
volved image after joint training; (c) Two-step deblurring (d) Two-step deblurring after joint training.

4.2. Noise-Adaptive Deblurring
4.2.1. RegParamNet Training

Input images from the BDD database were converted and down-scaled as described in
Section 4.1.1. The networks were trained on 40,000 images and validated on 10,000 images
for 30 epochs. ADAM optimizer algorithm was used with initial learning rate of 10−4 that
was adaptively reduced by a ReduceLROnPlateau scheduler. For each mini-batch, a blur
kernel was generated as described in Training Data Generation Section and a value of η is
randomly picked such that log10 η ∼ U(−2, 1)).
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Direct λ Regression

Figure 11 shows the error distribution function of regularization parameter logarithm
for the direct regression mode. One can see that RegParamNet is able to directly infer
log10 λopt for both Wiener and Tikhonov regularization cases, with overall standard devia-
tions for log10 λopt of ∼0.1. This corresponds to λopt accuracy of 20–25%; an error of this
magnitude has a relatively insignificant effect on the deconvolved image quality.

Figure 11. Direct λopt regression results.

λ-Weight Array Generation

Figure 12 shows the results of λ-weight array generation for several test images and
several values of noise magnitude η from the range 10−2 ≤ η ≤ 10.0. The networks
generate λ-weight arrays for Nλ = 16, 32, 64. The resulting arrays approximate the target
function softmin[Q(λ)] with a similar degree of precision (height difference stems from
f (λ) normalization; the peak approximately halves when Nλ doubles).
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Figure 12. λ-weight array generation for various levels of input blur and noise (1D blur). Horizontal
axis: λ values. Red Line: reference for 64 array entries. Blue/orange/green lines—generated arrays
for 16/32/64 array entries, respectively.

4.2.2. End-to-End System Training

After the pre-training is finished, output of RegParamNet is connected through a
regularized deconvolution (RD) module to the input of the image enhancement network.
Specifically, a regressed value of λopt or a value of λ that maximizes f (λ) could be taken,
used for regularized deconvolution and then the output can be fed into the IEN. However,
as was shown in the previous section, λopt that minimizes Q(λ) does not necessarily lead
to the best system performance. Thus, it is desirable to connect RegParamNet to IEN and
train the two networks jointly. Figure 13 describes the overall training setup for both λopt
regression and λ-weight cases.

Connecting λ-weight RegParamNet to the RD module and, eventually, to the IEN,
for the purpose of joint training is less straightforward than in the regression case. The
reason for this is that ArgMax is not an analytical function and thus cannot be easily
integrated into the back-prop optimization framework. Thus, the following estimator Î for
the deconvolved image is proposed:

Î = ∑
λ

f (λ)Iλ (35)
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where Iλ is the DeconvArray entry corresponding to parameter λ. Then, joint end-to-end
(E2E) training as shown in Figure 13b can reshape f (λ) and change the weights of IEN so
that the overall system performance improves.

(a)

(b)

Figure 13. E2E system training schemes: (a) Regression RegParamNet; (b) λ-weight RegParamNet.

From the practical point of view, a three-step training approach was found to produce
best results. First, for each setup in Figure 13, a pre-trained RegParamNet was connected to
the RD and the IEN was bypassed. After this step, f (λ) became more peaked and narrow
around the optimal value. Then, RegParamNet was frozen and the IEN was pre-trained
on RegParamNet outputs. Finally, RegParamNet was unfrozen to allow full E2E training.
E2E training was implemented using λ-weight approach for both 1D and 2D deblurring;
direct λopt regression was implemented for 1D deblurring only; we are currently working
to extend it to the 2D (Wiener) case as well. For each step, the training was performed as
described in Section 4.2.1.
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4.2.3. Results: Statistics

The system was tested on 10,000 images from the BDD database for randomly gener-
ated blur and noise magnitudes as described above. Processed image quality was tested in
the following configurations:

(a) RD output before E2E training
(b) RD output after E2E training
(c) IEN output before E2E training
(d) IEN output after E2E training

PSNR and SSIM were used as the quality assessment metrics. Table 3 summarizes the
corresponding mean PSNR/SSIM values. One can see that, for the 1D case, λ-weight and
direct regression RegParamNets perform quite well across all levels of input noise and blur.
Thus, from the practical point of view, direct λopt regression could be preferable since it is
more lightweight. In addition, since 2D blur is in general much stronger than 1D blur, final
PSNR for Wiener deblurring cases is substantially lower than for 1D case. Figure 14 shows
IEN E2E result PSNR as a function of input noise.

Figure 14. Mean result PSNR as a function of input noise.

Table 3. Mean PSNR/SSIM values for deblurring performance, before and after E2E training.

RegParamNet RD before E2E RD after E2E IEN before E2E IEN after E2E
Configuration PSNR [dB]/SSIM PSNR [dB]/SSIM PSNR [dB]/SSIM PSNR [dB]/SSIM

λ-Weights (T) 28.61±4.66/0.874±0.085 31.67 ± 4.35/0.76 ± 0.18 31.67 ± 4.34/0.932 ± 0.054 32.0 ± 5.0/0.94 ± 0.056

Regression (T) 28.58 ± 4.74/0.875 ± 0.09 28.0 ± 5.0/0.80 ± 0.14 32.84 ± 5.0/0.94 ± 0.053 33.0 ± 5.0/0.94 ± 0.054

λ-Weights (W) 25.16 ± 3.23/0.734 ± 0.107 25.17 ± 3.0/0.742 ± 0.10 27.49 ± 3.1/0.865 ± 0.064 27.54 ± 3.19/0.87 ± 0.064

It is noteworthy that the effect described in the previous section is clearly observable
here as well: E2E training moves the RegParamNet away from the point where Q(λ)
is minimized thus making the deconvolution sub-optimal. However, the IEN learns to
compensate for this performance drop. In the 1D λ-weight case, it even improves the
overall system performance by 1.3dB on the average. In other RegParamNet configurations,
E2E training does not exhibit clear overall performance gain, though the IEN capacity is
improved in all cases. Figure 15 clearly shows the effect of E2E training on the λ-weight
array in the Tikhonov deconvolution case. The preferred λ values are typically smaller
than in the standalone RegParamNet training, thus moving the pre-deconvolved images
to the more noisy side of the standalone optimum. The only cases where this effect is
not so clear are the ones with a very low level of input noise (η ∼ 10−2), where the
deconvolution is much less sensitive to the exact value of λopt. One can therefore conclude
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that the IEN architecture in use has a better capacity for removing residual noise than for
residual deblurring.

Figure 15. Effect of E2E training on λ-weight array generation; Blue line: reference g(λ), Orange:
standalone f (λ), Green: f (λ) after E2E training.

4.2.4. Results: Images

To summarize, examples of noise-adaptive image deblurring for test images (best
viewed on a soft copy. Additional high-resolution images are provided in the Supplemental
Materials). are presented in Figures 16 and 17. First, it can be seen that the system is
capable of handling both strong input noise and large blur kernels. The deconvolution
step is adequately regularized across the entire range of input noise intensities, and the
subsequent image enhancement step removes most artifacts. To control noise amplification,
regularization is naturally stronger for high input noise, resulting in less sharp output
images. However, additional quality gain of 0.3–0.8 dB coming from E2E training is
consistently observed on the high-noise side (rows (d) vs. (c) in Figures 16 and 17). As
described above, this gain is accompanied by a quality drop at the deconvolution step
(rows (b) vs. (a) in Figures 16 and 17). Second, one can also see that small features are
clearly discernible even for η ' 1.0. Stronger noise leads to eventual elimination of at
least some of these features; however, larger objects are quite well defined and likely allow
automatic classification.
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Figure 16. Deblurring using regression RegParamNet (Tikhonov): (a) RD output before E2E training;
(b) RD output after E2E training; (c) IEN output before E2E training; (d) IEN output after E2E training.
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Figure 17. Deblurring using Wiener deconvolution: (a) RD output before E2E training; (b) RD output
after E2E training; (c) IEN output before E2E training; (d) IEN output after E2E training.

4.2.5. Results: Comparison to Other Approaches

In this section, the performance of the proposed method is compared to several previ-
ous approaches. The analysis follows the paper by Wang and Tao [24], and corresponding
results from two additional leading works [50,51] are cited for reference as they appear there.
The system was tested on Berkeley Segmentation Dataset [52] (BSD100). The following test
scenarios were used:

• Gaussian kernel with spatial standard deviation equal to 1.6 and noise η = 0.008
(denoted as GaussianA; η = 0.01 in the proposed method)

• Gaussian kernel with spatial standard deviation equal to 3 and noise η = 0.04 (denoted
as GaussianB; η = 0.05 in the proposed method)

• Gaussian kernel with spatial standard deviation equal to 5 and noise η = 0.04 (denoted
as GaussianC; η = 0.05 in the proposed method)

• Square kernel with a side size of 19 and noise of η = 0.01 (denoted as SquareA)
• Square kernel with a side size of 13 and noise of η = 0.04 (denoted as SquareB; η = 0.05

in the proposed method)

In addition, all 32 motion blur kernels from [53] were tested. The kernels were applied
to test images from BSD100, followed by addition of noise. Two noise levels were tested:
η = 0.01 (MotionA), and η = 0.22 (MotionB, compared to η = 0.06 in [24] ) was added. In
each case average PSNR/SSIM was calculated over 3200 deblurred images.
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Finally, the proposed method was tested at higher levels of input noise for the follow-
ing Gaussian/Square configurations:

• Gaussian kernel with spatial standard deviation equal to 3 and noise η = 1.06 (denoted
as GaussianD)

• Gaussian kernel with spatial standard deviation equal to 5 and noise η = 0.22 (denoted
as GaussianE)

• Square kernel with a side size of 19 and noise of η = 0.22 (denoted as SquareC)
• Square kernel with a side size of 13 and noise of η = 1.06 (denoted as SquareD)

At these noise levels there are no data points from previous publications; for instance,
Wang and Tao [24] reported that their experiments started breaking down at η ∼ 0.1–0.2.

The results are summarized in Table 4. The current method is referred to as NANDB
(Noise-Adaptive Non-Blind Deblurring). For the sake of completeness, the last column
shows the performance of NANDB on 100 test images from the BDD set (denoted as
NANDB*). It is rather clear that the proposed method outperforms other methods, often
by as much as 3–5 dB in PSNR, especially for higher values of input noise. This can
be attributed to the flexibility of the current method with respect to input noise intensity,
whereas other works use “one-fits-all approach” in this regard. As was shown in Section 3.2,
regularization parameter can be under- or overestimated by a factor of 1.5–2 without severe
consequences for deconvolution. However, if input noise is allowed to vary over several
orders of magnitude, fixed regularization parameters inevitably produce deconvolved
images that are either over-smoothed or noisy beyond recovery. This also explains why
other methods are applicable only in a narrow range of input noise intensities For instance,
in [24] the system broke down already at η ∼ 0.1–0.2, as it was trained to handle noise in
the range 0.008–0.06 only.

One can also see that the system performs even better if its usage is confined to
automotive scenarios: The system trained on the BDD dataset exhibits significantly higher
PSNR/SSIM values when tested on the BDD test images, as shown in the last column of
Table 4. This improvement is likely due to a larger diversity of low- and high-level features
present in the BSD100 dataset compared to BDD images. Thus, system performance is
likely to improve if it is trained on large general datasets.

Table 4. Comparison of the proposed method (NANBD) to state-of-the-art approaches. Best values
are marked in bold.

Test DBCNN [24] MLP [50] Son et al. [51] NANBD NANBD* (BDD Set)
Configuration PSNR [dB]/SSIM PSNR [dB]/SSIM PSNR [dB]/SSIM PSNR [dB]/SSIM PSNR [dB]/SSIM

GaussianA 28.47/0.8790 27.16/0.8645 23.18/0.7347 29.51/0.8732 36.45/0.9744

GaussianB 25.34/0.7811 24.48/0.7766 22.88/0.6814 29.14/0.865 34.97/0.9608

GaussianC 22.79/0.7194 22.31/0.6752 22.17/0.659 28.57/0.85 33.62/0.95

GaussianD - - - 21.99/ 0.5477 27.92/0.803

GaussianE - - - 25.14/0.7222 29.99/0.8876

SquareA 22.90/0.7078 22.81/0.6975 17.74/0.4139 28.57/0.8432 34.99/0.9637

SquareB 24.01/0.7564 23.52/0.7375 19.29/0.4788 28.91/0.8589 34.45/0.956

SquareC - - - 21.52/0.7127 29.99/0.8866

SquareD - - - 24.92/0.519 27.61/0.8032

MotionA 27.93/0.8795 26.73/08448 27.15/0.8525 30.65/0.8912 36.27/0.9748

MotionB 25.50/0.8009 24.77/0.7726 24.49/0.7378 29.34 / 0.8819 35.85/0.9716

5. Summary

In this work, a systematic approach to non-blind deblurring is presented. Regularized
deconvolution approaches are described as the means to control noise amplification, which
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is the main image degradation factor. Next, following previous work [23,24], removing de-
convolution artifacts by a deep neural net (image enhancement network - IEN) is proposed.
For the case of constant input noise, the two-step deblurring is extended by incorporating
the regularized deconvolution module into a joint training framework. As a next step,
the impact of input noise on the required amount of regularization is explored. To infer
the regularization parameter (λ) values, RegParamNet, a novel 1D convolutional neural
network is proposed. Two approaches for regularization parameter inference are explored
(direct regression and λ-weights). Finally, a noise-adaptive non-blind image deblurring
system is built by incorporating both RegParamNet and IEN into a common end-to-end
training and inference framework.

The proposed system performs rather well on a wide range of large 1D/2D blur
kernels, over three orders of magnitude of input noise. It is also found that end-to-end
training biases the inferred regularization parameters downwards, so that deconvolved
intermediate images are sharper, albeit noisier that for a standalone optimum. However,
overall system performance is found to benefit from end-to-end training, especially for
high levels of input noise (η = 0.2–10.0). Compared to other approaches, the system exhibits
rather superior PSNR/SSIM performance even without domain adaptation, i.e., networks
trained on automotive images (BDD) perform well on general type images (BSD100).

Although the present work suggests a principal solution to the problem of noise-
adaptive non-blind deblurring, there are several research directions in which it can be
extended. One rather important subject to be explored is the performance of perception
algorithms on deblurred images. It has been noted before that some approaches to blind
deblurring corrupt low-level features in processed images, thereby impacting detection and
classification performance rather severely [3]. It is important to establish that no such effect
takes place in our case. In addition, previous work suggests that imprecise knowledge
of PSF produces effects akin to boundary artifacts [21]. Since PSF calibration or indirect
estimation is always of limited precision, it is important to analyze the impact of PSF
uncertainty on system performance, and to adjust the solution if needed. Also, it should be
noted that current work presents a solution for gray-scale images only; an extension for
color images should not be too difficult. Finally, certain pre- and post-processing stages can
be added to the deblurring pipeline, such as preliminary de-noising of input images [54] or
super-resolution [55] on output images. Both additions are likely to improve the overall
system performance.

There is still much work to be done in order to convert the proposed deblurring
scheme into a production-grade software system: architecture optimization, streamlining
the processing flow, etc. For instance, it is clear that there is no need to infer regularization
parameters for each captured frame, since the SNR changes at a much lower rate. However,
automotive scenarios include abrupt scene illumination changes (e.g., when entering
or exiting tunnels and underground parking lots). Thus, additional modules, possibly
learning-based, are needed to pace λ estimation and to provide other system-wide inputs.
Finally, it should be noted that system optimization with respect to computational hardware
requirements is beyond the scope of this work. We have a high degree of confidence,
however, that the solution can be efficiently implemented using novel mobile-oriented
architectures, which have been at the focus of many research and development efforts in
recent years [56,57].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s22186923/s1, Figures S1–S7: Additional examples of deblurred
images for various blur kernels and noise intensities.
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Abbreviations
The following abbreviations are used in this manuscript:

1D/2D One-Dimensional / Two-Dimensional
ADAS Advanced Driver Assistance System(s)
AV Autonomous Vehicle
BDD Berkeley Deep Drive
BSD Berkeley Segmentation Dataset
CNN/DNN Convolutional Neural Network / Deep Neural Network
DSLR Digital Single-Lens Reflex (camera)
E2E End-to-End
FC Fully Connected (layer)
GCV Generalized Cross-Validation
ICM Image Corruption Module
IEN Image Enhancement Network
ISP Image Signal Processing/Processor
MAP Maximum A Posteriori (estimation)
MSE Mean Squared Error
PSF Point Spread Function
PSNR Peak Signal-to-Noise Ratio
RD Regularized Deconvolution
ReLU Rectified Linear Unit
RMS Root Mean Square
SGD Stochastic Gradient Descent
SNR Signal-to-Noise Ratio
SSIM Structural Similarity
SVD Singular Value Decomposition
UW Uniform Width
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