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Abstract: Transfer learning is an effective approach for adapting an autonomous agent to a new
target task by transferring knowledge learned from the previously learned source task. The major
problem with traditional transfer learning is that it only focuses on optimizing learning performance
on the target task. Thus, the performance on the target task may be improved in exchange for the
deterioration of the source task’s performance, resulting in an agent that is not able to revisit the
earlier task. Therefore, transfer learning methods are still far from being comparable with the learning
capability of humans, as humans can perform well on both source and new target tasks. In order
to address this limitation, a task adaptation method for imitation learning is proposed in this paper.
Being inspired by the idea of repetition learning in neuroscience, the proposed adaptation method
enables the agent to repeatedly review the learned knowledge of the source task, while learning
the new knowledge of the target task. This ensures that the learning performance on the target
task is high, while the deterioration of the learning performance on the source task is small. A
comprehensive evaluation over several simulated tasks with varying difficulty levels shows that
the proposed method can provide high and consistent performance on both source and target tasks,
outperforming existing transfer learning methods.

Keywords: imitation learning; task adaptation; repetition learning; transfer learning; generative
adversarial network

1. Introduction

Reinforcement learning (RL) is an effective method to solve sequential decision-making
tasks, where a learning agent interacts with the environment to improve its performance
through trial and error [1]. RL has achieved exceptional success in challenging tasks, such
as object manipulation [2–5], game playing [6–9], and autonomous driving [10–13]. Despite
its remarkable advancement, RL still faces appealing difficulties caused by the need of a
reward function [14,15]. For each task that the agent has to accomplish, a carefully designed
reward function must be provided. However, designing a hand-crafted reward function
may require too much time or expense, especially in complex tasks. This problem has
motivated a number of research studies on imitation learning (IL), where expert-generated
demonstration data are provided instead of a reward function in order to help the agent
learn how to perform a task [16,17]. For this reason, IL has been growing in popularity
and achieved some successes in numerous tasks, including robotics control [18–20] and
autonomous driving [21–24].

Despite certain achievements, IL agents are designed to focus on accomplishing only
a single, narrowly defined task. Therefore, when given a new task, the agent has to start
the learning process again from the ground up, even if it has already learned a task that
is related to and shares the same structure with the new one. On the other hand, humans
possess an astonishing ability in the learning process, where the knowledge learned from
source tasks can be leveraged for learning a new task. For example, an infant can reuse
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and augment the motor skills obtained when he learns to walk or uses his hand, for more
complex tasks later in his life (e.g., riding a bike). Transfer learning (TL) is a technique
based on this idea. TL enables the agent to reuse its knowledge learned from a source task
in order to facilitate learning a new target task, resulting in a more generalized agent.

Recent studies have applied TL to RL/IL agents and achieved some success, especially
in robot manipulation tasks since these tasks usually share a common structure (i.e., robot
arm) [25–27]. Nevertheless, there is still an enormous difference between human ability and
TL. Since TL is designed to leverage the learned knowledge to accelerate the acquisition
of the new target task, the learning performance on the target task may be improved in
exchange for the deterioration of the source task’s performance. In other words, the agent
forgets how to perform the previously learned task when learning a new one, which is
described as the catastrophic forgetting problem [28,29]. On the contrary, humans can
perform well on both source and target tasks.

To address the aforementioned gap, a novel challenge on task adaptation in imitation
learning is discussed in this paper, in which a trained agent on a source task faces a new
target task and must optimize its overall performance on both tasks. In order words, the
research objective is to help the agent achieve high learning performance on the target
task, while avoiding the performance deterioration on the source task. The problem can
be served as a step toward building a general-purpose agent. As one illustrative example,
consider a household robot learning to assist its human owner. Initially, the human might
want to teach the robot to load clothes into the washer by providing demonstrations of
the task. At a later time, the user could teach the robot to fold clothes. These tasks are
related to each other since they involve manipulating clothes, hence the robot is expected
to perform well on both tasks and leverage any relevant knowledge obtained from loading
the washer while folding clothes. In order to achieve such a knowledge transfer ability, a
task adaptation method for imitation learning is proposed in this paper. Being inspired
by the idea of repetition learning in neuroscience [30–32], the general idea of the proposed
method is to make the agent repeatedly review the learned knowledge of the source task
while learning the target task at the same time. Accordingly, the proposed method is
two-fold. Firstly, to allow the agent to repeatedly review the learned knowledge of the
source task, a task adaptation algorithm is proposed. In the adaptation process, the learned
knowledge is expanded by adding the knowledge of the target task. Secondly, a novel IL
agent which is capable of finding an optimal policy using expert-generated demonstrations,
is proposed. This agent allows the learned knowledge of the source task to be encoded into
a high-dimensional vector, namely task embedding, which then supports the knowledge
expansion in the adaptation process. The evaluation results show that the proposed method
has a better learning ability compared to existing transfer learning approaches.

The main contributions of this work are summarized as follows:

• An imitation learning agent is proposed to learn an optimal policy using expert-
generated demonstration data. The agent is capable of encoding its knowledge into
high-dimensional task embedding space in order to support the knowledge expansion
in the later adaptation process.

• Given a new target task, a task adaptation algorithm is proposed in order to enable
the agent to broaden its knowledge without forgetting the previous source task by
leveraging the idea of repetition learning in neuroscience. The resulting agent can
provide a better generalization and consistently perform well on both source and
target tasks.

• A set of experiments are conducted over a number of simulated tasks in order to
evaluate the performance of the proposed task adaptation method in terms of success
rate, average cumulative reward, and computational cost. The evaluation results
demonstrate the effectiveness of the proposed method in comparison with existing
transfer learning methods.

The rest of the paper is organized as follows: Section 2 reviews existing studies on
transfer learning and some existing works that are related to the proposed method. The
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formulation of the task adaptation problem in imitation learning is presented in Section 3. A
detailed description of the proposed approach is provided in Section 4. Section 5 provides
the details of the experimental settings and results. Section 6 discusses the potential of the
proposed method in real-world problems. The conclusion is given in Section 7.

2. Related Work

Transfer learning (TL) aims to accelerate, adapt, and improve the agent’s learning
process on a new target task by transferring knowledge learned from the previous source
task. Whereas TL has been intensively studied and shown appealing performance in
supervised learning [33–39], it remains an open question in reinforcement learning and
imitation learning fields. Fine tuning is the most explored approach for transfer learning
in both RL and IL settings [40–42]. In fine tuning, the RL/IL agent is pre-trained on a
source task and then retrained to a new target task. Fine tuning does not require strong
assumptions about the target domain, making it an easily applicable approach. There
are different approaches to transfer learning that have been proposed, such as reward
shaping [43–45], inter-task mapping [46–48], representation learning [49–51], etc. However,
these methods were designed for RL agents; directly applying them to transfer an IL
agent does not necessarily lead to successful results since RL and IL differ in many factors.
Moreover, the key challenge in transfer learning is catastrophic forgetting, in which the
agent tends to unexpectedly lose the knowledge that was learned from the source task
while transferring to the new target task. The reason is due to the changes in the agent’s
network parameters that are related to the source task getting overwritten to fulfill the
target task’s objectives [28]. Therefore, TL methods are not suitable for an agent that revisits
the earlier task. In contrast, instead of transferring the knowledge learned from the source
task to a new target task, the proposed adaptation method attempts to expand the agent’s
learned knowledge. The knowledge expansion allows the agent to learn a new target task
while retaining the previously learned source task’s knowledge, resulting in an agent that
can perform well on both the source and target tasks after adaptation.

Besides transfer learning, the proposed adaptation method of learning to perform
both source and target tasks also bears similarity to multi-task learning, where an agent
is trained to perform multiple tasks simultaneously [52–56]. In multi-task learning, the
knowledge transfer is enabled by learning a shared representation among tasks. However,
in this study, the proposed adaptation method focuses on learning the source and target
tasks sequentially. In addition, the performance deterioration on the previously learned
source task is more highlighted compared to both transfer learning and multi-task learning.

3. Problem Formulation

The task adaptation problem in IL can be formalized as a sequential Markov decision
process (MDP). A MDPMx for a task x with finite time horizonHx [1] is represented as
the following equation:

Mx = (Sx,Ax,Px,Rx, γx,Hx) (1)

where Sx and Ax represent the continuous state and action spaces, respectively; Px :
Sx ×Ax × Sx → R+ denotes the transition probability function;Rx : Sx ×Ax → R is the
reward function; and γx ∈ (0, 1] is the discount factor. In the IL setting, the reward function
Rx is unknown. A stochastic policy πx : Sx → P(Ax) forMx describes a mapping from
each state to the probability of taking each action. The goal of an IL agent is to learn
an optimal policy π∗x that imitates the expert policy π̂x given demonstrations from that
expert. An expert demonstration for a task x is defined as a sequence of state–action pairs
τx = {(ŝt

x, ât
x) : t ∈ [0,Hx]}.

LetMS denote a source task, which provides prior knowledge KS that is accessible by
the target taskMT , such that by leveraging KS, the target agent learns better in the target
taskMT . The main objective in this study is to learn an optimal policy π∗ST(KS,KT) for
both source and target tasks, by leveraging KT fromMT as well as KS fromMS.
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4. The Proposed Agent and Adaptation Algorithm

The proposed method presented in this section involves two main processes: learning
from a source task and adapting to a new target task. The main objective is to build
an agent that can perform consistently well on both source and target tasks. In order
to achieve this, the general of this novel idea is to allow the agent to repeatedly review
the knowledge learned from the source task, while learning the new knowledge of the
target task. The idea is inspired by a human learning effect, which is repetition learning.
Prior studies in neuroscience have proved that when humans learn by repetition, their
memory performance can be enhanced and retained for a longer time [30–32], giving
humans the unique ability to perform most sophisticated tasks with ease. Therefore, in this
paper, developing a similarly intelligent method is focused on in order to achieve the main
research objective and to tackle the task adaptation problem in imitation learning.

Accordingly, the proposed method is two-fold. Firstly, an adaptation algorithm is
proposed to allow the agent to learn the new target task by expanding its knowledge.
More concretely, on top of the knowledge that the agent has learned from a source task,
the knowledge of a target task is added. In addition, the agent repeatedly uses such
knowledge to learn the target task and review the previously learned source task to ensure
that the learning performance on the target task is high, while the deterioration of the
learning performance on the source task is small. Secondly, to support the expansion of
the to-be-learned knowledge, a novel imitation learning (IL) agent is proposed. This agent
encodes the learned knowledge into a latent space, namely task embedding space, in
which the learned knowledge from task x at time step t can be represented by a high-
dimensional vector zt

x ∈ Rn. Figure 1 illustrates the task embedding space before and
after applying the proposed task adaptation algorithm. The task embedding space allows
the proposed adaptation algorithm to add the new knowledge of the target task while
minimizing its impacts on the source task’s knowledge. In addition, since the source and
target tasks are related to each other, there are some common knowledge between those
two tasks. This shared common knowledge can be captured by the task embedding that
helps accelerate the adaptation process. The details of the proposed method are provided
in the following sub-sections.

Figure 1. An illustration of the task embedding space. Purple and yellow regions denote the
knowledge learned from the source and target tasks, respectively. Applying the proposed task
adaptation algorithm will lead to the expansion of the task embedding space due to the acquisition of
the knowledge of the target task. In addition, the intersection between those two regions indicates
the shared common knowledge between the two tasks.

4.1. The Proposed Agent

In this subsection, the proposed agent is described in detail. The proposed agent is
an imitation learning method that finds an optimal policy for the source task using expert-
generated demonstration data. The agent is capable of encoding the learned knowledge
into a task embedding in order to support the later adaptation progress. The architecture of
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the proposed agent is illustrated in Figure 2. The proposed agent is a combination of three
deep feed-forward networks E, G, and D, which have different responsibilities.

Figure 2. The neural network architecture of the proposed agent.

4.1.1. Task-Embedding Network E

The task-embedding network E is designed to encode the learned knowledge into a
high-dimensional task embedding space. Specifically, E maps a state st

x of task x at time
step t into a task embedding zt

x = E(st
x), zt

x ∈ Rn. Since zt
x contains the information of

the task, it is expected that zt
x can capture the similarities and differences between source

and target tasks. In order to achieve that, contrastive learning is introduced to train E.
Contrastive learning aims to bring task embeddings of the same task close to each other
in the task embedding space and to push dissimilar ones far apart. In order words, E is
trained to minimize distance d(zt

S, zt
S) and maximize distance d(zt

S, zt
T), where d(·) is a

negative cosine similarity function defined as

d(zt
x, zt

y) = −
zt

x · zt
y

||zt
x|| ∗ ||zt

y||
(2)

where x and y can be the same or different task.
The optimization function LE to train E is defined as follows:

min
E
LE(zt

x, zt
y) = 1[x = y]d(zt

x, zt
y) + 1[x 6= y](−d(zt

x, zt
y)) (3)

where 1(·) ∈ {0, 1} is an indicator function.

4.1.2. Action Generator Network G and Discriminator Network D

The action generator network G aims to generate an optimal action at
x using the input

task embedding zt
x. The discriminator network D is designed to distinguish between expert

action ât
x and the training agent’s action at

x. The intuition behind this is that the expert
actions are assumed to be optimal in the imitation learning setting, thus, G are trained
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to minimize the difference between ât
x and at

x. In order to achieve that, the adversarial
loss [57] is applied for both networks:

min
G

max
D
LGD(ât

x, at
x) = E[logD(at

x)] +E[log(1− D(ât
x))] (4)

The optimal policy is achieved using a RL-based policy gradient method, which relies
on reward signal r = −logD(ât

x) provided by the discriminator.

4.1.3. Full Objective

During the source task’s learning process, a set of expert-generated demonstrations
{τ1

S , τ2
S , . . .} is provided where each demonstration is a sequence of state-actions pairs

τi
S = {(ŝt

S, ât
S), . . .}. The task embedding for each demonstration state zt

S at time step t can
be computed using zt

S = E(ŝt
S). It should be noted that the contrastive loss function LE

used to train E requires two inputs zt
x and zt

y, where x and y can be of the same or different
task. In this source task learning process, the target task demonstrations are not provided
yet, thus, the second task embedding input z′tS is generated by introducing the Gaussian
noise µ∼N (0, 1) to augment ŝt

x as follows:

z′tS = E(ŝ′tS ) (5)

where ŝ′tS = ŝt
S + µ. In addition, since ŝ′tS is an augmentation of ŝt

S, it might not belong to
the state space SS of the source task. Thus, the resulting z′tS is not used as an input to G to
generate an action, but it is used to help compute the loss LE only. This means that z′tS can
be treated as a constant. In other words, the gradient flows back from z′tS is unnecessary in
the backpropagation. This can be indicated using the stop-gradient operation stopgrad(·)
as follows [58,59]:

z′tS = stopgrad(E(ŝ′tS )) (6)

With the generated action at
S = G(zt

S), the full objective function to train the proposed
agent on the source task is

min
E,G

max
D
L = LE(zt

S, z′tS ) + LGD(ât
S, at

S) (7)

The algorithm to train the proposed agent on the source task is outlined in Algorithm 1.

Algorithm 1 Training the proposed agent on the source task.

1: Input
2: {τ1

S , τ2
S , . . .} A set of expert demonstrations on the source task

3: Randomly initialize task embedding network E, generator G and discriminator D
4: for k = 0, 1, 2, . . . do
5: Sample an expert demonstration τi

S
6: Sample state-action pairs (ŝt

S, ât
S)∼τi

S
7: Compute zt

S = E(ŝt
S)

8: Compute z′tS = stopgrad(E(ŝt
S + µ))

9: Generate action at
S = G(zt

S)

10: Compute the loss L = LE(zt
S, z′tS ) + LGD(ât

S, at
S)

11: Update the parameters of F, G, and D
12: Update policy πS with the reward signal r = −logD(ât

S)
13: end for
14: Output
15: πS Learned policy for source task
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4.2. The Proposed Task Adaptation Algorithm

Leveraging the task embedding space learned by the proposed agent, a novel adapta-
tion algorithm is presented in order to adapt the agent to a new target task by adding the
knowledge of the target task to the task-embedding space as shown in Figure 2. In addition,
to prevent losing the previously learned knowledge to perform the source task, a novel
idea based on repetition learning is applied in the proposed adaptation algorithm. The
idea can be illustrated as shown in Figure 3. The intuition behind this idea is that during
the adaptation process, the agent is allowed to repeatedly review how to perform the
previously learned source task while learning the target task. Each time the agent switches
to a different task, its performance drops, but then it recovers. This distinctive learning
process allows the agent to continuously review its learned knowledge and generalize to
both source and target tasks, resulting in an agent that can perform well on both tasks.
It is similar to humans; when humans repeatedly practice an action, it leads to better
performance. In addition, the process enables the agent to surpass the performance of an
agent that is adapted using transfer learning. As shown in Figure 3, using transfer learning,
the adapted agent completes its adaptation process right after adapting the source task
to the target task. For this reason, when facing the source task again after adaptation, the
performance of the agent deteriorates due to the catastrophic forgetting problem.

It is important to note that, theoretically, the more knowledge the agent gains, the
higher performance the agent can provide on both source and target tasks. As shown in
Figure 3, after facing the source task again, the performance of the agent on the source
task increases. However, in practice, there is still an amount of performance deterioration
on the source task since the agent is not able to fully utilize the learned knowledge. This
observation is further discussed in the evaluation and discussion sections.

In this paper, a hyperparameter λ ∈ [0, 1] is introduced, which denotes the probability
that the agent repeatedly reviews the source task’s knowledge. With λ, the balance between
the performance on the target task and the performance deterioration on the source task
can be controlled. For instance, the higher the value of λ, the higher the probability that the
agent can review the previously learned source task, resulting in a smaller deterioration of
the source task’s performance in exchange for low performance on the target task. It should
be noted that if λ ≈ 0, the proposed task adaptation algorithm can be seen as a transfer
learning method where it is only focused on improving the target task’s performance. The
task adaptation algorithm is outlined in Algorithm 2.

Figure 3. An illustration of the performance of an agent on the source and target tasks over
adaptation time.
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Algorithm 2 The proposed adaptation algorithm.

1: Input
2: {τ1

T , τ2
T , . . .} A set of expert demonstrations on the target task

3: {τ1
S , τ2

S , . . .} A set of expert demonstrations on the source task

4: Randomly initialize task embedding network E, generator G and discriminator D
5: for k = 0, 1, 2, . . . do
6: Sample an expert demonstration on the target task τi

T
7: Sample an expert demonstration on the source task τi

S
8: Sample state-action pairs (ŝt

S, ât
S)∼τi

S and (ŝt
T , ât

T)∼τi
T

9: n← uniform random number between 0 and 1
10: if n < λ then . Review source task’s learned knowledge
11: Compute zt

S = E(ŝt
S)

12: Compute zt
T = stopgrad(E(ŝt

T))
13: Generate action at

S = G(zt
S)

14: Compute the loss L = LE(zt
S, zt

T) + LGD(ât
S, at

S)
15: else . Learn target task
16: Compute zt

T = E(ŝt
T)

17: Compute zt
S = stopgrad(E(ŝt

S))

18: Generate action at
T = G(zt

T)
19: Compute the loss L = LE(zt

T , zt
S) + LGD(ât

T , at
T)

20: end if
21: Update the parameters of F, G, and D
22: Update policy πS with the reward signal r = −logD(ât

S)
23: end for
24: Output
25: πST Learned policy for both source and target task

5. Performance Evaluation

In this section, the performance of the proposed method is evaluated in comparison
with baselines. To support the evaluation, different simulated tasks with varying difficulty
levels ranging from simple to complex ones were utilized. The details of these tasks are
described in the next subsection. A set of experiments are designed in order to answer the
following essential questions:

• Can the proposed IL agent provide a competitive performance on the source task?
• Can the adaptation algorithm enable the agent to adapt its learned knowledge to the

target task in order to outperform the baselines?
• By leveraging the repetition learning to expand the agent’s knowledge, can the adapta-

tion algorithm reduce the deterioration of the agent’s performance on the source task?

5.1. Experimental Settings
5.1.1. Simulated Tasks

In order to examine the effectiveness of the proposed method, six simulated tasks with
varying difficulties were considered: Pendulum [60], CartPole [60,61], WindowOpen [62],
WindowClose [62], Door [63], and Hammer [63]. The task difficulty is varied along two axes;
the size of the state space and the size of the action space. The detailed descriptions and
visualizations of these tasks are shown in Table 1 and Figure 4. From such tasks, three
experiments were conducted, each of which included two different tasks—a source task
and a target task. The detailed descriptions of these experiments are shown in Table 2.

In order to train and adapt the proposed IL agent, expert demonstrations for both
source and target tasks must be provided. In this experiment, the proximal policy opti-
mization (PPO) method was chosen to be trained on each task in order to create an expert
RL agent. The reason behind this decision was that PPO was recently showing the best
result for many complex tasks. After that, the demonstrations were collected by executing
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the trained PPO expert agent in the simulated task. For the source task, 30 demonstra-
tions were collected to provide sufficient data for training the proposed agent [57]. In the
adaptation process, the proposed agent already learned the knowledge of the source task,
thus, a smaller number of demonstrations for the target task is required. Therefore, only
15 demonstrations were collected for the target task.

Table 1. Description of six simulated tasks used in the experiment.

Task Size of State Space Size of Action Space Difficulty Level Description

Pendulum [60] 3 (continuous) 1 (continuous) Easy Swinging up a pendulum.
CartPole [60,61] 4 (continuous) 1 (continuous) Easy Preventing the pendulum from falling

over by applying a force to the cart.
WindowOpen [62] 39 (continuous) 4 (continuous) Medium Opening a window.
WindowClose [62] 39 (continuous) 4 (continuous) Medium Closing a window.
Door [63] 39 (continuous) 28 (continuous) Hard A 24-DoF hand attempts to undo the

latch and swing the door open.
Hammer [63] 46 (continuous) 26 (continuous) Hard A 24-DoF hand attempts to use a ham-

mer to drive the nail into the board.

(a) Pendulum (b) CartPole (c) WindowOpen (d) WindowClose

(e) Door (f) Hammer
Figure 4. Visual rendering of five simulated tasks used in the experiment.

Table 2. Description of three experiments conducted to evaluate the performance of the pro-
posed method.

Experiment Source Task Target Task Difficulty Level Description

Pendulum–CartPole Pendulum CartPole Easy A simple experiment in which both
source and target tasks have small state
and action spaces.

WindowOpen–WindowClose WindowOpen WindowClose Medium Both source and target tasks have a large
state space but small action space.

Door–Hammer Door Human Hard A challenging experiment in which both
source and target tasks have large state
and action spaces.

5.1.2. Baselines

To evaluate the performance of the proposed method, a number of baselines were
considered. Firstly, to assess the performance of the proposed agent on a source task, two
RL baselines were used, which are proximal policy optimization (PPO) [64] and neural
fitted Q-iteration (NFQI) [65]. PPO is a policy gradient method, while NFQI is a value-based
method that tries to estimate the Q-function using a deep feed-forward network. Secondly,
after training the agent on the source task, the proposed adaptation algorithm was applied
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in order to adapt the trained agent to a new target task. The performance of the agent after
adaptation was evaluated through the comparison with transfer learning-based baselines,
which are fine-tuning and TA-TL [66]. Fine-tuning is a common transfer learning technique
that simply re-trains the agent on a new target task. Fine-tuning was applied to both the
proposed agent and PPO, resulting in two baselines for the evaluation. Meanwhile, TA-TL
is a policy adaptation method, where first it utilizes the NFQI agent to find an optimal
policy on a source task, then that policy is transferred to a new target task. In order to
provide a fair comparison, each baseline was evaluated for 100 trials. The success rate and
average cumulative reward were used as performance metrics. The success rate indicates
the percentage of trials in which the baseline can successfully complete a task. The average
cumulative reward measures how well the baseline performed in a trial.

5.1.3. Implementation and Training Details

In order to perform the experiments, a personal computer running Ubuntu 20.04 with
an Intel i7-8750H @ 2.20GHz, 16 GB RAM, and NVIDIA GTX 1080 Ti was used. PyTorch [67]
and Tianshou [68] were utilized as deep learning frameworks to implement the proposed
adaptation method and baselines. Adam optimizer with an initial learning rate of 10−4 was
used for training the proposed agent. The dimension n of the task embedding zt

x and the
value of λ were set to 64 and 0.1, respectively.

5.2. Results

In this subsection, the evaluation results of the proposed agent and adaptation algo-
rithm are presented to highlight their effectiveness in tackling the task adaptation problem
in imitation learning.

5.2.1. Performance of the Proposed Agent on the Source Task

Table 3 reports the performance of the proposed agent on the source tasks (i.e.,
Pendulum, WindowOpen, and Door) against two RL baselines: PPO and NFQI. In
addition, Figure 5 visualizes their behaviors when performing the source tasks. It can be
observed that the proposed agent and two baselines could accomplish source tasks by
keeping the pendulum vertical (Figure 5a), successfully opening the window and the
door (Figure 5b,c). The proposed imitation learning agent was able to produce relatively
similar behaviors to PPO. This result demonstrated that the proposed agent was trained
successfully in order to imitate the expert behaviors. Table 3 shows that PPO always
provided the best performance in terms of success rate and average cumulative reward
on three different source tasks. This result was reasonable since PPO is a reinforcement
learning method, thus, it has a direct access to the task environment, including states
and the reward signal. On the other hand, the proposed agent is an imitation learning
method that learns to perform the task using only expert demonstrations. Despite that
disadvantage, the proposed agent could consistently perform well on all source tasks
with varying difficulties and almost achieved similarly high performance to PPO. It
should be noted that the performance of all agents always decreased when being tested
on a more complicated task with more extensive state and action spaces, especially the
Door task. However, the reduction in performance between the proposed agent and PPO
was comparable. On the other hand, there was a significant gap between the proposed
agent and the NFQI performance. The NFQI agent showed the largest reduction in
terms of success rate, i.e., from 100% success rate on the simple Pendulum task to only
65% on the challenging Door task. This was because the Q-function approximation
in NFQI did not work well with the task with large state and action spaces [65]. In
summary, the results showed that the proposed agent could provide relatively high and
consistent performance that is close to the expert PPO on different source tasks with
various difficulty levels.
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(a) Pendulum

(b) WindowOpen

(c) Door

Figure 5. A visualization of the behavior of the proposed agent and baselines on source tasks.
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Table 3. The performance of the proposed agent on source tasks.

Pendulum WindowOpen Door

Success rate
Proposed agent 100% 94% 87%
PPO [64] 100% 97% 91%
NFQI [65] 100% 76% 65%

Average cumulative reward
Proposed agent −146.51 ± 85.24 1586.38 ± 229.00 2250.04 ± 1428.60
PPO [64] −134.77 ± 93.59 1827.56 ± 410.98 2450.42 ± 1303.48
NFQI [65] −189.01 ± 87.09 752.00 ± 476.77 1252.55 ± 1213.15

5.2.2. Performance of the Proposed Agent on the Target Task after Adaptation

All agents trained on the source task were adapted to the target task in order to
evaluate the performance of the proposed adaptation algorithm in comparison with other
transfer learning baselines. The result is tabulated in Table 4. The behavior of those agents
when performing target tasks is visualized in Figure 6. It can be seen that the proposed
adaptation method and baselines provide comparably similar behaviors in order to solve
target tasks. This result indicated that the proposed method successfully adapted and
transferred the agent’s knowledge to the new target task. Moreover, it can be observed from
Table 4 that the proposed method, which is a two-fold method, including the proposed
agent and the adaptation algorithm, outperformed other transfer learning-based baselines.
In addition, it performed highly well and consistently on the complex WindowClose and
Hammer tasks. On the other hand, applying fine tuning to the proposed agent led to
a significant reduction in the adapted agent’s performance, especially on the complex
Hammer task which achieved only a 50% success rate. Moreover, its performance was the
lowest compared to other transfer learning baselines. This indicated that the trained agent
on the source task (i.e., Door) failed to transfer its learned knowledge to the target task
(i.e., Hammer). The reason could be because the adapted agent using fine tuning failed
to learn state and action mappings from the source to the target task due to the size of
the state and action spaces of those two tasks being different as shown in Table 1. This
observation indicates that fine tuning was not suitable for the proposed agent. On the other
hand, applying fine tuning to the PPO agent provided a consistent performance across all
three tasks. At the same time, applying TA-TL to the NFQI agent was not able to produce a
high success rate due to the high complexity of the WindowClose and Hammer tasks.

The results demonstrated that the proposed method not only outperformed baselines
in terms of success rate on all target tasks, but notably produced a consistently high
performance, even on the most difficult task. This proved the potential of the proposed
method in order to tackle the task adaptation problem in imitation learning. However, it
should be noted that the research objective is not only to achieve high performance on the
target task, but also to avoid the performance deterioration on the source task. Therefore,
the performance of the adapted agent on source tasks will be assessed next in order to
evaluate the decline of the agent’s performance after adaptation.

Table 4. The performance of the proposed agent on target tasks after adaptation.

CartPole WindowClose Hammer

Success rate

Proposed agent + Proposed adaptation algorithm 100% 83% 82%
Proposed agent + Fine-tuning 77% 72% 50%
PPO [64] + Fine-tuning 87% 80% 77%
NFQI + TA-TL [66] 80% 63% 67%

Average cumulative reward

Proposed agent + Proposed adaptation algorithm 500.00± 0.0 2340.59± 642.69 13,137.42 ± 2709.57
Proposed agent + Fine-tuning 433.44± 86.52 1513.07± 566.09 1741.76± 1035.17
PPO [64] + Fine-tuning 487.63± 32.74 2215.98± 608.33 3022.64± 1115.92
NFQI + TA-TL [66] 476.63± 61.84 1447.53± 641.16 2591.46± 1231.70
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(a) CartPole

(b) WindowClose

(c) Hammer

Figure 6. A visualization of the behavior of the proposed agent and baselines on target tasks.
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5.2.3. Performance of the Proposed Agent on the Source Task after Adaptation

Table 5 shows the deterioration in success rate of the adapted agent on source tasks
compared to the one before the adaptation. The lower value of the deterioration illustrates
a better result. It can be observed that as the difficulty level of the target task increased, the
deterioration became more notable. In addition, three baselines were not able to maintain
high performance on the source task. Even on the simple Pendulum task, the deterioration
was extremely high compared to the proposed adaptation algorithm. This was due to the
fact that those transfer learning baselines were designed to optimize the performance of the
agent only on the target task. Thus, it was obvious that the performance of those adapted
agents dropped significantly on the source task. On the other hand, the deterioration of
the proposed method was the lowest compared to other baselines, which indicated that
the proposed adaptation algorithm successfully retained the learned knowledge from the
source tasks and reduced the negative effect of catastrophic forgetting.

Table 5. The performance of the proposed agent on source tasks after adaptation. These scores
represent the deterioration in success rate compared to the one before the adaptation.

Pendulum WindowOpen Door

Proposed agent + Proposed adaptation algorithm 18% 32% 44%
Proposed agent + Fine-Tuning 41% 73% 74%
PPO [64] + Fine-tuning 32% 58% 83%
NFQI + TA-TL [66] 24% 62% 51%

5.2.4. Computational Complexity

Besides evaluating the performance of the proposed task adaptation method in terms
of success rate, its computational cost was also assessed in order to provide an adequate
study of its overall performance. Table 6 shows the training time required to adapt a trained
agent to a new target task in each experiment. It can be observed that the training time of
the proposed adaptation method was slightly better than the training time when applying
fine tuning to PPO, especially on two complex WindowOpen-WindowClose and Door–
Hammer experiments. On the other hand, compared to TA-TL, the proposed adaptation
method required a higher training time on all three experiments. This result was expected
since, during the proposed adaptation process, the agent had to not only learn the new task,
but also review the previously learned source task. However, it should be noted that the
training time of the proposed adaptation method can be further improved by leveraging
the parallel training process [68,69].

Table 6. The training time (s/epoch) of the proposed task adaptation algorithm.

Pendulum–CartPole WindowOpen–WindowClose Door–Hammer

Proposed agent + Proposed adaptation algorithm 87.051 163.768 503.19
Proposed agent + Fine-tuning 74.680 114.290 321.87
PPO [64] + Fine-tuning 86.801 184.472 557.416
NFQI + TA-TL [66] 58.499 121.510 352.53

6. Discussion

In this section, the effects of applying repetition learning on the performance of the
proposed method and the important role of the task embedding network E are discussed
in detail.

The experimental results assessed in the previous section have shown the potential
of the proposed adaptation method in tackling the task adaptation problem in imitation
learning. As shown in Tables 3 and 4, the proposed method could provide consistent and
high performance in terms of success rate and average cumulative reward on both source
and target tasks with varying difficulty levels. This indicates that the proposed method can
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be applied to more challenging tasks with larger state and action spaces. Moreover, Table 5
shows that the performance deterioration on the source task was also reduced compared
to transfer learning baselines. This promising result demonstrates the effectiveness of the
proposed adaptation method, in which the idea of repetition learning was leveraged in
order to allow the agent to review the previously learned source task. Although the success
rate and training time remained limited, the proposed method presents a plausible approach
to tackle the task adaptation problem in imitation learning. It can be further improved in
order to provide better overall performance toward practical imitation learning tasks.

In order to support the idea of repetition learning, an imitation learning agent was
proposed, which was able to encode its learned knowledge into a task-embedding space. To
provide an ablation study of the task embedding network E in the proposed agent, a small
experiment was conducted, where a number of task embeddings zt

S and zt
T were collected

by executing the adapted agent in the WindowOpen–WindowClose experiment on both
source task (i.e., WindowOpen) and target task (i.e., WindowClose). The WindowOpen–
WindowClose was chosen because both source and target tasks are similar and have a large
and equal size of the state space, which can provide a sufficient ablation result. In each
task, the adapted agent was run in the simulation over 100 trials. After that, t-distributed
stochastic neighbor embedding (t-SNE) was applied in order to project the collected high-
dimensional task embeddings to a two-dimensional space for visualization as shown in
Figure 7. t-SNE captures the distance relation between task embeddings. If two embeddings
were close in the task-embedding space, they stay close in the resulting visualization, and
vice versa. Therefore, from Figure 7, it can be seen that task embeddings of the source
and target tasks were well separated. Moreover, Figure 7 also shows that some target task
embeddings were mixed with the source task embeddings. This was expected since the
WindowOpen and WindowClose tasks shared the same structure (i.e., robot hand and
window), thus, these target task embeddings represented the shared knowledge between
the source and target tasks. This result indicates that the proposed adaptation method not
only successfully expands the task embedding space without forgetting the previously
learned knowledge, but also leverages the source task’s knowledge in order to accelerate
and adapt to the new target task. This leads to high performance on the target task shown
in Table 4 and a low performance deterioration on the source task shown in Table 5.

Figure 7. Visualization of clustering results on task embedding vectors zt
S and zt

T . Different colors
mark different tasks.

Although the novel idea of applying repetition learning and encoding the task knowl-
edge into a task embedding has significantly improved the adapted agent on both tasks,
there is still one limitation. As shown in Figure 3, ideally, the adapted agent should be able
to perform both source and target tasks better over time and eventually surpass its perfor-
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mance on the source task before being adapted. However, as shown in the experimental
results, there was an amount of deterioration in the source task’s performance, thus, the
proposed method is still limited compared to human learning ability. Overcoming this
problem can be served as a key step toward building a continual learning agent, where the
agent can learn and adapt to not only one but multiple target tasks. In future work, this
will be the main focus of the authors in order to provide a general-purpose agent that can
become a better learner over time, i.e., learning new tasks better and faster, and performing
better on previously learned tasks.

7. Conclusions

In this paper, a novel task adaptation method for imitation learning was proposed.
The proposed adaptation method leverages the idea of repetition learning in neuroscience
allowing the agent to repeatedly review the previously learned source task while learning
a new target task. The experimental results on simulated tasks with varying difficulties
show that the proposed method is able to consistently provide high performance on the
target task and minimizes the deterioration of the source task’s performance. Moreover, it
demonstrates the effectiveness of the proposed method compared to transfer learning in
enabling the agent to expand its knowledge without forgetting the knowledge learned from
the source task, resulting in an adapted agent that is able to perform well on both tasks.
Despite some limitations in the success rate and computational cost, the results indicate the
potential of the proposed method to be applied in practical imitation learning tasks.
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