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Abstract: UAV-based object detection has recently attracted a lot of attention due to its diverse
applications. Most of the existing convolution neural network based object detection models can
perform well in common object detection cases. However, due to the fact that objects in UAV images
are spatially distributed in a very dense manner, these methods have limited performance for UAV-
based object detection. In this paper, we propose a novel transformer-based object detection model
to improve the accuracy of object detection in UAV images. To detect dense objects competently, an
advanced foreground enhancement attention Swin Transformer (FEA-Swin) framework is designed
by integrating context information into the original backbone of a Swin Transformer. Moreover, to
avoid the loss of information of small objects, an improved weighted bidirectional feature pyramid
network (BiFPN) is presented by designing the skip connection operation. The proposed method
aggregates feature maps from four stages and keeps abundant information of small objects. Specifi-
cally, to balance the detection accuracy and efficiency, we introduce an efficient neck of the BiFPN
network by removing a redundant network layer. Experimental results on both public datasets and
a self-made dataset demonstrate the performance of our method compared to the state-of-the-art
methods in terms of detection accuracy.

Keywords: object detection; aerial images; transformer-based; foreground enhancement attention;
improved bidirectional feature pyramid network

1. Introduction

Object detection is the process of localizing and classifying objects in an image. It is
an essential task in the computer vision field and attracts much interest from both the
academic and industrial communities. Inspired by the success of deep learning (DL), the
performance of object detection has been dramatically improved. With the development
of various technologies, unmanned aerial vehicle (UAV) platforms are widely used in
the remote sensing field because of their attractive proprieties, including high flexibility,
ecological benefits, and so on.

Object detection plays a pivotal role in many UAV applications, such as hazard moni-
toring [1], intelligent agriculture [2], traffic management [3], security and protection [4], etc.
Although most existing object detection approaches demonstrate significant performance
in ground-based images, they show limited performance in UAV aerial images, as UAV
aerial images are completely different from ordinary images and characterized by complex
backgrounds and small and dense objects. Thus, further improving the performance of
object detection for UAV is attracting much attention and has become a hot area of research.

For a prolonged period, convolutional neural networks (CNNs) have been the domi-
nant player in object detection. Numerous impressive object detection approaches have
been proposed, such as R-CNN [5], Faster R-CNN [6], Cascade R-CNN [7], YOLO [8], and
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SSD [9]. These approaches achieve remarkable performance in natural scene images [10],
whereas aerial images pose challenges to these approaches. The performance of CNN-
based object detection approaches will degenerate or even collapse, because UAV aerial
images are characterized by complex backgrounds and small and dense objects. For dense
target detection in aerial images, the negative effect is very apparent due to the inflexible
receptive field of convolutional kernels. Many efforts have been implemented to improve
the performance of object detection. One common solution is to obtain a density map
by first using density generation networks, then cropping the image blocks according
to the density map, and finally detecting the targets and fusing the detection results of
the density blocks and the whole image [11–14]. The drawback of this solution is that
the additional network significantly adds to the model’s computational volume. Another
effective solution is to use the attention mechanism. CBAM [15], MSCA [16], and other
attention models [17–19] have emerged to boost the performance of object detection by
exploiting positional information through reducing the channel dimension of the input
tensor with large-size convolutional kernels. However, most of these approaches embed
the attention mechanism into deep convolutional networks. They strengthen the contextual
connection to some degree but fail to model the long-range dependencies, which are critical
for dense object detection in aerial images.

Recently, the Transformer network provides qualitative performance in the field of
computer vision. It is worth mentioning that the Vision Transformer (ViT) [20] network
demonstrates that a pure attention-based model leads to better results than a CNN-based
model. Swin Transformer [21] is the most representative and impressive structure. It
models the local relationship only at each stage while continuously reducing the feature
map width and height and expanding the receptive field. Thus, it can be employed as a
universal backbone for the main downstream visual tasks. Recent studies have shown
transformer-based object detection approaches have shown significant performance [22–24].
These methods have scored extremely well in large natural scene datasets such as MS
COCO [25] and ImageNet [26]. Many attempts have also been carried out with transformer-
based models for target detection in remotely sensed images and aerial images [27–29].
However, the accuracy of existing transformer-based object detection approaches is still
insufficient in challenging conditions. We mainly discuss it from two sides.

First, by revisiting the object detectors for aerial images, we uncovered a potential prob-
lem: extracting the correlation information between contexts is urgently needed [30–34].
From this point of view, Swin Transformer does not cope well with the detection of dense
objects when responding to aerial images due to its failure to notice the connection between
neighboring targets [35]. Within the framework of CNNs, there are two endeavors present-
ing the idea of foreground enhancement that are very worthwhile. Zheng et al. designed
FarSeg [30], which consists of two modules: a foreground scene relationship module and
foreground perception optimization. The former reduces false positives by learning symbi-
otic relationships between scenes and foregrounds to associate foreground-related contexts
with enhancing foreground features. The latter mitigates the foreground-context imbalance
problem by suppressing multiple simple examples in the background and focusing the
model on the foreground. Song et al. argue that enhancing object-related features can
help reduce false and missed detections in aerial images [36]. Therefore, they create a
new branch called the foreground enhancement module (FEM) after the feature pyramid
network by first regressing the masks that represent the foreground and background.
Next, the obtained mask enhances the original fused features, and the detector’s ability
to distinguish between foreground and background can be improved. However, current
transformer-based models lack such work. Motivated by the endeavors noted above, we
have an intuitive and novel idea to add the foreground enhancement mechanism into
the backbone of the Swin Transformer in the form of attention operation, known as the
foreground enhancement attention block (FEAB).

Second, the neck is the key element in the target detection framework that carries on
from top to bottom. It reprocesses and rationally utilizes the important features extracted
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from the backbone to facilitate the next step of the head for concrete task learning. The most
common current use of the neck is BiFPN [37]. Low-level features with high resolution
but weaker semantics are downsampled and combined with high-level features to create
feature representations with both high resolution and strong semantics. However, the
operation of successive downsampling causes the feature map to drop a considerable
amount of fine-grained information [38,39]. This is detrimental to the detection of small
objects. To tackle this problem, we have designed an improved BiFPN that incorporates
operations of skip connection and strike out of redundant output nodes.

To summarize, the contribution of this article is fourfold.

1. To the extent we are aware, we are the first to introduce a foreground enhancement
attention block (FEAB) in the original Swin-tiny backbone to bring more contextual
information and learn more recognizable features and investigate its effectiveness in
aerial image object detection tasks. Moreover, the FEAB module we introduced in the
backbone can theoretically be inserted into other existing hierarchical vision transformers.

2. We additionally propose a straightforward and efficient weighted bi-directional fea-
ture pyramid network (BiFPN) for efficiently fusing feature maps with context infor-
mation from different stages of the encoder.

3. We have created a self-collected dataset around the lab, which currently has 2000 im-
ages, targeting both pedestrians and vehicles, which we have annotated and made
public. The download link is given at the end of this article.

4. Finally, we provide an in-depth analysis of the impact of each of the two critical
components in FEA-Swin on detection accuracy. Our proposed method achieves
competitive performance metrics on the VisDrone, NWPU VHR-10, and our self-
collected dataset, exceeding the best currently available universal models.

2. Related Work

Aiming to better understand and design aerial image target detection models, this
section presents relevant work, including Vision Transformer, Swin Transformer, attention
mechanism, and object detection in aerial images.

2.1. Object Detection in Aerial Images

Object detection is one of the fundamental problems in the field of computer vision.
For a long time, due to many difficulties such as slow detection speed, insufficient gen-
eralization ability, and complicated manual feature design of traditional methods, target
detection has not been widely implemented in practical scenes. In recent years, with
the rapid development of artificial intelligence, emerging technologies represented by
deep learning have made breakthroughs in computer vision, natural language processing,
speech recognition, and other research fields by virtue of their excellent generalization
ability. At the same time, driven by the wave of technology, UAVs have the advantages
of long endurance, low power consumption, and real-time processing and transmission,
which enriches the application of target detection on UAVs and makes them gradually
become the focus of attention.

UAV aerial images are characterized by complex backgrounds and small and dense
targets due to the imaging perspective being different from natural scene images, which
leads to even more challenges for target detection in aerial images [40]. Due to the small
target size and dense distribution of targets, it is difficult to achieve satisfactory results by
directly applying a generic target detector to aerial images. To cope with this problem, the
following methods are proposed.

• ClusDet [11] proposes an end-to-end aerial target detection framework that combines
target clustering and detection. It consists of three main basic components: a cluster
proposal network (CPNet), which is used for target clustering to generate target
cluster regions; a scale estimation network (ScaleNet), which estimates the scale of
target clusters; and a dedicated detection network (DetecNet), which performs target
detection on the cluster regions normalized to each scale.
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• DMNet [12] leverages density maps to do target detection in aerial images. Density
maps come from a similar field, crowd counting. Density maps can reflect the distri-
bution of targets in an image. In crowd counting, the targets are highly dense and
unevenly distributed, and the scale of individual targets is small, which is highly simi-
lar to the target distribution in aerial remote sensing datasets. The proposed DMNet
consists of three main steps: (1) density map generation network; (2) segmentation of
the input map into foregrounds based on the density map; (3) target detection using
the generated foregrounds.

• GLSAN [13] proposes an end-to-end global–local adaptive network. It consists of three
main components: a global-local detection network (GLDN), an adaptive region selec-
tion algorithm (SARSA), and a local super-resolution network (LSRN). The method
integrates a global–local fusion strategy into a progressively scale-varying network to
perform more accurate detection.

• UCGNet [14] proposes a network based on unsupervised clustering guidance. First, a
local location module (LLM) is proposed to predict binary images using an attention
mechanism. The binary map can represent the location of the target presence in the
image. Second, an unsupervised clustering module (UCM) is proposed to cluster these
points into some clusters (clusters). To enhance the effectiveness of these clusters, the
authors sample 1000 points from all pixels covering the target using the farthest point
sampling strategy. Each cluster corresponds to a region. Third, these sub-regions are
cropped down. Finally, the global fusion module (GMM) is used to join all candidate
frames to obtain the final detection results.

2.2. Attentional Mechanisms

In daily life, human eyesight quickly scans the global environment to obtain the target
area to be focused on, which is generally known as the focus of attention, and then devotes
more attentional resources to this area to obtain more detailed information about the target,
while suppressing other useless information. Motivated by that phenomenon, attentional
mechanisms were introduced to computer vision with great success.

The attention mechanism is capable of focusing high weights on important information
and low weights to ignore useless information, with the ability to dynamically adjust the
weights, making the model more responsive to different situations.

Attention mechanisms in computer vision are divided into six types, including the
basic four: (1) temporal attention, (2) branch attention, (3) spatial attention, and (4) channel
attention, versus a mixture of two: (5) combined temporal attention and spatial attention
and (6) spatial attention and channel attention. The most commonly used of these are (3),
(4), and (6). Several representative efforts are presented below.

• SENet [17]: It pioneered channel attention. At the heart of SENet is a squeeze and exci-
tation (SE) block that models the global picture, observes phase relationships between
different channels, and improves the learning capability of the model. The disad-
vantage of this is that the global average pooling in the squeeze module cannot
handle complex features. The fully connected layer in the excitation module also adds
redundant operations.

• Non-Local [18]: It uses a spatial attention mechanism to directly model any two
locations in the image, capturing long-range dependencies. The set of locations can be
spatial, temporal, or spatio-temporal. It has the advantage that it can be fused with
other operations for insertion into other networks, but, again, requires a larger amount
of operations.

• RAN [19]: A residual attention network (RAN) is proposed, which stacks multiple
attention modules. Its advantages are that it can capture mixed attention and is a
scalable convolutional neural network. However, the proposed bottom-up structure
fails to fully utilize the global spatial information. In addition, direct prediction of a
3D attentional map has a high computational cost.
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2.3. Vision Transformer

ViT is the first visual detector that uses a pure transformer framework. ViT divides the
input image into multiple patches (16× 16), and then projects each patch into a fixed-length
vector to feed the Transformer. The subsequent encoder operation is exactly the same as in
the original Transformer. As the images are classified, a special token is added to the input
sequence, and the output corresponding to this token is the final category projection.

ViT proves that deep models built with pure self-attention blocks can also perform
outstanding results in various vision tasks. However, ViT also has obvious limitations, such
as huge data requirements, a limited number of stacked layers, and the inability to encode
locations in the model itself.

2.4. Swin Transformer

Regarding the application of Transformer from natural language processing to the
computer vision field, the main adjustment is the scale of the visual image and the high-
definition issue. Despite the huge sensation ViT has caused in the computer vision com-
munity, it is not perfect and still has some drawbacks. One of the most serious of these is
the compatibility of ViT with high-resolution images, because its computation generates a
quadratic complexity associated with the image size, leading to a high number of tokens
and a very high computational effort for self-attention requirements.

In this case, Swin Transformer introduces two key concepts to solve the problems
faced by the original ViT, which are hierarchical feature mapping and windowed attention
transformation. The model designs sliding windows to compute only the self-attention of
all tokens inside that window to reduce the computational effort. At the same time, the
hierarchical structure allows the model to have adaptive modeling with linear complexity
for images of different scales. In fact, the name of Swin Transformer comes from “Shifted
window Transformer,” and the most vital component of Swin Transformer is shown in
Figure 1.

Figure 1. (a) Two consecutive Swin Transformer blocks; (b,c) is the description of the shift window
method for calculating self-attention in the Swin Transformer framework.
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3. Methods
3.1. Overview of the Proposed Framework

We now give an overview of FEA-Swin. First, our proposed FEA-Swin adopts the
classical backbone–neck–head architecture, and the overall framework is shown in Figure 2.
In the backbone, we designed and introduced FEAB as the backbone of our FEA-Swin,
based on the primitive Swin-tiny. The backbone network here is described below as an
encoder. Next, we designed an improved version based on the original BiFPN in the neck,
introducing the skip connection and strike output node operations. Finally, we used the
most popular head of Cascade R-CNN in the head.

Figure 2. Architecture of FEA-Swin.

3.2. FEAB in Backone of FEA-Swin

The RGB image of size RH×W×3 is partitioned into non-overlapping patches of size
R4×4. These patches are then used as tokens and sent as input to the encoder, for which
we use Swin-tiny here. Before the first transformer layer, there is a linear embedding
operation that converts the features to the required dimension (denoted as C). The encoder
extracts features in four stratified stages. Each stage in the encoder is assembled by a
transformer layer and a context layer in tandem, and the output of the transformer layer
is fed into the context layer. The transformer layer is composed of NS standard Swin-tiny
transformer blocks (Figure 1) stacked to extract features from the original image, whereas
the context layer is composed of NF FEAB (Figure 3) stacked to enhance foreground
contextual information, generating context-prior maps and updating the feature values
with them. The detailed structure of FEAB and the diagram of the reasoning process
(Figure 4) are shown below.

In each standard Swin-tiny transformer block, there is a shift window, or window.
The attention mask set determines which attention is used to limit what can be seen at each
location in the attention. The window attention is similar to the transformer block in ViT
with the addition of relative position encoding. It computes attention only for tokens within
a window, whereas shifted window attention computes attention for tokens in different
windows belonging to non-overlapping regions. Both attention operations have linear time
complexity, making the design better for high-definition image feature representation. To
obtain a hierarchical feature map, patch merging is utilized at the beginning of each stage,
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starting from the second stage, to reduce the number of tokens. The size of the resolution of
the feature map output at each of the four stages is {H

4 ×
W
4 ×C, H

8 ×
W
8 × 2C, H

16 ×
W
16 × 4C,

H
32 ×

W
32 × 8C}. Following the self-attention approach, we divide the input features X into

Q, K, and V, which represent query, key, and value matrices, respectively. Similarly, we
introduce a relative position bias RPB ∈ RW×W in the calculation of self-attention:

Attention(Q, K, V) = So f tMax(
QKT
√

Dk
+ RPB)V, (1)

where Dk represents the dimension of key. After the last Swin Transformer block of the
current layer, the output feature map is fed to the context layer as input.

Figure 3. The detailed structure demonstration of FEAB.

Figure 4. A visual schematic diagram of FEAB.

High-quality context information proves to be an essential part of the target detection
task. Therefore, the context layer that follows is the key component of the encoder and
the most innovative part of this article. Each context layer consists of NF FEAB. The FEAB
enhances the foreground features by weakening the background features to concentrate
cross-window attention on the foreground region rather than the entire feature map. Fol-
lowing Swin’s approach, in order to limit the computational cost to a linear scale, we
divide the input X

′
of FEAB into three components, EQ, EK, and EV , representing context

query, context key, and context value, respectively. By multiplying the input features X
′

with the randomly initialized learnable matrices WQ, WK, X
′
V , respectively, we linearly

project the input features into the context space and obtain EQ, EK, and X
′
V . The first two
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expressions, EQ and EK, are foreground-enhanced query and key, which are normalized by
a softmax function and used to update the value of X

′
V . Moreover, we add a learnable scalar

constant Θ after the linear layer for smooth fine-tuning. This is because firstly the scalar
suppresses the scale of the converter during initialization. Second, the attention value of the
transformer may decay as the weight decreases during training, and the learnable scalar we
have added compensates exactly for this, keeping the output within an acceptable range.
Our foreground enhancement attention equation is given below:

FEAttention(EQ, EK, X
′
V) = So f tMax(F · EQET

K)X
′
V + Θ, (2)

where the foreground mask at the feature pixel location (x, y) is

F(x, y) =

{
1, i f M(x, y) = 1
0, i f M(x, y) = 0

. (3)

In this case, M(x, y) ∈ {0, 1}H×W×C is a binarization function (with threshold 0.7)
whose value is obtained by mask prediction from the (x, y) position of the original input
feature X.

3.3. Improved BiFPN as the Neck of FEA-Swin

Objects in aerial drone images are usually small and dense, and there are limitations
in the feature representation capability of a single layer of backbone. Thus, in an effort
to efficiently and quickly fuse different scale feature maps from different layers of the
encoder, we demand an advanced feature fusion network. In general, the output feature
map PO = f (PI

i ), where PI
i stands for the feature map of the ith level and f stands for

feature fusion method.
Currently, one of the state-of-the-art FPNs is the weighted bi-directional feature pyra-

mid network (BiFPN), as shown in Figure 5a. There are two main contributions of BiFPN,
that is, cross-scale connection and weighted feature fusion. Particularly, the former allows
the aggregated feature graph to have more context information. The latter is proposed to
allow the network to understand the contribution of each input feature to the output result.
The algorithm for weighted feature fusion is described as follows:

O = ∑
i

ωi
ε + ∑j ωj

· Ii, (4)

where ωi is a learnable weight and is greater than or equal to 0 by the ReLu function that
follows immediately after; ε = 0.0001 is used to ensure numerical stability; Iirepresents the
input feature map of the ith level.

According to the idea of BiFPN, when our work requires the input feature map to
be four layers, then the structure shown in Figure 5b should be used. Unfortunately, this
structure enables the output feature maps of some layers to be inaccessible to all layers
after aggregation. Consequently, we implement an improved BiFPN. The structure of our
improved BiFPN is shown in Figure 5c. The backbone delivers four levels of features at
different scales that are treated as inputs; following the idea of BiFPN, the first n repeated
blocks all have 4-level input and output. The last block of the original BiFPN has four levels
of output, and each aggregated feature map appears as an input to the region proposal
network (RPN). In this case, the output of each level straightforwardly influences the final
result. However, our improved method only takes 3-level output in the last layer. In
addition, we designed the skip connection operation to prevent the information loss of
small objects. For example, we denote the ith level input feature map of the first layer as
PF

i , the feature map for the intermediate iterations as PT
i , and the input and output feature
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maps are PI
i and PO

i , respectively. The second level output feature map of the last layer is
calculated as:

PO
2 = Conv(

ω
′
1 · PI

2 + ω
′
2 · PT

2 + ω
′
3 · Resize(PO

1 ) + ω
′
4 · PF

2

ω
′
1 + ω

′
2 + ω

′
3 + ω

′
4 + ε

) (5)

(a)

(b)

(c)

Figure 5. (a) Original BiFPN; (b) 3-level input and output BiFPN; (c) our improved BiFPN.

4. Experimental Results and Discussion

In this section, to evaluate the performance of our method, we perform several experi-
ments on both public datasets and one self-collected dataset. We compare the proposed
FEA-Swin with the state-of-the-art object detection systems, including Swin Transformer-
tiny with FPN [21], one-stage object detectors (RetinaNet [41], YOLOF [42]), and two-stage
object detectors (Cascade R-CNN, Faster R-CNN). We implement the proposed FEA-Swin
on the MMDetection2D [43] platform under the Ubuntu operating system. All experiments
have been run on an Intel Core i9-9900K CPU at 3.6 GHz with 16 GB RAM and an NVIDIA
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GTX 2080Ti GPU. In addition, we adopt the deep learning framework of Pytorch with
CUDA10.1 and cuDNN7.6.5 for computational acceleration.

4.1. Datasets

In this paper, the proposed system is tested on two publicly available datasets (Visdrone-
2021-Det [44] and NWPU VHR-10 [45]) and a home-made dataset. The details of these
datasets are as follows.

Visdrone [44] is one of the most popular and challenging UAV aerial photography
datasets. This dataset provides four sets of 10,209 images for 2D object detection tasks,
including 6741 images in the train set, 548 images in the validation set, 1610 images in the
test-dev set, and 1580 images in the test-challenge set. A total of 342,391 labels are manually
annotated and classified into 10 categories. Because the official evaluation portal for the
test-challenge set is no longer available, we used the test-dev set to evaluate our method.
The details of the Visdrone dataset are presented in Figure 6. First, we enumerated the
number of labels in each category, which shows that pedestrians and vehicles make up
the majority. We then visualized all the annotation boxes and present them together in a
subplot, which tells that there are more small targets. Next, we showed the distribution
of the height (vertical) and width (horizontal) of each box, which reveals that most of
the boxes are within (0.3 m, 0.3 m) of each other. Finally, we placed the centroid of each
annotation box in a subplot to create a heat map of the target distribution locations, and
we can see that the targets appear mostly in the middle, with the rest evenly distributed
around them.

(a) (b)

(c) (d)

Figure 6. Details of the Visdrone dataset: (a) number of labels in various categories; (b) visualization
plot of all labeled boxes aggregated at the center; (c) statistical plot of the width and height of all
labels; (d) heat map of all labels occurring at the image positions.
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NWPU VHR-10 [45] is a classic high-definition aerial object detection remote sensing
dataset. Images in this dataset are selected and cropped from Google Earth and Vaihingen
datasets, with a maximum resolution of 0.5 m and a minimum resolution of 2 m and contain
10 categories. These images vary in size, being roughly 500 pixels high by 1000 pixels wide,
and are divided into sets of 650 positive images and 150 negative images; the negative ones
do not provide any labeled targets. The details of NWPU VHR-10 are presented in Figure 7.
First, we enumerated the number of labels in each category, which shows that the dataset
is relatively homogeneous in terms of the number of categories. Then, we visualized all
the label boxes and presented them together in a subplot, which indicates that the number
of small targets is close to the number of large targets. Next, the distribution of the height
(vertical) and width (horizontal) of each label box was displayed, and it can be seen that
most of the label boxes are within (0.2 m, 0.2 m) of each other and that there are particularly
many targets smaller than (0.1 m, 0.1 m). Finally, we placed the centroid of each annotated
box in a subplot to produce a heat map of the target distribution locations, which reveals
that the target occurrences are evenly distributed throughout the image.

Self-collected dataset: In addition to the above public datasets, we collected a dataset
to further evaluate our method. We used a DJI drone to collect images under different
challenging environments, including solid light changing, dense parked vehicles, etc., as
shown in Figure 8. We used artificially controlled drone flights to photograph around our
laboratory (Hefei, China). Our self-collected dataset provides two thousand images, and in-
cludes human and vehicle two categories. Our images are 1920 pixels wide and 1080 pixels
high, where the ratio of (large target: medium target: small target) is approximately 2:5:3.
A complete set of 12,500 labels was manually annotated with the LabelMe [46] software.
In view of the time and labor consumption, we have used the most common rectangular
marker bounding box. The dataset is now open access and the link is given at the end of
this article.

(a) (b)

(c) (d)

Figure 7. Details of the NWPU VHR-10 dataset: (a) number of labels in various categories;
(b) visualization plot of all labeled boxes aggregated at the center; (c) statistical plot of the width and
height of all labels; (d) heat map of all labels occurring at the image positions.
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Figure 8. Some selected unprocessed images of our self-collected dataset.

In addition, we converted all labels to standard VOC2007 format. Furthermore, we
observed the common practice of training on the training set, tuning the hyperparameters,
checking the convergence with the validation set, and finally testing on the test set. It should
be noted that we do not perform additional data augmentation on the images beyond the
basic random flipping and cropping.

4.2. Implementation Details

Our baseline model is Swin Transformer-tiny with FPN. The backbone network Swin-
tiny has been pre-trained on Imagenet [47]. For both training and testing, we resized
these images to a uniform size of 1000× 600 with the keep_ratio set to true. We employed
the AdamW optimizer and adjusted the weight decay to 0.05 and betas to (0.9, 0.999),
respectively. We adopted the default 1x learning strategy in MMDetection, which iterates
over 12 epochs. Considering that this is a medium-sized dataset, this is sufficient to train to
convergence, and it also saves time and prevents overfitting. During the training phase,
we set the initial learning rate to 0.001 and used a step learning strategy. Warmup is set to
linearly scale at 0.001, causing the learning rate to increase at the beginning of training and
reach a stable value in the middle. The learning rate starts to decrease at the eighth epoch
and reaches 0.001 at the completion of the eleventh epoch. The loss curves during training
on the Visdrone dataset are shown in Figure 9.
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Figure 9. The loss curve during training on the Visdrone dataset. The blue curve represents Swin
Transformer and the orange line represents FEA-Swin.

4.3. Results and Analysis

We used the average precision (AP) and mean average accuracy (mAP) as the eval-
uation to compare the accuracy of our method with other methods. AP is the average
precision at 10 intersection over union (IoU) thresholds ranging from 0.5 to 0.95, with an
equal division of 0.05 intervals. We counted ten categories of AP, and MAP is the average
of all categories of AP. For all experimental results, we report the performance of the last
epoch. It is specifically noted that our detection threshold of IoU is set at 0.6.

We first compare our method on two public datasets. Table 1 shows the results of
FEA-Swin and the comparison models on the Visdrone dataset. The mAP of FEA-Swin is
7.3%, 6.9%, 10.5%, 14.4%, and 4.6% above that of Cascade R-CNN [7], Faster R-CNN [6],
Retinanet [48], YOLOF [42], and Swin Transformer [21] on the Visdrone dataset, respectively.
The results in the table show that all 10 categories gained significant AP improvement
compared to these state-of-the-art methods on the Visdrone dataset.

Table 1. Comparison results on VisDrone2021-DET-test-dev. The bolded numbers are the best
indicators for each category.

Method Backbone Pedestrian People Bicycle Car Van Truck Tricycle Awning-
Tricycle Bus Motor mAP

Cascade R-CNN Resnet-50 16.8 9.1 11.8 59.2 31.4 32.7 12.9 15.6 58.1 16.7 26.4
Faster R-CNN Resnet-50 16.7 9.1 10.4 59.3 34.1 33.0 17.2 15.3 57.6 15.1 26.8

RetinaNet Resnet-50 15.5 9.1 9.8 58.9 28.7 27.9 7.5 5.0 55.6 13.8 23.2
YOLOF Resnet-50 13.1 1.2 1.4 55.6 24.6 25.9 6.4 5.5 52.7 6.1 19.3

Swin Transformer Swin-tiny 17.0 9.1 12.0 66.7 32.2 33.4 17.7 18.1 62.4 22.5 29.1
FEA-Swin Ours 31.1 14.6 13.5 70.1 42.4 39.3 19.1 18.5 62.7 25.6 33.7

Figure 10 shows a comparison of some selected detection results of the original Swin
Transformer and FEA-Swin on the Visdrone dataset. From the diagram, it is clear that
for densely packed objects in close proximity, our method has a substantial advantage.
Furthermore, there were some adjacent dense targets with slight mutual occlusion or partial
occlusion by complex backgrounds, particularly with regard to pedestrians and vehicles,
which were also successfully detected.

Table 2 indicates that FEA-Swin achieves results over other state-of-the-art detectors
on the NWPU VHR-10 dataset. It can be visualized from the table that the detection AP
of FEA-Swin is 4.5%, 8.1%, 6.3%, 8.9%, and 2.4% higher than that of Cascade R-CNN [7],
Faster R-CNN [6], Retinanet [48], YOLOF [42], and Swin Transformer [21] on the NWPU
VHR-10 dataset, respectively. This indicator shows a massive improvement for aerial
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remote sensing image target detection. Figure 11 shows some detection results of FEA-Swin
on the NWPU VHR-10 dataset. It can be seen that our method is very efficient in detecting
small and dense objects (e.g., storage tanks). In addition, our detectors also show strong
compatibility for rotating objects (e.g., airplanes).

(a)

(b)

(c)

(d)

Figure 10. Selected comparison graphs of the detection results on the Visdrone dataset regarding
Swin Transformer and FEA-Swin. The test maps for (a,c) used FEA-Swin. The test maps for (b,d) used
Swin Transformer. On the left side of each column is the original detected picture, while on the right
side is a zoom-in on the specific details on the left side.
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Table 2. Comparison results on NWPU VHR-10. The bolded numbers are the best indicators for each
category.

Methods Airplane Ship Storage
Tank

Baseball
Diamond

Tennis
court

Basketball
Court

Ground
Track Field Harbor Bridge Vehicle mAP

Cascade R-CNN 95.3 90.4 90.9 100 90.6 89.3 98.1 99.7 61.1 71.9 88.7

Faster R-CNN 90.9 90.7 90.9 99.9 86.5 78.0 89.9 99.7 57.1 68.6 85.2

RetinaNet 95.6 64.3 76.2 94.9 82.3 51.3 97.7 82.6 56.7 67.2 76.9

YOLOF 98.3 87.9 89.2 97.8 82.6 74.6 98.5 88.9 60.7 64.8 84.3

Swin Transformer 100 88.0 90.8 100 90.3 88.4 100 99.7 78.8 71.9 90.8

FEA-Swin 100 90.9 90.9 99.9 90.9 89.6 100 100 89.3 80.3 93.2

Figure 11. Some examples of detection results on the NWPU VHR-10 dataset using FEA-Swin.

Similarly, Table 3 shows the favorable performance of FEA-Swin on our homemade
dataset. Figure 12 shows some detection results of FEA-Swin on our self-collected dataset.
It is evident that FEA-Swin can also have good detection performance on dense adjacent
targets in simple real scenes containing pedestrians and vehicles. Even under intense light
conditions, our method maintains a very satisfactory performance. Unfortunately, our FEA-
Swin has a parameter amount of 121 M, which is 35 M more than the Swin Transformer’s
86 M. This means that our method increases the training and inference time marginally
compared to the baseline method.

In general, FEA-Swin can precisely detect densely packed objects of different scales, in-
cluding small objects (such as pedestrians and bicycles) and large objects (such as airplanes,
ships, vans, and trucks) without geometrically increasing the number of model parameters.
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Table 3. Comparison results on our self-collected dataset. The bolded numbers are the best indicators
for each category.

Class

AP Method Cascade

RCNN

Faster

RCNN

Retina

Net
YOLOF

Swin

Transformer
FEA-Swin

Car 84.1 81.6 78.4 79.6 88.5 89.2

Person 70.5 66.3 64.4 65.2 75.7 79.5

mAP 77.3 73.9 71.4 72.4 82.1 84.4

Figure 12. Some examples of detection results on our self-made dataset using FEA-Swin.

4.4. Ablation Studies

In order to further understand the behavior of FEA-Swin, we implemented substantial
ablation studies on the Visdrone dataset. We explored the influence of both BiFPN and
FEAB components. The increments of mAP are list in Table 4. Adding our improved BiFPN
component increases by 1.2% mAP in terms of detection accuracy compared with the
baseline network, which indicates the importance of our improved BiFPN. It can be seen
from Table 4 that the mAP significantly increases by 3.4% with the FEAB compared with
the baseline network. We also can see that the AP improves significantly for each category,
especially for dense objects, such as pedestrians and cars. Results in Table 4 show that the
proposed components greatly improve the detection performance for objects with strongly
similar characteristics, such as pedestrians and people, cars and vans, and tricycles and
awning-tricycles. These results explicitly demonstrate the advantages of FEAB; it effectively
improves the localization capability for dense object detection. To further demonstrate the
ability of our FEA-Swin model to obtain feature information of aerial images, we used
Grad-CAM [49] for the output of class activation maps, as shown in Figure 13. The class
activation map shows where and how the weight or center of gravity shifts during the
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training of the model, and which part of the features the classification model is using to
discriminate. In short, it mimics the process of human recognition of objects, finding the
key parts of the relevant task as the model iterates. The darker the color in the picture, the
more concern about the model. From the results, we conclude that FEAB makes a major
contribution to improving the detection accuracy of dense objects.

Table 4. Ablation studies of two key components of the Visdrone dataset. The bolded numbers are
the best indicators for each category.

Settings Pedestrian People Bicycle Car Van Truck Tricycle Awning-
Tricycle Bus Motor mAP

Baseline 17.0 9.1 12.0 66.7 32.2 33.4 17.7 18.1 62.4 22.5 29.1
+BiFPN 28.2 9.3 12.2 68.2 41.7 40.7 18.5 17.2 48.5 18.3 30.3
+FEAB 30.9 12.6 12.9 70.2 42.2 38.7 18.7 18.7 52.7 27.5 32.5

+BiFPN+FEAB 31.1 14.6 13.5 70.1 42.4 39.3 19.1 18.5 62.7 25.6 33.7

Figure 13. (a) A selection of class activation maps (with bounding boxes) exported using grad-cam.
(b) A color tape corresponding to the model’s degree of focus. The redder the color, the more concern
it holds; bluer the color, the less concern it holds.

4.5. Hyperparameter Independence of the Model

We discuss the effect of hyperparameters in this section to verify the parameter in-
dependence of the proposed method. To obtain controls for the different hyperparameter
groups, we manually modified the hyperparameter values and recorded them to observe
the effects on the self-collected dataset. We chose batch size, optimizer type, and weight
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decay coefficient as the three hyperparameters that are the most likely to affect the detector
performance metrics. The consequences of our tuning are shown in Table 5. It can be
derived that the detection effectiveness of FEA-Swin is not sensitive to definite changes in
hyperparameters, which is a convincing validation of the hyperparameter independence of
our method.

Table 5. Hyperparametric independence study for FEA-Swin on our self-collected dataset.

Method Batch Size Optimizer Type Weight Decay mAP

FEA-Swin-v1 4 SGD 0.05 83.6
FEA-Swin-v2 4 AdamW 0.05 84.4
FEA-Swin-v3 4 AdamW 0.1 84.3
FEA-Swin-v4 8 SGD 0.05 83.4
FEA-Swin-v5 8 AdamW 0.05 84.1
FEA-Swin-v6 8 AdamW 0.1 83.9

5. Conclusions and Future Work

This paper presents a novel transformer framework to accurately detect dense objects
in UAV images. We designed a novel foreground enhancement attention Swin Transformer
(FEA-Swin) framework to integrate context information to detect dense objects competently.
We also improved a weighted bidirectional feature pyramid network (BiFPN) by designing
a skip connection operation to keep abundant information about small objects. In addition,
an efficient neck of the BiFPN network was introduced to balance the detection accuracy
and efficiency by removing a redundant network layer.

Experiments show that the proposed object detection method can significantly improve
the accuracy compared with state-of-the-art methods. Extensive ablation studies were
conducted to further demonstrate the performance of the proposed method. In the future,
we will explore both accurate and lightweight FEA-Swin in UAV object detection tasks.
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