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Abstract: Non-orthogonal multiple access (NOMA) has great potential to implement the fifth-
generation (5G) requirements of wireless communication. For a NOMA traditional detection method,
successive interference cancellation (SIC) plays a vital role at the receiver side for both uplink and
downlink transmission. Due to the complex multipath channel environment and prorogation of
error problems, the traditional SIC method has a limited performance. To overcome the limitation of
traditional detection methods, the deep-learning method has an advantage for the highly efficient
tool. In this paper, a deep neural network which has bi-directional long short-term memory (Bi-LSTM)
for multiuser uplink channel estimation (CE) and signal detection of the originally transmitted signal
is proposed. Unlike the traditional CE schemes, the proposed Bi-LSTM model can directly recover
multiuser transmission signals suffering from channel distortion. In the offline training stage, the
Bi-LTSM model is trained using simulation data based on channel statistics. Then, the trained model
is used to recover the transmitted symbols in the online deployment stage. In the simulation results,
the performance of the proposed model is compared with the convolutional neural network model
and traditional CE schemes such as MMSE and LS. It is shown that the proposed method provides
feasible improvements in performance in terms of symbol-error rate and signal-to-noise ratio, making
it suitable for 5G wireless communication and beyond.

Keywords: 5G; machine learning; Bi-LSTM; wireless communication; NOMA; CNN

1. Introduction

In the last decade, wireless communication has been revolutionized by the unprece-
dented growth of consumer demand. First-generation (1G) wireless communication was
implemented for frequency-division multiple access (FDMA), and second-generation (2G)
wireless communication was developed for time division multiple access (TDMA) or
code division multiple access (CDMA) [1]. In addition, third-generation (3G) wireless
communication is used for wideband code division multiple access (WCDMA), and or-
thogonal frequency division multiple access (OFDMA) is used for fourth-generation (4G)
and fifth-generation (5G) communication [1]. The reduction in symbol-error rate (SER) and
signal-to-noise ratio (SNR) in the wireless communication system is important in order
to improve the system performance. 5G mobile communication has implementation con-
straints such as high data rates, ultra-low latency, and high reliability [2]. 5G connectivity
has a vital role in implementing quality service, big data processing chain, and ubiquitous
connectivity for Internet of Things (IoT) devices. Non-orthogonal multiple access (NOMA)
is considered a spectral efficient multiple access technique used to enable 5G technology [3].
NOMA has the following capabilities: high spectrum efficiency, low latency, and high con-
nection density for transmitting signals to different users (UEs) on the same frequency and
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time slot. NOMA-based communication can be broadly classified as power domain NOMA
and code domain NOMA [4]. Power domain NOMA achieves multiplexing by allocating
different power to the UEs that are in the coverage area. In the case of code domain NOMA,
multiplexing occurs in the UEs by employing specific spreading sequences for each user
(UE) which has sparse, low-density, and low inter-correlation properties [5]. NOMA-based
communication supports multiuser communication in the power domain. By applying
superposition coding at the transmitter and successive interference cancelation (SIC) at the
receiver, multiple UE data can be extracted on the same communication channel [6–8].

Machine learning (ML) techniques can provide significant advantages in performance
enhancement in wireless communication [9]. ML can provide solutions to complex prob-
lems without explicit programming and the obtained results can be implemented with
high accuracy [10]. ML algorithms are provided with example data, and the model can
give a prediction after analyzing the data [11]. To take advantage of the ML method, many
works have been conducted to solve the issues connected with channel state information
(CSI), channel estimation (CE), and signal detection. In this paper, a deep neural network
(DNN) which has a bi-directional long short-term memory (Bi-LSTM) based multiuser joint
CE and signal detection for NOMA-orthogonal frequency division multiplexing (OFDM)
system is proposed.

The contributions of the proposed study can be summarized as follows:

• Multiuser uplink CE and signal detection for NOMA-OFDM wireless communication
is considered. The CE and signal detection is performed by the proposed Bi-LSTM
model over the Rayleigh fading channel.

• The proposed Bi-LSTM model can jointly estimate and detect the transmission data
from multiple UE signals directly instead of the traditional SIC method.

• To observe the effectiveness of the proposed model, a comparative analysis of convo-
lutional neural network (CNN) and the proposed model in terms of SER is performed.

• Using the Monte Carlo simulation, the SER performance of Bi-LSTM is evaluated in
terms of different SNR. It is observed that the performance of the proposed model
is comparable to the outage performance of the conventional NOMA-SIC methods,
including least square (LS) and minimum mean square error (MMSE) and CNN model.

The rest of the paper is organized as follows. Section 3 describes the system model,
including the channel model and problem statement. In Section 4, the proposed deep-
learning model is described. The results and discussion are presented in Section 5, and the
conclusions are drawn in Section 6.

2. Related Works

ML has also been used in NOMA communication in the existing literature. The
authors of [12] proposed a pilot-assisted learnable SIC model for enhancing bit-error rate
performance. Single-input multiple outputs are considered to train the deep-learning
network to learn SIC detection parameters. In [13], the authors proposed a DNN based
receiver which solves CE error, time delay, and flexible detection of different UE data. The
proposed DNN network consists of fully connected layers, a sigmoid function, and a Relu
activation function. A CNN-based SIC scheme was proposed in [14]. The results showed
that sum rate loss caused by imperfect SIC can be mitigated by the proposed CNN model.
The authors of [15] proposed a deep-learning approach for analyzing CSI and detecting
the original transmit sequence. The proposed model was built using seven layers of one
input layer, one output layer, and five hidden layers. The complex received signal is used
as input data and it is mapped to an output group of four alternatives. The study [16]
proposed a deep-learning-based receiver for uplink multiple input single output using
NOMA. In [17], the authors proposed deep-learning-based method for signal detection
and power allocation in NOMA-based futuristic cognitive radio networks. The proposed
system was optimized and determined the desired solution in one step without CE via the
DNN model. For detection of the modulation order of interference signal in the NOMA
system, a ML-based blind detection method was proposed in [18]. In [19], the authors
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proposed a deep-learning-based UE selection method for a cooperative NOMA system
with imperfect CSI. To maximize the sum rate and efficiency of energy, a deep-learning-
based multiple input multiple output (MIMO)-NOMA system was proposed in [20]. The
proposed model was built with effective communication DNN, which consisted of several
convolutional layers and multiple hidden layers. In [21], the authors proposed a DNN
based MIMO-NOMA which optimized both precoding and SIC decoding in the sense of
minimizing the entire mean square loss of the UEs signal. The SIC method has limitations in
the complex multipath channel environment, as well as imperfect interference cancelation
and propagation errors. To overcome these problems, a DNN which has a Bi-LSTM for
joint CE and signal detection of multiuser NOMA-OFDM is proposed.

3. System Model

Figure 1 shows the multiuser uplink communication system with a base station (BS).
In this section, first, the channel model and problem illustration are presented. Then, the
proposed DNN is described.

Figure 1. Uplink multiuser communication system with BS.

3.1. Signal and Channel Model

An uplink multiuser NOMA-OFDM system is considered, where the system consists
of a BS and UEi where i = 1, 2, . . . , N . At the transmitter, a conventional OFDM-NOMA is
used. The BS receives a superposition of symbols from multiple UE with additional channel
noise. In the OFDM-NOMA system, a pilot signal is inserted to use CE and signal detection
in favor of OFDM. After transmission and reception of data, a DNN model is trained and
tested for channel estimation and signal detection. The overview of the proposed system
is shown in Figure 2. The superposition coding symbol Yr for N UE can be written as
follows [15]:

Yr =
N

∑
i=1

√
ωisi, (1)

where ωi is the power allocation coefficient of UEi and si is the baseband modulated
symbols for UEi.
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Figure 2. The overview of the proposed DNN-based NOMA-OFDM estimation system.

In the general OFDM system, before pilot signal insertion, at the beginning, super-
position coding is converted into serial to parallel, and after that, it transformed through
inverse discrete Fourier transform (IDFT) [22]. Therefore, the symbol of OFDM-NOMA can
be expressed as follows:

si(n) = IDFT{Yr( f )} =
Ng

∑
f=1

Yr( f )ej(2π f n/Ng), n = 1, 2, . . . , Ng, (2)

where Ng is the number of subcarriers in the frequency domain. In addition, the symbol in
the f th subcarrier of OFDM is Yr( f ). To cancel the inter-carrier interference (ICI) among
OFDM subcarriers, a cyclic prefix (CP) or guard interval is added to this signal. After
adding CP, the OFDM symbol can be expressed as follows:{

scp(n) = si(Ng + n), n = −Ncp,−Ncp + 1, . . . ,−1

si(n), n = 1, 2, . . . , Ng,
(3)

where CP data length is Ncp. After adding CP to OFDM, it is converted into serial form
and is transmitted over the Rayleigh fading channel. However, the received signal at the
terminal side is expressed as follows:

ycpi(n) =
√

Pωi ∗ hi(n)scpi(n) + G(n), i = 1, 2, . . . , N, (4)

where the transmitted power of UEi is P, hi(n) is the discrete Fourier transform of the
impulse response of a multipath channel, and ∗ denotes the convolution operation. The
transmitted symbol with CP data for UEi is represented by scpi(n). The additive white
Gaussian noise (AWGN) G(n) at the receiver is represented as CN (0, σ2). The G(n) can be
expressed as follows [23]:

G(n) =
1

σ
√

2π
e−

(n−µ)2

2σ2 , (5)

where σ is the noise standard deviation and µ is the mean value of the distribution.
After the CP data is removed, the received signal can be written as follows:

yi(n) = ycpi(n + Ncp), n = 1, 2, . . . , Ng. (6)
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The received signal is transformed by discrete Fourier transform (DFT), and it can be
expressed as follows:

Yi( f ) = DFT{yi(n)} = 1/Ng

Ng

∑
n=1

y(n)ej(2π f n/Ng), f = 1, 2, . . . , Ng. (7)

Therefore, in the OFDM system with N UEs per subcarrier, the received signal on
subcarrier f can be written as follows:

Yi( f ) =
N

∑
f=1

√
Pωi( f ) ∗ hi( f )si( f ) + G( f ). (8)

The total power allocation coefficient is summed up to one and can be formulated
as follows [24]:

N

∑
i=1

ωi( f ) = 1. (9)

The scalar hi( f ) DFT of the impulse response of multipath channel Hi(t) for the UEi
can be expressed as follows [25]:

Hi(t) =
R

∑
r=1

υi,rη(t− τi,r), (10)

where the complex channel gain and corresponding time delay for the rth multipath
parameters of the UEi are represented by υi,r and τi,r, respectively. In this proposed paper,
the total number of resolved paths R is considered to be 20, and the channel is modeled by
the Rayleigh fading.

The traditional SIC methods such as LS and MMSE are used, and are also applied for CSI
estimation and detection of the signal [26]. In advance, the correction coefficient Rhh for MMSE
estimation is calculated. The traditional MMSE estimator can be expressed as follows:

ĥMMSEi = RhYR−1
YYY = RhĥLSi

(
Rhh +

σ2
w

σ2
x

I
)−1

ĥLSi, i = 1, 2, (11)

where the MMSE estimated channel from the ith transmit antenna is ĥMMSEi, Rhh = E{hhH}
is the autocorrelation matrix, the cross correlation between the true channel and estimated
channel by LS estimation is represented RhĥLSi

= E{hĥH
LSi}, the transmitted signal variance

is σ2, and the identity matrix is I. In addition, since more power is allocated to the UEi
signal, a ML detector is used to predict signals [27]. In addition, based on the UE CSI, SIC
is implemented. Every UE sends pilots symbol to the BS, and these pilots are utilized for
the CE and SNR inference [6,28]. After estimation of the first UE signal, the second UE
signal Y′2( f ) can be estimated as follows:

Y′2( f ) = Y( f )−
√

Pω1( f )ĥ1( f )ŝ1( f ). (12)

3.2. Problem Illustration

To estimate and detect the multiuser NOMA signal, a Bi-LSTM model is proposed.
The different UEs signals interfere with each other conventionally. Using the SIC technique,
the cancelation of the stronger signal is imperfect. To address this limitation, joint detection
is proposed in order to learn the Rayleigh channel and multiuser signal detection. The
Rayleigh fading channel Hi(t) for the multipath environment can be expressed as follows:

Hi(t) =
R

∑
r=1

ej(2π fat+φa)υi,rη(t− τi,r), (13)
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where fa is the Doppler frequency (DF) shift and φa is the DF phase of the rth path, respec-
tively. The mathematical expression of DF shift can be written as fa = (v/c) fcsinθa, where
v is the speed of UE, c is the light speed, fc is the carrier frequency, and the angle between
UE and incident signal is represented by θa. The transmitted symbols are considered the
true values, and the received signals are treated as the input to the training model.

4. Proposed Deep-Learning Model

In this section, the proposed Bi-LSTM model input data preparation and model
structure with its operation in the NOMA OFDM framework are discussed. Then, the
offline training and online testing mechanism of the trained model are presented.

4.1. Data Generation

In this paper, the OFDM with 64 subcarriers is considered. Each OFDM packet consists
of two pilots and one data symbol. The quadrature phase shift-keying (QPSK) modulation
is considered, and each symbol consists of 2 bits per subcarrier. After the IDFT is performed
and CP data is added as a guard interval to avoid inter-symbol interference, the OFDM
packet is transmitted through the Rayleigh channel. The BS receives the sum of the OFDM
packet from the multiuser with noise.

The received OFDM packet is stored as the training data sample by creating a feature
vector yu. The feature vector yu is constructed with the real and imaginary values of all the
symbols in the OFDM packet. The total training sample is comprised of the multiplication
of the number of total data packets and the number of labels. The model can be trained to
restore data on an arbitrary subcarrier f by using the corresponding B( f ) in the training.
The system has a total number of 24 combinations or labels for UEs transmitting QPSK
symbols. The total label can be expressed as B( f ) = 1, 2, 3, 4,. . . , Nl for Nl = 16. As the
64 subcarriers are considered, one OFDM packet contains 3 OFDM symbols and two active
UEs. The input size of the training model is 64× 3× 2 = 384. In total, 50,000 data packets
are used and the total data samples are comprised of 50,000 × 16 = 800,000 which are gen-
erated to train the model. The total generated data sample is split into 2 sizes, such as train
data size and validation data size, to justify the efficiency of the model. The sizes of training
and validation data samples are (4/5), i.e, 640,000 and (1/5), i.e, 160,000, respectively.

4.2. Model Architecture
4.2.1. Network Description

The Bi-LSTM is comprised of the forward and backward directions of the LSTM
network [29,30]. It can use information from both sides because the input flows in both
directions, as shown in Figure 3a. The forward and backward layers are comprised of
two cyclic neural networks which can connect the output layers simultaneously. The
output is able to acquire the before and after sequence information of every point. In
addition, it explores the relationship between them through training. The accuracy of CE
can be improved by this operation. To achieve the CE and signal detection, directional
LSTM, which is a special kind of recurrent neural network that consists of the cascade
of LSTM cells, is exploited [31]. The LSTM network comprises 4 layers, including LSTM
hidden layers, fully connected layers, softmax function layers, and classification layers.
The LSTM hidden layer is implemented with 100 hidden units. In the LSTM hidden layers,
the learnable weights includes input weights w. The recurrent weights are T, and b is the
bias. The second layer is a fully connected layer that contains a 16 number of classes. The
fully connected layer is implemented to sequence and time-series data for classification.
The output of the LSTM layers is processed by the fully connected layer. A fully connected
layer adds a bias vector b to the input after multiplying it by a weight matrix w. Thus,
it estimates all components of the complex modulated signal of each UE. All neurons in
the fully connected layer are connected to all neurons in the previous layer. This brings
together all the properties and information collected from the previous layer. The fully
connected layer works individually on every time step in the LSTM network. To derive
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the outputs for the terminal layer, the softmax activation function is used. In the last layer,
the classification layer is utilized to map the output to a vector probability and a fully
connected layer with an output size equal to the number of classes is specified, and then
the error between them is passed as feedback for the training. Finally, the mean-squared
error (MSE) for the overall network to detect at UEi is expressed as follows [32]:

MSE =
1
Q

Q

∑
q=1

(Si(q)− Ŝi(q))2, (14)

where the number of training OFDM samples is represented by Q, Si(q) is the target output,
and Ŝi(q) is the predicted output at the response q. As a means of minimizing the loss, the
well-known Adam optimization algorithm is utilized [33].

Figure 3. (a) The architecture of the Bi-LSTM model system with its different layers. (b) The internal
cell structure of the LSTM model.

4.2.2. Internal Structure of LSTM

The LSTM network can learn information between time steps of sequence data and
preserve relevant information. The time steps are treated equivalently as subcarriers in
the OFDM system. By focusing on one time-step module in the LSTM layer, the DNN
can be trained to realize multiuser detection for an arbitrary subcarrier. The internal cell
structure and operation of LSTM network are shown in Figure 3b [34]. The output of the
LSTM cell is generated according to the current input and the preceding cell state. The
LSTM cell consists of three gates, such as the forget gate, the input gate, and the output
gate. In addition, the LSTM is comprised of two states, namely cell state Ct−1 and hidden
state mt−1. The cell state works as a memory to cumulate information that is extracted
from past inputs. On the other hand, to compute the output, the hidden state is utilized.
From the Figure 3b, t is the time instant, the current input is xt, and finally, the current
output channel coefficient of multiuser at time t is denoted by mt. The LSTM cell can add
and remove information from the cell state at each time step, which is updated through
operation of the gates. The operations of each gate can be summarized as follows:

The control for the level of cell state that needs to be reset is performed by the forget
gate. The forget gate f rt can be expressed as follows [35]:

f rt = fσc(w f rxt + Tf rmt−1 + b f r), (15)
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where w f r is the weight related to xt and Tf r is the weight related to mt−1. The bias of the
forget gate is b f r. The control for the level of cell state that needs to be updated is performed
by the input gate. The input gate int can be expressed as follows [35]:

int = fσc(winxt + Tinmt−1 + bin), (16)

where win is the weight related to xt and Tin is the weight related to mt−1. The bias of the
input gate is bin. The addition of information to the cell state is managed by the candidate
gate. The candidate gate cat can be expressed as follows [35]:

cat = ftanh(wcaxt + Tcamt−1 + bca), (17)

where wca is the weight associated with xt and Tca is the weight related to mt−1. The bias of
the candidate gate is bca. The updated cell state can be expressed as follows:

upt = (Ct−1 � f rt) + (int � cat), (18)

where the element-wise multiplication is represented by �. The control for the level of cell state
to be updated is performed by the output gate. The output gate out can be expressed as follows:

out = fσc(wouxt + Toumt−1 + bou), (19)

where wou is the weight related to xt and Tou is the weight associated with mt−1. The bias
of the output gate is bou. fσc(z) = [1/(1 + ez)] is the sigmoid function, which is responsible
for computing the gate activation function. The estimated output coefficient of the hidden
state at time step t can be expressed as follows:

mt = out � ftanh(upt), (20)

where ftanh(z) = [(e2z − 1)/e2z + 1)] is the hyperbolic tangent function, which is responsi-
ble for computing the state activation function.

Figure 3a shows the Bi-LSTM model, which is constructed with two LSTM layers in
opposite directions. The output Vt of the two hidden Bi-LSTM state layers can be calculated
as follows [36]:

Vt = f (wV
−→
T
−→
T t + wV

←−
T
←−
T t + bZ), (21)

where
−→
T and

←−
T are the forward and backward sequences.

4.2.3. Offline Training and Online Testing Operation of the Model

Based on the generated data and the proposed model, the training process is carried
out in the offline stage, as shown in Figure 4. The input of the model training system is
combined with the received NOMA-OFDM signal as an input layer, and corresponding
labels are used as supervised data to assist the DNN in optimizing the settings. The training
process of the proposed model is summarized in Algorithm 1. Table 1 shows the training
and optimized parameters. Results for training and validation accuracy versus its loss
progress during learning of the model are illustrated in Figure 5, where the validation
accuracy is 99.90% with the setting of training parameters of minibatch size 2000, epoch
100, and learning rate 0.01.
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Algorithm 1 BiLTSM Training Process

1: Load the training and validation data samples.
2: Initialize model parameters such as minibatch size, maximum epochs, learning rate.
3: Train the model network accordingly and calculate the accuracy error by (14).
4: Adam optimization algorithm is used to compute the corrective parameter and to
search for the optimal solution with update of the parameters.
5: Result: Trained model.
6: Save the model.

Figure 4. Training and testing process of the proposed model.

Figure 5. Training and validation progress of the proposed model.
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Table 1. The simulation parameters.

Parameter Value

Simulation tool MATLAB Deep-learning toolboxTM

Operating system Windows 10 Pro

OFDM subcarriers 64

Pilot symbols 64

Channel path 20

Noise AWGN

Length of CP 20

Channel fading Rayleigh channel

NOMA UEs 2

Modulation type QPSK

Total number of packets 50,000

Total model layers 5

Epochs number 100

Learning rate 0.01

Minibatch size 2000

Optimizer ADAM

4.2.4. Testing Process

The online testing process is performed after successive training of the proposed
model. The testing process of the proposed model using test datasets is shown in Figure 4.
The outage performance and simulation results of the proposed model are evaluated and
described in the Section 5.1.

5. Simulation Results and Discussion

In this section, the simulation results for the proposed Bi-LSTM model of multiuser
CE and signal detection in the NOMA-OFDM system are discussed.

5.1. Performance Evaluation

In this section, the performance of the proposed model in the NOMA-OFDM is
presented. The simulation work of the proposed Bi-LSTM model based multiuser CE and
signal detection is performed using the simulation parameters, as shown in Table 1. The
data generation for training the model is discussed in the previous Section 4.1. The SNR
value of 30 dB is set up during the generation of training datasets. To generate the datasets
and test, the learned model, the CP size 20, and the pilot symbols 64 in each transmitted
package are considered. The comparison of CNN, ML, traditional MMSE, and LS methods
with the proposed model are performed according to SER versus SNR. In the online testing
stage, the [0: 2: 30] dB SNR range is considered for the simulation performance evaluation.
Monte Carlo simulation is performed for the evaluation of the SER performance of the
proposed Bi-LSTM model.

5.2. Simulations Results

To conduct the simulation performance, the proposed model is compared with dif-
ferent traditional CE and signal detection models and a one-dimensional CNN model. A
confusion matrix simulation result is performed to observe the symbol classification robust-
ness of the proposed model. Figure 6 shows the confusion matrix for symbol classification
according to the number of labels during the testing process of the trained model. The
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symbol decoding and classification rate of the proposed model are very high in order of
true class and predicted class, except for some minor missing classes.

Figure 6. The confusion matrix of the true and predicated class of the model.

Figure 7 shows the simulation results of SER performances for UE1 and UE2. The
output is taken by comparing the proposed network and the CNN model. The comparison
of the proposed model and CNN is performed with the same simulation parameters. It can
be seen that the SER performance of the CNN model is lower than the proposed Bi-LSTM
model. The proposed detection network outperforms the CNN for both UE cases. In
addition, with an increase in the SNR values, it can be seen that the SER performance
is improved.

Figure 7. SER versus SNR performance of proposed Bi-LSTM model and CNN model.
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In Figure 8, the SER performances of the proposed network with the traditional LS
method for UE1 and UE2 are well investigated. The comparison of the proposed model
and conventional LS is performed using the SER and SNR curve. It is evident that the SER
performance of the traditional methods is lower than the proposed BiLTSM model for both
UEs with respect to the SNR values. The SER performance of the proposed Bi-LSTM model
with traditional MMSE is shown in Figure 9. It is also shown that the SER performance of
the proposed Bi-LSTM model is always higher than the MMSE method for both UEs.

Figure 8. SER versus SNR performance of proposed Bi-LSTM model and LS method.

Figure 9. SER versus SNR performance of proposed Bi-LSTM model and MMSE method.

To investigate SER performance, the proposed model is compared with the ML method.
Figure 10 shows the SER performance of the proposed model with the ML method. It is
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seen that the SER performance of the proposed Bi-LSTM model is improved compared to
the ML method for both UEs. For UE1, at the beginning of the curve with low SNR values,
the performance of the proposed model is slightly degraded. In the overall scenarios,
the performance of the ML method is lower than the proposed detection network, except
for small degradation, but higher than other MMSE and LS methods. In addition, the
performance comparison of the proposed model against CNN, LS, MMSE and ML for UE1
and UE2 shown in Figures 11 and 12, respectively.

Figure 10. SER versus SNR performance of proposed Bi-LSTM model and ML method.

Figure 11. SER versus SNR performance comparison for UE 1 of the proposed method against CNN,
LS, MMSE, and ML.
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Figure 12. SER versus SNR performance comparison for UE 2 of the proposed method against CNN,
LS, MMSE, and ML.

To observe the learning capability of the proposed model, the simulation results are
performed in terms of testing accuracy and SNR (0–20) dB ranges of the last iteration of
Monte Carlo simulations. The testing accuracy of the proposed Bi-LSTM and CNN model
with different SNR values are shown in Figure 13. It is seen that the testing accuracy has
a small amount of variation at the beginning of SNR. After that, the proposed Bi-LSTM
model testing accuracy outperforms the CNN model during the measurement of the SER
performance with SNR values. It is shown that the proposed model has the robustness of
inference capability.

Figure 13. Testing accuracy performance of Bi-LSTM and CNN model.
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5.3. Complexity Analysis

In this section, the computational complexity of the proposed model is described. The
computational complexity time is measured by considering the number of floating-point
operations (FLOPS). In the proposed model, the Bi-LSTM network has four gates that
need to be processed at the same time. The complexity of the detection network is the
sum of the four gate parameters and considers the forward and backward transfer process.
Accordingly, the computational complexity of the proposed network can be expressed as
O(4× Ls ×Os × 2(hl × hd × nl)). Here, Ls is the number of received input packets, Os is
the OFDM block size, hl is the input size of LSTM, hd is the number of hidden layers, and
nl is the neuron size in the LSTM layer.

6. Conclusions

In this paper, a Bi-LSTM model-based multiuser uplink CE and signal detection for
the NOMA-OFDM system are proposed. Compared with the traditional SIC schemes, the
proposed model provides better CE and signal detection performance. The conventional CE
methods such as MMSE, LS, and ML are less robust than the proposed Bi-LSTM network
in terms of signal recovery. Moreover, to observe the SER performance, the proposed
model is compared with the CNN model with different SNR values. It is seen from the
simulation results that the SER detection performance rate of the proposed system is also
extensively high compared with traditional methods and the CNN model. The proposed
model receiver is combined with CE, equalization, and demodulation in an end-to-end
model. The proposed model is a good solution for 5G wireless communication and beyond.
In the future, this system can be applied in a more complex system such as a MIMO-based
NOMA system. It can also be applied to a promising physical layer, such as reflecting
intelligent surfaces.
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