Can the Supido Radar Be Used for Measuring Ball Speed during Soccer Kicking? A Reliability and Concurrent Validity Study of a New Low-Cost Device
Abstract
:1. Introduction
2. Material and Methods
2.1. Participants
2.2. Experimental Design
2.3. Testing Procedures
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lees, A.; Nolan, L. The biomechanics of soccer: A review. J. Sports Sci. 1998, 16, 211–234. [Google Scholar] [CrossRef] [PubMed]
- Sedano Campo, S.; Vaeyens, R.; Philippaerts, R.M.; Redondo, J.C.; de Benito, A.M.; Cuadrado, G. Effects of lower-limb plyometric training on body composition, explosive strength, and kicking speed in female soccer players. J. Strength Cond. Res. 2009, 23, 1714–1722. [Google Scholar] [CrossRef] [PubMed]
- Wong, P.L.; Chamari, K.; Wisloff, U. Effects of 12-week on-field combined strength and power training on physical performance among U-14 young soccer players. J. Strength Cond. Res. 2010, 24, 644–652. [Google Scholar] [CrossRef]
- Sinclair, J.; Fewtrell, D.; Taylor, P.J.; Bottoms, L.; Atkins, S.; Hobbs, S.J. Three-dimensional kinematic correlates of ball velocity during maximal instep soccer kicking in males. Eur. J. Sport Sci. 2014, 14, 799–805. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Lorenzo, L.; Fernandez-Del-Olmo, M.; Sanchez-Molina, J.A.; Martin-Acero, R. Role of Vertical Jumps and Anthropometric Variables in Maximal Kicking Ball Velocities in Elite Soccer Players. J. Hum. Kinet. 2016, 53, 143–154. [Google Scholar] [CrossRef] [PubMed]
- Yiannakos, A.; Armatas, V. Evaluation of the goal scoring patterns in European Championship in Portugal 2004. Int. J. Perform. Anal. Sport 2006, 6, 178–188. [Google Scholar] [CrossRef]
- Jinshan, X.; Xiaoke, C.; Yamanaka, K.; Matsumoto, M. Analysis of the goals in the 14th World Cup. In Science and Football LL. London: E & FN Spon; Reilly, J., Clarys, Y., Stibbe, A., Eds.; Routledge: London, UK, 1993; pp. 203–205. [Google Scholar]
- Kellis, E.; Katis, A. Biomechanical characteristics and determinants of instep soccer kick. J. Sports Sci. Med. 2007, 6, 154–165. [Google Scholar]
- Rada, A.; Kuvacic, G.; De Giorgio, A.; Sellami, M.M.; Ardigo, L.P.; Bragazzi, N.L.; Padulo, J. The ball kicking speed: A new, efficient performance indicator in youth soccer. PLoS ONE 2019, 14, e0217101. [Google Scholar] [CrossRef]
- Naser, N.; Ali, A. A descriptive-comparative study of performance characteristics in futsal players of different levels. J. Sports Sci. 2016, 34, 1707–1715. [Google Scholar] [CrossRef]
- Grgantov, Z.; Milic, M.; Katic, R. Identification af explosive power factors as predictors of player quality in young female volleyball players. Coll. Antropol. 2013, 37 (Suppl. 2), 61–68. [Google Scholar]
- Markovic, G.; Dizdar, D.; Jaric, S. Evaluation of tests of maximum kicking performance. J. Sports Med. Phys. Fit. 2006, 46, 215–220. [Google Scholar]
- Andersen, T.B.; Dorge, H.C. The influence of speed of approach and accuracy constraint on the maximal speed of the ball in soccer kicking. Scand. J. Med. Sci. Sports 2011, 21, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Muller, C.; Brandes, M. Effect of Kinesiotape Applications on Ball Velocity and Accuracy in Amateur Soccer and Handball. J. Hum. Kinet. 2015, 49, 119–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asami, T.; Nolte, V. Analysis of powerful ball kicking. In Biomechanics VIII-B Champaign, IL: Human Kinetics; Matsui, H., Kobayashi, K., Eds.; Elsevier: Amsterdam, The Netherlands, 1983; pp. 695–700. [Google Scholar]
- Andersen, T.B.; Bendiksen, M.; Pedersen, J.M.; Orntoft, C.; Brito, J.; Jackman, S.R.; Williams, C.A.; Krustrup, P. Kicking velocity and physical, technical, tactical match performance for U18 female football players—Effect of a new ball. Hum. Mov. Sci. 2012, 31, 1624–1638. [Google Scholar] [CrossRef]
- Billot, M.; Martin, A.; Paizis, C.; Cometti, C.; Babault, N. Effects of an electrostimulation training program on strength, jumping, and kicking capacities in soccer players. J. Strength Cond. Res. 2010, 24, 1407–1413. [Google Scholar] [CrossRef] [PubMed]
- Torres-Torrelo, J.; Rodriguez-Rosell, D.; Gonzalez-Badillo, J.J. Light-load maximal lifting velocity full squat training program improves important physical and skill characteristics in futsal players. J. Sports Sci. 2017, 35, 967–975. [Google Scholar] [CrossRef]
- Sasadai, J.; Urabe, Y.; Maeda, N.; Shinohara, H.; Fujii, E. The Effect of Ankle Taping to Restrict Plantar Flexion on Ball and Foot Velocity During an Instep Kick in Soccer. J. Sport Rehabil. 2015, 24, 261–267. [Google Scholar] [CrossRef]
- Andersen, T.B.; Krustrup, P.; Bendiksen, M.; Orntoft, C.O.; Randers, M.B.; Pettersen, S.A. Kicking Velocity and Effect on Match Performance When using a Smaller, Lighter Ball in Women’s Football. Int. J. Sports Med. 2016, 37, 966–972. [Google Scholar] [CrossRef]
- Okholm Kryger, K.; Mitchell, S.; Forrester, S. Assessment of the accuracy of different systems for measuring football velocity and spin rate in the field. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2019, 233, 324–330. [Google Scholar] [CrossRef]
- Marques, M.C.; Pereira, A.; Reis, I.G.; van den Tillaar, R. Does an in-Season 6-Week Combined Sprint and Jump Training Program Improve Strength-Speed Abilities and Kicking Performance in Young Soccer Players? J. Hum. Kinet. 2013, 39, 157–166. [Google Scholar] [CrossRef]
- van den Tillaar, R.; Ulvik, A. Influence of instruction on velocity and accuracy in soccer kicking of experienced soccer players. J. Mot. Behav. 2014, 46, 287–291. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Gonzalez, I.; Rodriguez-Rosell, D.; Clavero-Martin, D.; Mora-Custodio, R.; Pareja-Blanco, F.; Garcia, J.M.Y.; Gonzalez-Badillo, J.J. Reliability and Accuracy of Ball Speed During Different Strokes in Young Tennis Players. Sports Med. Int. Open 2018, 2, E133–E141. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Garcia, G.; Vanrenterghem, J.; Munoz-Garcia, A.; Molina-Molina, A.; Soto-Hermoso, V.M. Does stroke performance in amateur tennis players depend on functional power generating capacity? J. Sports Med. Phys. Fitness 2019, 59, 760–766. [Google Scholar] [CrossRef] [PubMed]
- Boddy, K.J.; Marsh, J.A.; Caravan, A.; Lindley, K.E.; Scheffey, J.O.; O’Connell, M.E. Exploring wearable sensors as an alternative to marker-based motion capture in the pitching delivery. PeerJ 2019, 7, e6365. [Google Scholar] [CrossRef]
- Chelly, M.S.; Hermassi, S.; Shephard, R.J. Relationships between power and strength of the upper and lower limb muscles and throwing velocity in male handball players. J. Strength Cond. Res. 2010, 24, 1480–1487. [Google Scholar] [CrossRef]
- Hernandez-Belmonte, A.; Sanchez-Pay, A. Concurrent validity, inter-unit reliability and biological variability of a low-cost pocket radar for ball velocity measurement in soccer and tennis. J. Sports Sci. 2020, 39, 1312–1319. [Google Scholar] [CrossRef]
- McNamara, D.J.; Gabbett, T.J.; Blanch, P.; Kelly, L. The Relationship Between Variables in Wearable Microtechnology Devices and Cricket Fast-Bowling Intensity. Int. J. Sports Phys. Perform. 2018, 13, 135–139. [Google Scholar] [CrossRef]
- Nagahara, R.; Botter, A.; Rejc, E.; Koido, M.; Shimizu, T.; Samozino, P.; Morin, J.B. Concurrent Validity of GPS for Deriving Mechanical Properties of Sprint Acceleration. Int. J. Sports Phys. Perform. 2017, 12, 129–132. [Google Scholar] [CrossRef]
- Atkinson, G.; Nevill, A.M. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med. 1998, 26, 217–238. [Google Scholar] [CrossRef]
- Vincent, J.W.; Weir, J.P. Statistics in Kinesiology; Human Kinetics: Champaign, IL, USA, 2012. [Google Scholar]
- Hopkins, W.G. Measures of reliability in sports medicine and science. Sports Med. 2000, 30, 1–15. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Measuring agreement in method comparison studies. Stat. Methods Med. Res. 1999, 8, 135–160. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.I. A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989, 45, 255–268. [Google Scholar] [CrossRef] [PubMed]
- Markovic, G.; Dizdar, D.; Jukic, I.; Cardinale, M. Reliability and factorial validity of squat and countermovement jump tests. J. Strength Cond. Res. 2004, 18, 551–555. [Google Scholar] [CrossRef] [PubMed]
- Sporis, G.; Jukic, I.; Milanovic, L.; Vucetic, V. Reliability and factorial validity of agility tests for soccer players. J. Strength Cond. Res. 2010, 24, 679–686. [Google Scholar] [CrossRef] [PubMed]
- Stewart, P.F.; Turner, A.N.; Miller, S.C. Reliability, factorial validity, and interrelationships of five commonly used change of direction speed tests. Scand. J. Med. Sci. Sports 2014, 24, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Hamada, T.; Sale, D.G.; Macdougall, J.D. Postactivation potentiation in endurance-trained male athletes. Med. Sci. Sports Exerc. 2000, 32, 403–411. [Google Scholar] [CrossRef]
Technology | Cameras | Ultra-High-Speed Camera | Photocells | Radar Gun | Radar Low Cost |
---|---|---|---|---|---|
Device brand | Casio Ex-F1, ProReflex MCU1000, Casio EXZR-10, ViconMX, FKN-HC200C | MEMRECAM fx-6000 | ALGE-TIMING | Doppler (Stalker Sport—Stalker ATS Pro IIs) | Supido Multi Sport Radar |
Sampling frequency | 200–500 Hz | 5000 Hz | 100–1000 Hz | 24.125–34.7 GHz | 2.4 GHz |
Real time data | No | No | Yes | Yes | Yes |
Autonomy (hands free) | Yes | Yes | No | No | Yes |
Use during a match | Yes | Yes | No | Yes | Yes |
Lightweight and durable | No | No | No | Yes | Yes |
External power supply required | No | No | No | No | No |
Price | ~1000 €/1085 USD | ~17000 €/18500 USD | ~3600 €/4010 USD | ~1500–3000 €/1600–3300 USD | ~50 €/55 USD |
U13 (n = 53) | U15 (n = 54) | U18 (n = 46) | |
---|---|---|---|
Age (years) | 12.6 ± 0.3 | 14.4 ± 0.6 | 16.5 ± 0.1 |
Height (m) | 1.67 ± 0.1 | 1.70 ± 0.1 | 1.73 ± 0.1 |
Mass (kg) | 56.3 ± 6.5 | 59.2 ± 7.7 | 65.1 ± 6.4 |
Attempt One | Attempt Two | Attempt Three | Average Velocity | Maximal Velocity | |
---|---|---|---|---|---|
Pooled (n = 153) | |||||
Stalker | 91.7 ± 10.5 †† | 91.1 ± 11.1 †† | 92.3 ± 11.2 | 92.0 ± 10.5 †† | 94.9 ± 10.5 |
Supido-back | 91.0 ± 10.8 †† | 91.0 ± 11.3 | 91.7 ± 11.5 | 91.2 ± 10.6 | 94.5 ± 10.6 |
Supido-front | 87.0 ± 14.0 ** | 87.6 ± 14.4 * | 90.8 ± 12.1 | 88.5 ± 10.3 | 95.4 ± 10.3 |
<85 km·h−1 (n = 49) | |||||
Stalker | 79.9 ± 4.3 | 79.5 ± 5.8 | 79.9 ± 5.3 | 79.8 ± 4.3 | 82.7 ± 4.7 |
Supido-back | 79.5 ± 4.7 | 78.7 ± 6.4 | 79.3 ± 5.6 | 79.2 ± 4.6 | 82.5 ± 4.7 |
Supido-front | 79.7 ± 7.5 | 79.0 ± 8.6 | 80.2 ± 7.2 | 79.6 ± 6.1 | 83.6 ± 5.2 |
85–99 km·h−1 (n = 52) | |||||
Stalker | 91.5 ± 4.7 | 92.0 ± 5.3 † | 92.2 ± 5.4 | 91.9 ± 3.9 † | 95.0 ± 4.6 |
Supido-back | 90.2 ± 5.5 | 90.9 ± 5.8 | 90.9 ± 6.2 | 90.7 ± 4.3 | 94.3 ± 5.3 |
Supido-front | 87.2 ± 13.1 * | 87.6 ± 13.3 * | 92.5 ± 7.2 | 89.1 ± 8.2 | 96.2 ± 5.6 |
>99 km·h−1 (n = 52) | |||||
Stalker | 103.1 ± 4.7 ††† | 103.5 ± 4.7 ††† | 104.2 ± 4.8 †† | 103.6 ± 3.7 ††† | 106.3 ± 3.8 |
Supido-back | 102.7 ± 5.6 ††† | 102.6 ± 5.2 * ††† | 104.1 ± 4.8 †† | 103.1 ± 3.9 ††† | 105.9 ± 3.6 |
Supido-front | 93.5 ± 16.3 * | 95.9 ± 15.1 | 99.1 ± 12.4 | 96.1 ± 8.9 | 105.9 ± 3.8 |
ICC (CI: 95%) | SEM (km·h−1) | CV (%) | MD (km·h−1) | MD (%) | |
---|---|---|---|---|---|
Pooled (n = 153) | |||||
Stalker | 0.958 (0.945–0.968) | 3.7 | 4.0 | 10.3 | 11.2 |
Supido-back | 0.945 (0.928–0.958) | 4.3 | 4.7 | 12.0 | 13.2 |
Supido-front | 0.634 (0.520–0.724) | 10.8 | 12.3 | 30.1 | 34.0 |
<85 km·h−1 (n = 49) | |||||
Stalker | 0.791 (0.665–0.875) | 3.4 | 4.3 | 9.5 | 11.9 |
Supido-back | 0.743 (0.588–0.846) | 4.0 | 5.0 | 11.1 | 14.0 |
Supido-front | 0.693 (0.507–0.816) | 5.9 | 7.4 | 16.3 | 20.5 |
85–99 km·h−1 (n = 52) | |||||
Stalker | 0.636 (0.424–0.779) | 4.1 | 4.4 | 11.3 | 12.3 |
Supido-back | 0.570 (0.320–0.739) | 4.9 | 5.4 | 13.5 | 14.9 |
Supido-front | 0.481 (0.180–0.685) | 10.3 | 11.5 | 28.5 | 32.0 |
>99 km·h−1 (n = 52) | |||||
Stalker | 0.682 (0.497–0.807) | 3.6 | 3.5 | 10.0 | 9.7 |
Supido-back | 0.639 (0.430–0.781) | 4.1 | 3.9 | 11.3 | 10.9 |
Supido-front | 0.134 (−0.370–0.474) | 14.4 | 15.0 | 39.9 | 41.5 |
MAGNITUDE OF ERROR | AGREEMENT | ||||||||
---|---|---|---|---|---|---|---|---|---|
SEM (m·s−1) | SDC (m·s−1) | CV (%) | MESEE | MEBIAS | ICC (CI 95%) | CCC [DEV (%)] | MSD | VMD | |
POOLED | |||||||||
STK-SB | 1.2 | 3.3 | 1.3 | 1.5 | 5.8 | 0.994 (0.991–0.995) | 0.987 [1.3] | 2.80 | 2.19 |
STK-SF | 6.0 | 16.6 | 6.6 | 7.1 | 30.2 | 0.810 (0.738–0.862) | 0.688 [31.2] | 71.75 | 59.28 |
<85 km·h−1 | |||||||||
STK-SB | 1.0 | 2.7 | 1.2 | 1.3 | 4.9 | 0.976 (0.957–0.986) | 0.952 [4.8] | 1.90 | 1.55 |
STK-SF | 3.1 | 8.5 | 3.8 | 4.4 | 17.0 | 0.802 (0.650–0.888) | 0.665 [33.5] | 18.89 | 18.87 |
85–99 km·h−1 | |||||||||
STK-SB | 1.4 | 3.8 | 1.5 | 1.5 | 6.0 | 0.940 (0.897–0.966) | 0.890 [11.0] | 3.87 | 2.35 |
STK-SF | 4.8 | 13.4 | 5.3 | 6.1 | 24.7 | 0.630 (0.357–0.787) | 0.477 [52.3] | 47.49 | 39.77 |
>99 km·h−1 | |||||||||
STK-SB | 1.1 | 3.2 | 1.1 | 1.6 | 6.1 | 0.953 (0.918–0.973) | 0.909 [9.1] | 2.66 | 2.39 |
STK-SF | 8.5 | 23.7 | 8.5 | 9.0 | 37.5 | −0.523 (−1.644–0.124) | 0.014 [98.6] | 147.55 | 91.55 |
MAGNITUDE OF ERROR | AGREEMENT | ||||||||
---|---|---|---|---|---|---|---|---|---|
SEM (m·s−1) | SDC (m·s−1) | CV (%) | MESEE | MEBIAS | ICC (CI 95%) | CCC [DEV (%)] | MSD | VMD | |
POOLED | |||||||||
STK-SB | 1.4 | 4.0 | 1.5 | 2.0 | 7.8 | 0.991 (0.987–0.993) | 0.981 [1.9] | 4.19 | 3.97 |
STK-SF | 2.3 | 6.5 | 2.5 | 3.2 | 12.9 | 0.974 (0.964–0.981) | 0.949 [5.1] | 11.10 | 10.82 |
<85 km·h−1 | |||||||||
STK-SB | 1.2 | 3.3 | 1.4 | 1.6 | 6.5 | 0.968 (0.943–0.982) | 0.937 [3.3] | 2.81 | 2.74 |
STK-SF | 2.5 | 6.8 | 3.0 | 3.4 | 13.4 | 0.861 (0.755–0.922) | 0.754 [24.6] | 12.43 | 11.74 |
85–99 km·h−1 | |||||||||
STK-SB | 1.6 | 4.5 | 1.7 | 2.2 | 8.7 | 0.943 (0.902–0.967) | 0.891 [10.9] | 5.48 | 4.95 |
STK-SF | 2.0 | 5.5 | 2.1 | 2.6 | 10.2 | 0.920 (0.860–0.954) | 0.851 [14.9] | 8.08 | 6.74 |
>99 km·h−1 | |||||||||
STK-SB | 1.5 | 4.1 | 1.4 | 1.9 | 8.0 | 0.914 (0.851–0.951) | 0.840 [16.0] | 4.36 | 4.20 |
STK-SF | 2.6 | 7.1 | 2.4 | 3.2 | 14.2 | 0.712 (0.499–0.834) | 0.547 [45.3] | 13.27 | 13.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díez-Fernández, D.M.; Rodríguez-Rosell, D.; Gazzo, F.; Giráldez, J.; Villaseca-Vicuña, R.; Gonzalez-Jurado, J.A. Can the Supido Radar Be Used for Measuring Ball Speed during Soccer Kicking? A Reliability and Concurrent Validity Study of a New Low-Cost Device. Sensors 2022, 22, 7046. https://doi.org/10.3390/s22187046
Díez-Fernández DM, Rodríguez-Rosell D, Gazzo F, Giráldez J, Villaseca-Vicuña R, Gonzalez-Jurado JA. Can the Supido Radar Be Used for Measuring Ball Speed during Soccer Kicking? A Reliability and Concurrent Validity Study of a New Low-Cost Device. Sensors. 2022; 22(18):7046. https://doi.org/10.3390/s22187046
Chicago/Turabian StyleDíez-Fernández, David M., David Rodríguez-Rosell, Federico Gazzo, Julián Giráldez, Rodrigo Villaseca-Vicuña, and Jose A. Gonzalez-Jurado. 2022. "Can the Supido Radar Be Used for Measuring Ball Speed during Soccer Kicking? A Reliability and Concurrent Validity Study of a New Low-Cost Device" Sensors 22, no. 18: 7046. https://doi.org/10.3390/s22187046
APA StyleDíez-Fernández, D. M., Rodríguez-Rosell, D., Gazzo, F., Giráldez, J., Villaseca-Vicuña, R., & Gonzalez-Jurado, J. A. (2022). Can the Supido Radar Be Used for Measuring Ball Speed during Soccer Kicking? A Reliability and Concurrent Validity Study of a New Low-Cost Device. Sensors, 22(18), 7046. https://doi.org/10.3390/s22187046