
Citation: Jeong, J.; Yoon, J.Y.; Lee, H.;

Darweesh, H.; Sung, W. Tutorial on

High-Definition Map Generation for

Automated Driving in Urban

Environments. Sensors 2022, 22, 7056.

https://doi.org/10.3390/s22187056

Academic Editors: Laura Giarre and

Federica Pascucci

Received: 28 July 2022

Accepted: 13 September 2022

Published: 18 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Tutorial

Tutorial on High-Definition Map Generation for Automated
Driving in Urban Environments
Jinseop Jeong 1, Jun Yong Yoon 1, Hwanhong Lee 1, Hatem Darweesh 2 and Woosuk Sung 1,*

1 School of Mechanical System and Automotive Engineering, Chosun University, Gwangju 61452, Korea
2 Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
* Correspondence: wsung@chosun.ac.kr

Abstract: High-definition (HD) mapping is a promising approach to realize highly automated driving
(AD). Although HD maps can be applied to all levels of autonomy, their use is particularly beneficial
for autonomy levels 4 or higher. HD maps enable AD systems to see beyond the field of view
of conventional sensors, thereby providing accurate and detailed information regarding a driving
environment. An HD map is typically separated into a pointcloud map for localization and a vector
map for path planning. In this paper, we introduce two separate but successive HD map generation
workflows. Of the several stages involved, the registration and mapping processes are essential
for creating the pointcloud and vector maps, respectively. To facilitate the readers’ understanding,
the processes of these two stages have been recorded and uploaded online. HD maps are typically
generated using open-source software (OSS) tools. CloudCompare and ASSURE, as representative
tools, are used in this study. The generated HD maps are validated with localization and path-
planning modules in Autoware, which is also an OSS stack for AD systems. The generated HD maps
enable environmental-monitoring vehicles to successfully operate at level 4 autonomy.

Keywords: autonomous driving; high-definition map; localization; path planning

1. Introduction

A high-definition (HD) map is a geospatial map for automated navigation, which is
different from traditional maps for human drivers (see Table 1).

Table 1. Evolution of maps for navigation (adapted from [1]).

Year Type Dimension Level Accuracy

1930 Paper maps 2D Road
1990 Digital maps 2D Road 5–10 m
2000 Enhanced digital maps 2D/3D Road/Lane 50 cm
2010 High-definition maps 3D Lane 10–20 cm

Digital maps have been widely used to assist drivers in navigation. However, for
highly automated navigation, such as levels 4 or higher, digital maps are considered to be
insufficient in terms of accuracy and comprehensiveness. Therefore, accurate and detailed
HD maps have recently emerged (see Figure 1 and Table 2). In contrast to conventional
digital maps, HD maps exhibit several unique features, such as three-dimensional (3D) lane-
level representations to assist automated driving (AD) modules in localization, perception,
and path planning. In doing so, an HD map is considered as not simply a navigation map
but a sensor that can provide 360◦ non-line-of-sight awareness to support an AD system.

Sensors 2022, 22, 7056. https://doi.org/10.3390/s22187056 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22187056
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s22187056
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22187056?type=check_update&version=3

Sensors 2022, 22, 7056 2 of 25

Figure 1. Shape comparison of (a) digital and (b) HD maps. J denotes a junction.

Table 2. Comparison between digital and HD maps (adapted from [2]).

Digital Maps HD Maps Notes

Survey method Aerial imagery Mobile mapping system
Dimensions 2D 3D

Accuracy Horizontal 3.5 m (0.7 m) 0.25 m 1:5k (1:1k) scale
Vertical 1.67 m (0.33 m) 0.25 m

Entities

Lane line X O
Lane centerline X O
Lane boundary O O
Surface mark X O
Traffic sign 4 O Urban area, location only

Traffic lights X O

Multiple layers of geographical information are required for the AD system, in a form
known as the local dynamic map (LDM) [3]. Although the relevant standards have certain
differences, an LDM is generally divided into four layers according to the time intervals in
which the dynamic information changes (see Table 3). In this configuration, an HD map
corresponds to the bottommost layer.

Table 3. List of layers comprising an LDM (adapted from [4]).

Layer Time Interval Contents

Highly dynamic Less than
several seconds

Positions and states of
pedestrians, vehicles, motorbikes, etc.

Transient dynamic Less than
several minutes

Positions and states of
obstacles (illegally parked vehicles), local weather (unexpected heavy rain), etc.

Transient static Less than
several hours

Positions and states of
road works, lane closures, broken-down vehicles, accident sites, etc.

Permanent static A day or longer Positions of
lanes, traffic signs and lights, etc.

In general, an HD map can be separated into pointcloud and vector maps. A vector
map, also known as a road network map, represents the georeferenced position of the
objects of interest in a driving environment (lanes, traffic signs and lights, etc.) with points,
lines, and polygons, whereas a pointcloud map represents the 3D shape of objects with
points (see Figure 2).

Different HD map formats, particularly for the physical storage format (PSF) of a
vector map, have been developed to suit different requirements. Consider, for example,

Sensors 2022, 22, 7056 3 of 25

the Aisan vector map, which is well-known as the proprietary PSF used for Autoware.AI.
Autoware.AI is a robot operating software (ROS)-based open-source software platform that
provides a rich set of AD modules. Another variant of Autoware.AI, Autoware.Auto, has
emerged as the next-generation successor. Autoware.Auto is based on ROS 2 to exhibit
enhanced functional safety capabilities. For the sake of brevity, Autoware.AI, which was
used in this study, is referred to as Autoware in the remaining paper.

Figure 2. Shape comparison of (a) pointcloud and (b) vector data in the map. J denotes a junction.

Although the Aisan vector map was adopted successfully, the Autoware user group
was encouraged to diversify the PSF to render Autoware more expandable. Therefore,
several PSFs were comparatively evaluated (Table 4), and Lanelet2 was selected as a
short-term alternative on the condition that OpenStreetMap (OSM) XML is used as the
format for reading and writing map data. Additionally, OpenDRIVE was selected as the
ultimate alternative, which is widely used in existing industry standards together with the
Navigation Data Standard (NDS) Open Lane Model. Consequently, from version 1.13 of
Autoware onwards, Lanelet2 support has been added to all ROS nodes that use the Aisan
vector map. In later versions, Lanelet2 will be used as a default vector map option, and the
Aisan vector map will be deprecated.

Table 4. Comparison between Aisan vector map and major PSFs for use in Autoware (adapted from
[5]).

PSF Advantages Limitations

Aisan
Vector Map

Successfully adopted by Autoware
ROS package to read map data

Proprietary map format
Not widely adopted

OpenDRIVE Standardized by the ASAM system Few tools
to write map data

Sensors 2022, 22, 7056 4 of 25

Table 4. Cont.

PSF Advantages Limitations

Lanelet2
with OSM XML

Easy to create
using nodes as geometric primitives

Many OSM tools
but few tools for Lanelet2

NDS
Open Lane Model

Standardized under the NDS association
Directly used in production Prohibitively expensive license

This study was part of a regulation-free special zone project led by the Ministry of
SMEs and Startups and Gwangju-si in Korea [6]. The zone refers to an area designated
to allow companies to test their innovative technologies without regulatory restrictions.
Gwangju-si has been designated as a zone for unmanned special-purpose vehicles. The
operation of vehicles developed for different purposes, such as street cleansing, garbage
collection, and environmental monitoring has been demonstrated in this zone. We helped
develop the AD system of vehicles for environmental monitoring. The vehicle was deployed
in the Pyeong-dong industrial complex in Gwangju-si with onboard instruments to monitor
the quality of the environment (Figure 3 and Table 5).

Figure 3. Developed vehicle and equipped environmental monitoring instruments.

Table 5. Specification of instruments used for environmental monitoring.

Analysis Target Model Manufacturer Method

Air

SO2 T100

Teledyne
API

UV fluorescence
NO/NO2/NOX T200 Chemiluminescence

CO T300 Gas filter correlation
O3 T360M Mid-range gas filter correlation

CO2 T400 UV absorption
Dust 11-D GRIMM Aerosol spectroscopy

Road surface In-house developed UOK Deep learning-enabled computer
vision

Because the vehicle was required to operate unattended, the AD system was aimed
at achieving level 4 autonomy. The key difference between levels 3 and 4 is that level 4
systems do not require human interaction in the operation unless a system failure occurs.
Because no attendant was available to take control over the faulty system, a higher degree
of reliability must be ensured for all modules of the AD system from perception to control.
To this end, an HD map, as a set of pointcloud and vector maps, was used in this study.
Owing to the limited operational area of the Pyeong-dong industrial complex, we could
perform mapping in advance, inhering certain features from the prior maps. In general,

Sensors 2022, 22, 7056 5 of 25

pointcloud maps facilitate localization to decrease the positioning error to less than several
centimeters without using any real-time kinematic (RTK)-enabled global navigation satellite
system (GNSS) receiver. Once an ego-vehicle has been localized in the pointcloud map,
the vector map can be used for path planning relative to the lane centerline further ahead
than is possible with on-board multi-channel light detection and ranging sensors (LiDARs),
thereby enhancing ride comfort and safety. The vector map also facilitates traffic light
recognition (TLR) to enhance the recognition rate while decreasing the computational cost
without vehicle-to-infrastructure (V2I) communication.

In Korea, domestic HD map standards have been established by the National Geo-
graphic Information Institute (NGII). The PSF of the vector map established by the NGII is
unique in terms of the data model structure and elements (see Table 6).

Table 6. Latest revision of NGII vector map format (adapted from [7]).

Entity Code_Name Type Description

A1_Node Point Points connecting lane centerline
A2_Link Line Lane centerline

A3_Drivewaysection Polygon Road facilities (tunnel, bridge, overpass, underpass, etc.)
A4_Subsidlarysection Polygon Roadside facilities (rest area)

A5_Parkinglot Polygon Parking lot as roadside facilities

B1_Safetysign Point Traffic signs (stop and give way, no entry, no parking, road work,
roundabout, speed limit, wild animals, etc.)

B2_Surfacelinemark Line Line-shaped road surface marks (lane line, stop line, etc.)
B3_Surfacemark Polygon Polygon-shaped road surface marks (crosswalk, etc.)
C1_Trafficlight Point Traffic lights

C2_Kilopost Point Traffic sign indicating the distance from the starting point of the road
C3_Vehicleprotectionsafety Line Road facilities preventing vehicles from driving off the road

C4_Speedbump Polygon Speed bump
C5_Heightbarrier Line Road facilities deterring high vehicles from entering the underpass.

C6_Postpoint Point Poles of traffic signs and lights

Because the AD system we developed is based on Autoware, the NGII vector map
format must be converted to that supported by the platform. Map format conversion is
necessary to customize an open-source software platform. Considering the requirements of
the platform side, i.e., OpenPlanner, HD map generation workflows were established in this
study. OpenPlanner is the most widely used path-planning module within Autoware. With
the emergence of version 2.0 of OpenPlanner, the module has become considerably more
advanced in terms of its capabilities of supporting diverse HD map formats, introducing
a human–machine interface, predicting the trajectories of other vehicles by estimating
their intention, and generating the trajectories of an ego-vehicle via kinematics-based
motion simulations [8]. The module integrates global, local, and behavior planners that
jointly use the road network map to generate local trajectories based on a global path and
manage discrete behaviors such as avoiding dynamic obstacles and stopping before a stop
line or traffic lights. Among the various vector map formats that the module supports,
we selected ASSURE KML, a PSF optimized for OpenPlanner and expected to be highly
compatible with its map editor, ASSURE. A high compatibility is expected because the
selected planners, map format, and map editor have been created and maintained by the
same group at Nagoya university [9].

The remaining paper is organized as follows. We present two separate but successive
workflows: Sections 2 and 3 describe the workflows for the pointcloud and vector map
generation, respectively.

Sensors 2022, 22, 7056 6 of 25

2. Pointcloud Map

The workflow of the pointcloud map generation consists of four key stages: laser
scanning, mapping, registration, and validation (see Figure 4 and Table 7).

Figure 4. High-level flowchart outlining key stages in pointcloud map generation.

Table 7. Four stages of pointcloud map generation.

Stage Toolset Input File Format Output

Laser scanning Autoware
(LiDAR driver node) Recorded pointcloud

Mapping
Autoware

(approximate_
ndt_mapping node)

ROSBAG Aligned pointcloud
on a local frame

Registration Global Mapper
CloudCompare

SHP, TXT
PCD

Aligned pointcloud
on a global frame

Validation Autoware
(ndt_matching node)

ROSBAG
PCD

Pointcloud map applicable to
localization

2.1. Laser Scanning

The first stage is to record the scanned pointcloud data. Launch Autoware. Although
it is not necessary to use Autoware, it is considerably easier to use Runtime Manager than
entering commands directly in a terminal. In the Sensing tab, launch the driver node
to publish the scanned pointcloud as/points_raw. Check off the box of Ouster OS1-64.
Confirm that the scanned pointcloud is published with RViz. Click the RViz button. In the
Displays panel on the left, change the Fixed Frame under Global Options to velodyne, and
check that/points_raw is displayed. To modify the camera pose, change Type of the camera
in the Views panel on the right. Record the scanned pointcloud by clicking the ROSBAG

Sensors 2022, 22, 7056 7 of 25

button. ROSBAG is a file format designed to log ROS messages. In the generated pop-up
window, click the Refresh button to update the list of available ROS topics. Click the Ref
button and type a ROSBAG filename. Scroll through the list of the updated ROS topics and
check off the/points_raw box. Click the Start button to start ROSBAG recording.

While recording the scanned pointcloud data, drive the vehicle smoothly and con-
sistently around the operational area, preferably in a closed loop. The pose of the vehicle
should not suddenly change within the loop. The rest of the mapping process is imple-
mented under the assumption that the scanned pointcloud data are continuous because
sudden changes may disrupt the operation of the normal distribution transform algorithm.
Instead of a dedicated mobile mapping system, a LiDAR (Ouster OS1-64) fixed on the back
of the roof of the vehicle is used. In this configuration, the LiDAR to be used for localization
is also used for surveying. The operational area centers around two closed loops sharing a
one-way road between them (see Figure 5 and Table 8), and the loops must be laser scanned
individually. After driving through one loop, click the Stop button to finish the ROSBAG
recording. The two separate pointclouds relative to a local frame are merged on a global
frame in the third stage. Laser scanning must ideally be repeated in different scenarios,
for example, in the opposite direction, at higher velocities and in an open loop, enabling
the production of another set of scanned pointcloud data. The scanned pointcloud data,
different than those used to generate the pointcloud map in the next stage, can be used to
validate the generated pointcloud map in the final stage.

Figure 5. (a) Long and short loops in the operational area represented on (b) satellite map.

Table 8. Description of the operational area with the number of lanes and road facilities.

Loop Road Length Lanes Stop Lines Traffic Lights Crosswalks

Long
L1 399.8 m 8 4 3 3
L2 274.6 m 4 4 1 3
L3 195.5 m 4 4 4 2

Long/Short LS 442.7 m 2 2 2 2

Short
S1 86.8 m 1 1 0 1
S2 355.9 m 3 0 0 0
S3 86.8 m 1 1 0 1

2.2. Mapping

The second stage is to align the recorded pointclouds with each other. Launch Auto-
ware. The actual usage of Autoware for mapping has been screen recorded in [10]. In the
Computing tab, launch the mapping node by checking off the approximate_ndt_mapping
box. This node is a variant of the ndt_mapping node, and a comparison between the two
mapping nodes is presented in Table 9. Play the recorded pointcloud data by clicking
the Ref button in the Simulation tab and specifying the relevant ROSBAG file. Verify the
information regarding the recorded topics, mostly/points_raw, and click the Play button.
Confirm that the recorded pointcloud is published and correctly aligned.

Sensors 2022, 22, 7056 8 of 25

Table 9. Comparison of mapping nodes provided in Autoware.

ndt_mapping approximate_ndt_mapping

Input Scanned pointcloud
Algorithm Normal distributions transform

Output Larger single pointcloud Smaller multiple pointclouds

Advantages Can be more accurate
Can map a larger area

Requires less computation
and less memory

Limitations

Requires more computation
to align the latest pointcloud with all previous

pointclouds
and more memory to store all the pointclouds

Might be less accurate

If the mapping process is being appropriately implemented, the scanned pointclouds
will be arranged in a sequential order, reproducing the path that the vehicle traversed in
the previous stage. The path can be visualized with RViz. However, it is preferable to
draw a chart with the generated CSV file (see Figure 6) because visualization with RViz
may introduce a computational burden in the mapping process. The aligned pointcloud is
saved as a pointcloud data (PCD) file. PCD is a file format designed to store 3D pointcloud
data. Even after the playback has finished, the mapping process is typically in progress
owing to its computationally intensive nature. Unlike the ndt_mapping node, the approxi-
mate_ndt_mapping node produces a PCD file every 2–3 min in the mapping process. The
produced PCD files are named submap_x, according to their creation order. When a PCD
file is no longer created, the mapping process can be considered to have ended. Notably, the
completion of the process cannot ensure the quality of the generated pointcloud map. The
chart must ideally be prepared to determine if the mapping process has been successfully
completed (see Figure 6).

Sensors 2022, 22, 7056 8 of 26

Table 9. Comparison of mapping nodes provided in Autoware.

 ndt_mapping approximate_ndt_mapping
Input Scanned pointcloud

Algorithm Normal distributions transform
Output Larger single pointcloud Smaller multiple pointclouds

Advantages Can be more accurate
Can map a larger area

Requires less computation
and less memory

Limitations
Requires more computation

to align the latest pointcloud with all previous pointclouds
and more memory to store all the pointclouds

Might be less accurate

If the mapping process is being appropriately implemented, the scanned point-
clouds will be arranged in a sequential order, reproducing the path that the vehicle
traversed in the previous stage. The path can be visualized with RViz. However, it is
preferable to draw a chart with the generated CSV file (see Figure 6) because visualiza-
tion with RViz may introduce a computational burden in the mapping process. The
aligned pointcloud is saved as a pointcloud data (PCD) file. PCD is a file format de-
signed to store 3D pointcloud data. Even after the playback has finished, the mapping
process is typically in progress owing to its computationally intensive nature. Unlike the
ndt_mapping node, the approximate_ndt_mapping node produces a PCD file every 2–3
min in the mapping process. The produced PCD files are named submap_x, according to
their creation order. When a PCD file is no longer created, the mapping process can be
considered to have ended. Notably, the completion of the process cannot ensure the
quality of the generated pointcloud map. The chart must ideally be prepared to deter-
mine if the mapping process has been successfully completed (see Figure 6).

Figure 6. Progress of approximate_ndt_mapping inspected using the CSV file generated with PCD
files.

2.3. Registration (Remapping)
The third stage is to realign the local pointcloud maps with a global vector map (see

Figure 7). The realignment is performed to address the problems associated with the
generated pointcloud map, which are neither sufficiently accurate nor relative to a glob-
al frame. The inaccuracy of the pointcloud map manifests as the loose ends between the
first and last pointclouds, which ideally must coincide because the laser scanning ended
near the point at which it started. The point at which the laser scanning started is the
origin of the local pointcloud map, which must be transformed into, for example, the
origin of the UTM52N zone. In the remapping process, the road surface marks in the

Figure 6. Progress of approximate_ndt_mapping inspected using the CSV file generated with
PCD files.

2.3. Registration (Remapping)

The third stage is to realign the local pointcloud maps with a global vector map (see
Figure 7). The realignment is performed to address the problems associated with the
generated pointcloud map, which are neither sufficiently accurate nor relative to a global
frame. The inaccuracy of the pointcloud map manifests as the loose ends between the first
and last pointclouds, which ideally must coincide because the laser scanning ended near

Sensors 2022, 22, 7056 9 of 25

the point at which it started. The point at which the laser scanning started is the origin of
the local pointcloud map, which must be transformed into, for example, the origin of the
UTM52N zone. In the remapping process, the road surface marks in the pointcloud map
are aligned with those in the vector map. The small multiple pointcloud maps produced by
the approximate_ndt_mapping node facilitate stitching them together piece-by-piece on
the basis of the vector map. This remapping process cannot be implemented using a large
single pointcloud map.

From the database of NGII, download the vector map of an area of interest [11].
Although the coverage of HD maps has been rapidly expanded in Korea, the operational
area considered in this study has not been covered. Therefore, the vector map for the
Pyeong-dong industrial complex was custom-made using a dedicated mobile mapping
system (MMS), while complying with the NGII vector map format. The NGII vector map
is originally in the SHP format, designed to store geographic information in the form of
vector data. Thus, the file format must be converted to a format readable by the software
for use in the remapping process.

Figure 7. Detailed flowchart of the registration process.

Launch Global Mapper to convert the SHP files representing the road surface marks to
TXT files. Global Mapper is a geographic information system software that provides spatial

Sensors 2022, 22, 7056 10 of 25

data processing tools that can be used with a range of data formats. Under the File menu,
click Batch Convert/Reproject. In the pop-up windows that are sequentially generated,
select Shapefile as the filetype to perform conversion from and Simple ASCII Text as the
filetype to perform conversion to. Next, add SHP files in the Source Files panel. The default
options in the Destination Files panel do not need be modified, except for checking off
the Include Elevations for Each Vertex box. According to the latest version of the NGII
vector map format, the applicable SHP files are B2_Surfacelinemark and B3_Surfacemark,
different than the applicable SHP files in the previous version (A1_LANE, A2_STOP, and
B2_SURFSIGN_LINE). Click the OK button to start file format conversion. As mentioned,
the road surface marks are used as references for realignment. Multi-directional references
aid in realignment. For instance, lane lines are used along the x-axis, whereas stop lines,
which are perpendicular to lane lines, are used along the y-axis.

Launch CloudCompare (CC) to realign the local pointcloud maps with a global vector
map. CC is a 3D pointcloud editing and processing software that is especially useful for
performing complex transformations on multiple pointclouds. We have screen recorded
the actual usage of CC for remapping [12].

Load the converted TXT files by clicking Open under the File menu. When loading
entities with coordinates greater than 105 m, CC typically recommends shifting them
to smaller coordinates because, by default, CC is designed to work with 32-bit values
(single-precision floating-point format). The use of 32-bit values instead of 64-bit values
(double-precision floating-point format) can help enhance the execution speed and decrease
the memory footprint (theoretically, by 50%). In return, the 32-bit representation is subject to
a limited precision. With a given number of bits, the larger the number is, the less decimals
can be stored. Notably, the 32-bit representation is sufficient for entities within a local frame
such as pointclouds relative to LiDAR coordinates. For example, for a laser-scanning range
of 100 m, the data representation can be as precise as 10−6 m. However, if the pointclouds
are relative to georeferenced coordinates, their point coordinates may be greater than 105,
and the data representation precision may decrease to 10−2 m. To avoid the decreased
precision when loading entities with large coordinates, CC automatically suggests the best
shift vector. The user may also input their own shift values that can render the first point
coordinates zero. In doing so, the origin of a global frame shifts from the equator to the
vicinity of the operational area, which is regarded as a map frame. As shown in [12], the
coordinates of the first entity relative to the origin of the UTM52N zone are 297,127 and
3,888,656 m, and they shift to 0 and 0 m, corresponding to the origin of the map frame.
Although not necessary, it is recommended to perform shifting along the z-axis as well,
owing to its benefits in subsequent processes. Once the first shift has been made, CC uses it
for the following entities.

Load the generated PCD files in the same manner. Notably, because PCD files per-
tain to pointclouds relative to LiDAR coordinates, their point coordinates are on the
order of 100 m. Therefore, unlike TXT files, no shift is necessary. The loaded entities
are stored in the DB tree on the upper left and displayed in 3D view in the middle. The
global vector map and local pointcloud maps are denoted as B2_Surfacelinemark.txt and
submap_x.pcd, respectively.

Perform rough alignment by selecting all the local pointcloud maps and aligning
them with the global vector map. The loaded entities can be selected either directly in
the 3D view or, preferably, through the DB tree. When clicking on a submap in the DB
tree, the corresponding pointcloud map is surrounded by a bounding box in the 3D view.
Multiple submaps can be simultaneously selected by pressing the Ctrl or Shift keys and
simultaneously clicking on the submaps in the DB tree. Initiate the transformation mode
by clicking the

1

button in the upper main toolbar or Rotate/Translate under the Edit

menu. After the entry, the selected entities in the DB tree are locked and the new toolstrip
appears on the upper right corner of the 3D view. Four buttons are lined up in the first
row of the toolstrip: (from left to right) Pause, Undo, Save and exit, and Quit without
saving. The pause button is used to temporarily move out and into the transformation

Sensors 2022, 22, 7056 11 of 25

mode to modify the camera pose. The Undo button is used to reverse the transformation
performed previously. The latter two buttons are commonly used to quit the transformation
mode, and they differ only in terms of whether the previous transformations are saved. A
dropdown menu in the second row is used to select the axis of rotation. Three tickboxes
in the third row are used to select the direction of translation. Initiate the alignment by
selecting Rotation z and check Tx and Ty in the toolstrip to translate the pointclouds in
the selected submaps along the x- and y-axes and rotate them about the z-axis. Next, the
rotations about the x- and y-axes and associated translations are performed according
to a road gradient. The mouse actions used for the remapping process are presented in
Table 10. Repeatedly change the pose of the pointclouds while modifying the camera
pose to enhance the alignment. Perform fine alignment in the same manner as the rough
registration process, albeit by selecting one single local pointcloud map and aligning it
with the global vector map. Repeat this process until the last submap is aligned, previously
depicted as piece-by-piece stitching.

Table 10. Comparison of mouse actions in versus out of the transformation mode.

In the Transformation Mode Out of the Transformation Mode

Purpose To modify the pose of
pointclouds To modify the camera pose

Left-click and hold Rotation Position
Right-click and hold Translation Orientation
Scroll up and down Zoom in and out

Notably, manual alignment is cost-intensive and ineffective, owing to the large dis-
crepancy between the two entities in terms of the number of points. For instance, a lane
line is expressed by dozens of points in the pointcloud map, whereas it is expressed by only
two points in the vector map. The low efficiency of manual alignment can be alleviated
by implementing automatic alignment based on the iterative closest point (ICP) algorithm.
Initiate the ICP by selecting a local pointcloud map and the global vector map. Subse-
quently, click the

Sensors 2022, 22, 7056 11 of 26

rotation. Three tickboxes in the third row are used to select the direction of translation.
Initiate the alignment by selecting Rotation z and check Tx and Ty in the toolstrip to
translate the pointclouds in the selected submaps along the x- and y-axes and rotate
them about the z-axis. Next, the rotations about the x- and y-axes and associated transla-
tions are performed according to a road gradient. The mouse actions used for the re-
mapping process are presented in Table 10. Repeatedly change the pose of the point-
clouds while modifying the camera pose to enhance the alignment. Perform fine align-
ment in the same manner as the rough registration process, albeit by selecting one single
local pointcloud map and aligning it with the global vector map. Repeat this process un-
til the last submap is aligned, previously depicted as piece-by-piece stitching.

Table 10. Comparison of mouse actions in versus out of the transformation mode.

 In the Transformation Mode Out of the Transformation Mode
Purpose To modify the pose of pointclouds To modify the camera pose

Left-click and hold Rotation Position
Right-click and hold Translation Orientation
Scroll up and down Zoom in and out

Notably, manual alignment is cost-intensive and ineffective, owing to the large
discrepancy between the two entities in terms of the number of points. For instance, a
lane line is expressed by dozens of points in the pointcloud map, whereas it is expressed
by only two points in the vector map. The low efficiency of manual alignment can be al-
leviated by implementing automatic alignment based on the iterative closest point (ICP)
algorithm. Initiate the ICP by selecting a local pointcloud map and the global vector map.
Subsequently, click the button in the upper main toolbar or Fine Registration (ICP)
under the Tool menu. In the generated pop-up window, ensure that the following con-
figuration is selected: aligned, submap_x and reference, B2_Surfacelinemark. This selec-
tion helps ensure that the local pointcloud map is aligned with reference to the global
vector map. If not, click the swap button to reverse the maps. The default values of the
parameters do not need to be altered, although the Final overlap must be decreased to
10%. As its name implies, the Final overlap specifies the actual percentage of overlap
between the two pointclouds, and it functions as one of the convergence criteria. Click
the OK button to execute the ICP. Although no minimum requirement for alignment
accuracy exists, a root mean square error less than 0.5 can be considered acceptable. In
the DB tree, .registered is appended to the name of a PCD file that has been aligned, e.g.,
submap_x.registered. The ICP is particularly helpful in performing alignment along the
z-axis, which is considerably more challenging than alignment along the other axes.
However, automatic alignment cannot always achieve superior results. The ICP may not
function properly for the same reason as manual alignment. Fundamentally, the ICP is
designed to iteratively minimize point-to-point distances between two pointclouds [13].
In the remapping process, the ICP selects the closest points as a correspondence and
calculates the transformation matrix between the aligned (submap_x) and reference
(B2_Surfacelinemark). However, owing to the large number of points in the pointcloud
map, the corresponding points from the vector map are challenging to identify.

Consequently, the remapping process must be terminated with manual alignment
as a final check. Save and export the finely aligned entity to a PCD file by clicking the
button in the upper main toolbar or Save under the File menu. Through these processes,
the problems associated with the generated pointcloud map can be solved, and we ob-
tained a pointcloud map that is sufficiently accurate and relative to a map frame.

2.4. Validation
The final stage is to test the registered pointcloud data using the localization mod-

ule of Autoware. In doing so, prior map-based localization is realized, which is also re-
ferred to as a LiDAR localizer, in comparison with a GNSS localizer. Launch Autoware.

button in the upper main toolbar or Fine Registration (ICP) under
the Tool menu. In the generated pop-up window, ensure that the following configuration
is selected: aligned, submap_x and reference, B2_Surfacelinemark. This selection helps
ensure that the local pointcloud map is aligned with reference to the global vector map.
If not, click the swap button to reverse the maps. The default values of the parameters
do not need to be altered, although the Final overlap must be decreased to 10%. As its
name implies, the Final overlap specifies the actual percentage of overlap between the two
pointclouds, and it functions as one of the convergence criteria. Click the OK button to
execute the ICP. Although no minimum requirement for alignment accuracy exists, a root
mean square error less than 0.5 can be considered acceptable. In the DB tree, .registered is
appended to the name of a PCD file that has been aligned, e.g., submap_x.registered. The
ICP is particularly helpful in performing alignment along the z-axis, which is considerably
more challenging than alignment along the other axes. However, automatic alignment
cannot always achieve superior results. The ICP may not function properly for the same
reason as manual alignment. Fundamentally, the ICP is designed to iteratively minimize
point-to-point distances between two pointclouds [13]. In the remapping process, the ICP
selects the closest points as a correspondence and calculates the transformation matrix
between the aligned (submap_x) and reference (B2_Surfacelinemark). However, owing
to the large number of points in the pointcloud map, the corresponding points from the
vector map are challenging to identify.

Consequently, the remapping process must be terminated with manual alignment as

a final check. Save and export the finely aligned entity to a PCD file by clicking the

Sensors 2022, 22, 7056 11 of 26

rotation. Three tickboxes in the third row are used to select the direction of translation.
Initiate the alignment by selecting Rotation z and check Tx and Ty in the toolstrip to
translate the pointclouds in the selected submaps along the x- and y-axes and rotate
them about the z-axis. Next, the rotations about the x- and y-axes and associated transla-
tions are performed according to a road gradient. The mouse actions used for the re-
mapping process are presented in Table 10. Repeatedly change the pose of the point-
clouds while modifying the camera pose to enhance the alignment. Perform fine align-
ment in the same manner as the rough registration process, albeit by selecting one single
local pointcloud map and aligning it with the global vector map. Repeat this process un-
til the last submap is aligned, previously depicted as piece-by-piece stitching.

Table 10. Comparison of mouse actions in versus out of the transformation mode.

 In the Transformation Mode Out of the Transformation Mode
Purpose To modify the pose of pointclouds To modify the camera pose

Left-click and hold Rotation Position
Right-click and hold Translation Orientation
Scroll up and down Zoom in and out

Notably, manual alignment is cost-intensive and ineffective, owing to the large
discrepancy between the two entities in terms of the number of points. For instance, a
lane line is expressed by dozens of points in the pointcloud map, whereas it is expressed
by only two points in the vector map. The low efficiency of manual alignment can be al-
leviated by implementing automatic alignment based on the iterative closest point (ICP)
algorithm. Initiate the ICP by selecting a local pointcloud map and the global vector map.
Subsequently, click the button in the upper main toolbar or Fine Registration (ICP)
under the Tool menu. In the generated pop-up window, ensure that the following con-
figuration is selected: aligned, submap_x and reference, B2_Surfacelinemark. This selec-
tion helps ensure that the local pointcloud map is aligned with reference to the global
vector map. If not, click the swap button to reverse the maps. The default values of the
parameters do not need to be altered, although the Final overlap must be decreased to
10%. As its name implies, the Final overlap specifies the actual percentage of overlap
between the two pointclouds, and it functions as one of the convergence criteria. Click
the OK button to execute the ICP. Although no minimum requirement for alignment
accuracy exists, a root mean square error less than 0.5 can be considered acceptable. In
the DB tree, .registered is appended to the name of a PCD file that has been aligned, e.g.,
submap_x.registered. The ICP is particularly helpful in performing alignment along the
z-axis, which is considerably more challenging than alignment along the other axes.
However, automatic alignment cannot always achieve superior results. The ICP may not
function properly for the same reason as manual alignment. Fundamentally, the ICP is
designed to iteratively minimize point-to-point distances between two pointclouds [13].
In the remapping process, the ICP selects the closest points as a correspondence and
calculates the transformation matrix between the aligned (submap_x) and reference
(B2_Surfacelinemark). However, owing to the large number of points in the pointcloud
map, the corresponding points from the vector map are challenging to identify.

Consequently, the remapping process must be terminated with manual alignment
as a final check. Save and export the finely aligned entity to a PCD file by clicking the
button in the upper main toolbar or Save under the File menu. Through these processes,
the problems associated with the generated pointcloud map can be solved, and we ob-
tained a pointcloud map that is sufficiently accurate and relative to a map frame.

2.4. Validation
The final stage is to test the registered pointcloud data using the localization mod-

ule of Autoware. In doing so, prior map-based localization is realized, which is also re-
ferred to as a LiDAR localizer, in comparison with a GNSS localizer. Launch Autoware.

button in the upper main toolbar or Save under the File menu. Through these processes, the

Sensors 2022, 22, 7056 12 of 25

problems associated with the generated pointcloud map can be solved, and we obtained a
pointcloud map that is sufficiently accurate and relative to a map frame.

2.4. Validation

The final stage is to test the registered pointcloud data using the localization module
of Autoware. In doing so, prior map-based localization is realized, which is also referred to
as a LiDAR localizer, in comparison with a GNSS localizer. Launch Autoware. Select the
recorded pointcloud data by clicking the Ref button in the Simulation Table The ROSBAG
file must be different from that used to generate the pointcloud map. Play and pause the
recorded pointcloud by clicking the Play button and then the Pause button. In the Setup
tab, specify Localizer by checking off the box of velodyne. Subsequently, specify Baselink
to Localizer, which refers to a relative pose between the vehicle and LiDAR coordinates.
The LiDAR coordinates (velodyne) are located on the back of the roof, whereas the vehicle
coordinates (base_link) are located at the center of the rear axle. According to their actual
location in the vehicle, specify x, y, z, yaw, pitch, and roll in meters, and then click the TF
button. Before loading the registered pointcloud, downsample it using Map Tools in the
Map Table Launch the pcd_filter node by pressing the PCD filter button with the default
values of the parameters. Before doing this, click the Ref button and simultaneously select
the produced PCD files. Downsampling decreases the size of a PCD file to 1/50 the original
value. The applied Leaf Size (0.2), which can be described as a spatial sampling rate, is
appended to the name of the PCD file, e.g., 0.20_submap_x. Load the filtered pointcloud
data by clicking the Ref button and selecting the downsized PCD files simultaneously. Then,
press the Point Cloud button. Next, specify TF, which indicates the relative pose between
the world and map coordinates. No transformation between the coordinates is necessary
because in the previous stage, the origin of the UTM52N zone has been moved to a location
within the operational area. Therefore, the world frame, i.e., the global frame, is equal to the
map frame. Similarly to the registered pointcloud, downsample the scanned pointcloud. In
the Sensing tab, launch the downsampling node by checking off the box of voxel_grid_filter.
In the pop-up window generated by clicking [app], the Voxel Leaf Size can be adjusted;
however, its default value (2 m) is the most commonly used. Initiate the localization by
launching the matching node by checking off the box of ndt_matching in the Computing
Table In the pop-up window generated by clicking [app], the relevant parameters can be
accessed. Because the default values of the parameters are predetermined for localization,
they do not need to be tweaked, except for the initial pose. Unless a GNSS localizer is
available, maintain the Initial Pos as zero; alternatively, specify the initial pose using the
2D Pose Estimate in RViz. Because the pose estimation is challenging using solely the
scanned pointcloud, other sensors, such as cameras and GNSS receivers, can be used in
the laser- scanning process to provide additional clues. Continue to publish the scanned
pointcloud by clicking the Play button in the Simulation Table In RViz, confirm that the
scanned pointcloud matches with the registered pointcloud. Click the RViz button. In the
Displays panel, change Fixed Frame under Global Options to map, and check that the two
pointclouds are overlapped.

Through the localization process, the ndt_matching node publishes the current pose
of the vehicle in/ndt_pose and the associated statistics in/ndt_stat, which incorporates
the fitness score, execution time, and iteration number. The score indicates the degree of
matching of the two pointclouds and can thus be used to infer the reliability of localization,
including the quality of the generated pointcloud map. A lower score corresponds to a
superior matching. GNSS receivers capable of RTK are typically used as a reference for
localization; however, in this study, they were substituted by the score. The GNSS receivers
were not used because they exhibit a low update rate (1 Hz), and their signals are prone to
be blocked or reflected by obstacles in the operational area, such as the elevated railroad
crossing the short loop. While manually driving around the long loop, the fitness score
was observed to be less than one (see Figure 8b). The fine matching is indirectly evidenced
by the execution time, which remained less than 40 ms. Notably, the positioning error

Sensors 2022, 22, 7056 13 of 25

between the LiDAR and GNSS localizers is not consistent with these statistics owing to the
two reasons mentioned above. The error is primarily attributable to the low update rate.
Because the low update rate caused a positioning error mostly in the longitudinal direction,
the error shown in Figure 8c cannot be observed in Figure 8a.

Figure 8. Validation results of the generated pointcloud map. (a) Positions of the vehicle measured
by the LiDAR and GNSS localizers. (b) Fitness score and execution time, estimates from the LiDAR
localizer, which are used as key metrics for localization based on the generated pointcloud map.
(c) Positioning error, a measurement obtained through comparison to the GNSS localizer.

3. Vector Map

The workflow of the vector map generation consists of three major key stages: prepro-
cessing, mapping, and validation (see Figure 9 and Table 11).

Sensors 2022, 22, 7056 14 of 25

Figure 9. High-level flowchart outlining key stages in vector map generation.

Table 11. Three stages of vector map generation.

Stage Toolset Input File Format Output

Preprocessing Global Mapper
MATLAB

SHP
TXT

Processed lane centerlines
(see Table 12 for more details)

Mapping ASSURE CSV
PCD

Linked lanes and waypoints
Adjusted action cost and max speed

Fixed boundary
Linked stop line, traffic signs and lights

Validation
Autoware

(multiple ROS nodes
in OpenPlanner)

KML
KML.PROJ.DAT

Vector map applicable to
path-planning

3.1. Preprocessing

The first stage is to process the downloaded vector data. Among the many entities
involved in vector data, lane lines are typically used for the pointcloud map. For a road
network map, lane centerlines are used as a reference path. Because the NGII vector map is
originally in the SHP format, it must be converted to a format readable by the software and
then used in preprocessing.

As in the previous workflow, launch Global Mapper to convert the SHP file represent-
ing the lane centerline to a TXT file. Under the File menu, click Batch Convert/Reproject.
In the sequentially generated pop-up windows, select Shapefile as the filetype to perform
conversion from and Simple ASCII Text as the filetype to perform conversion to. Consecu-
tively, add a SHP file in the Source Files panel. The default options in the Destination Files
panel do not need to be changed, except for checking off the Include Elevations for Each
Vertex and Add Blank Line Between Features boxes. According to the latest revision of the
NGII vector map format, the only associated SHP file is A2_Link. Click the OK button to
start the file format conversion. The converted lane centerline is not directly applicable
and needs to be preprocessed to satisfy the requirements specified in OpenPlanner (see
Table 12).

Sensors 2022, 22, 7056 15 of 25

Notably, such preprocessing is difficult and error-prone, and in this study, a MATLAB
script was written to automate the process. Run the script by typing its name, prepro-
cess_centerlines, in the command line. The converted TXT file is input, and the script
outputs as many CSV files as the number of segments. A segment denotes a set of points
constituting a lane centerline. From the database of NGII, the SHP file representing the
lane centerline can be downloaded by area, and thus a number of segments are mixed in
random order. The points within a segment are ordered, whereas the points within a file
are completely disordered. To resolve this problem, each segment is saved as a file. Based
on the one file per segment, the points within a file can be arranged in sequential order.
In addition, all the points on the lane centerline are regularly spaced (1 m) to serve as a
waypoint. The regularly spaced points are placed wherever a global path can be generated,
for instance, at the intersection. Furthermore, the points on the path are represented with
the 3D position, orientation, and target speed. The points are relative to the map frame set
in the previous stage to generate the pointcloud map.

Table 12. Requirements for using A2_Link as source data of a global path in OpenPlanner.

A2_Link Requirements

Consists of only two points at both ends Several equally spaced points
that can serve as waypoints in a global path

Points are represented only by their position Plus the orientation between adjacent points,
target speed assigned onto each point

Points are only ordered within a segment
and unordered among different segments.

With multiple segments per file (one single SHP file),
points are unordered within a file.

With one file per segment (multiple CSV files),
points are ordered within a file.

Only available on the road At the intersection
Covers the entire area Can select only the area in need

Relative to the world frame (UTM52N) The map frame

3.2. Mapping

The second stage is editing of the vector data based on the processed lane centerline
(see Figure 10). Because a global path and local trajectories are generated based on a lane
centerline, it is considered to be the most important in path planning. However, the lane
centerline must be supplemented by other vector data to render the road network map
more comprehensive. Diverse entities are provided by ASSURE, including lane lines, stop
lines, curbs, boundaries, crosswalks, traffic signs, and lights. As mentioned, ASSURE is
an editor for a road network map, which is optimal for OpenPlanner. The lane centerline,
simply called a lane in ASSURE, is the basic road network entity. The lane consists of
waypoints. A waypoint contains the intrinsic information of the pose and target speed and
extrinsic information such as the next, previous, left, and right waypoints. Consequently, a
waypoint can be used to link different entities. The lanes can be branched or merged only
through the waypoints at both ends of the lane. Details regarding the provided entities can
be found in [14].

Depending on the input file formats, ASSURE can support various mapping processes
(see Table 13). The mapping process selected in this study takes CSV files as inputs and
outputs a KML file to be used in OpenPlanner. Additionally, PCD files are often inputted
to help accurately position the entities.

Launch the ASSURE map editor. We have screen recorded the actual usage of ASSURE
for the mapping [15]. The wide left panel displays all the entities in the vector map
(map view), whereas the narrow right panel shows detailed information regarding the
hovered-over or selected entities (info view).

Sensors 2022, 22, 7056 16 of 25

Figure 10. Detailed flowchart of the mapping process.

Sensors 2022, 22, 7056 17 of 25

Table 13. List of function and input and output file formats provided in ASSURE.

Function Input Output File Format

Create
From scratch

KML (OpenPlanner)
KML (Google Earth)

OSM (Lanelet2)

CSV
Guided by PCD

Import and edit

KML (OpenPlanner)
OSM (Lanelet2)

XORD (OpenDRIVE)
CSV (Aisan Vector Map)

Merge Multiple KMLs One single KML

3.2.1. Load Lanes

Load the converted CSV files. Right-click the map view. In the generated pop-up
window, hover the pointer over the Load Map and click the CSV Folder in the hover box
that appears. Select the folder containing the converted CSV files and click the Open button.
Confirm that the lanes are displayed on the map view.

3.2.2. Link Lanes (One-to-One)

As mentioned, the loaded entities are split by file, with each file corresponding to one
lane. The mapping process is initiated by linking the existing lanes on the road, described
as a one-to-one link.

Click the lane; the properties of the selected lane appear under the Lane Info on the
info view. Click From Lanes and press the plus sign key. In the generated blank > ID, enter
the previous lane ID. In the same manner, enter the next lane ID into the blank > ID under
To Lanes. After editing, press the Ctrl and S keys simultaneously. Lane Info involves many
other properties other than these two properties; however, these properties do not need
to be edited because they are either unused or subject to be overridden by the subsequent
editing of the waypoint properties.

3.2.3. Insert Lanes

Next, insert new lanes. This insertion is not necessary on the road but required at the
intersection in which the lanes are not provided as an entity in the converted CSV files.

Right-click the map view. In the generated pop-up window, hover the pointer over
Insert and click the Lane in the hover box that appears. Click a location at which a waypoint
is desired. Add waypoints sequentially and press the enter key to insert the formed lane or
the Esc key to dismiss it. Click the added waypoint and enter its z coordinate into Z, the
height of which can be estimated with reference to the height of the endpoint of the lane to
be linked to. To reform the lane, the existing waypoints within the lane can be moved or
removed. Alternatively, new waypoints can be added. To move waypoints, click and drag
the waypoint while pressing the Shift key, or click and enter the new coordinates into X
and Y. To add or remove waypoints, press the plus or minus sign keys, respectively. Similar
to the previous process, link the new lane to the existing lanes.

3.2.4. Smooth Lanes

The inserted lanes tend to be rough because they are manually generated. Smooth
the inserted lane by clicking on it and then pressing the asterisk key. Smoothing can be
gradually performed by repeatedly pressing the key. The smoothing adjusts not only the
position of waypoints but also the spacing between them.

3.2.5. Link Lanes (One-to-Many)

Unlike the road, intersections usually require a one-to-many link. Similar to the
generation of the one-to-one link, click the approaching lane; the properties of the selected
lane appear under the Lane Info on the info view. Click To Lanes and press the plus sign

Sensors 2022, 22, 7056 18 of 25

key as many times as the number of lanes to be branched off. In the generated blanks > ID,
enter the next lane IDs. After editing, press the Ctrl and S keys simultaneously.

3.2.6. Link Waypoints (Longitudinal)

A linkage similar to that between lanes is also required between waypoints. Link the
last waypoint on the previous lane to the first waypoint on the next lane, corresponding to
a first-to-last link. Other neighboring waypoints in the middle of the lane are linked as-is.

Click the last waypoint of the previous lane; the properties of the selected waypoint
appear under the Waypoint Info in the info view. From Points is already filled in. Click To
Points, and press the plus sign key. In the generated blank > ID, enter the first waypoint ID
of the next lane.

The opposite way around, click the first waypoint of the next lane. To Points is already
filled in. In the same manner, click From Points, and press the plus sign key. In the
generated blank > ID, enter the last waypoint ID of the previous lane. After editing, press
the Ctrl and S keys simultaneously.

The above-mentioned processes correspond to basic mapping to solely enable lane-
following. The subsequent processes describe the mapping process to allow more advanced
operations including but not limited to lane-changing and traversing intersections. No-
tably, these operations are specific to the operational design domain corresponding to the
operational area in which the AD system is designed to operate.

3.2.7. Inspect Linkage

Before proceeding further, it is advisable to examine the linkages between all the
drivable lanes and their waypoints. Any missing or incorrect links on the road network
can degrade the global path generation ability of the global planner. In general, a larger
road network is more vulnerable to error. To examine the linkages, another editor named
Java OpenStreetMap (JOSM) can be used. Save and export the linked entities to an OSM
file that can be read by JOSM.

Right-click the map view. In the generated pop-up window, hover the pointer over
Save Map and click Lanelet2.osm in the hover box that appears. Type an OSM filename
and click the Save button.

Launch JOSM. Load the linked entities by clicking Open under the File menu. In
the generated pop-up window, select the converted OSM file and click the Open button.
In the JOSM, the linked entities are represented as a network graph; specifically, the
waypoints are displayed as nodes, and the linkage between them is displayed as an edge,
allowing any missing or incorrect link to be easily found. Confirm that the waypoints are
arranged sequentially.

3.2.8. Link Waypoints (Lateral)

At this point, the entities are connected in the longitudinal direction. However,
waypoints must also be connected in the lateral direction, enabling the global planner to
facilitate lane changing.

Enter the closest waypoint ID on the left lane into the Left Point, while entering the
closest waypoint ID on the right lane into the Right Point. The closest waypoint functions
as a reference point when changing lanes. Therefore, it is preferable to specify a waypoint
slightly ahead in the forward direction. Leave the Left and Right Points as zero for the
lanes in which lane changing is not permitted by the Road Traffic Act.

3.2.9. Split/Merge Lanes

After checking all the connections, split the lane into two or, oppositely, merge the two
lanes, if necessary. Editing the linked lanes is useful for the behavior planner to control
discrete behaviors based on the lane. The simplest example of this control is turning on
a left-turn signal on a left-turn lane. To turn on the signal in advance, the lane can be

Sensors 2022, 22, 7056 19 of 25

slightly extended by merging the previous lane. To this end, the previous lane must not be
extremely long; therefore, it must be split before being merged.

Select the waypoint that can serve as the endpoint of the separate lane. Right-click this
waypoint. In the generated pop-up window, hover the pointer over Lane Functions and
click the Split Line button in the hover box that appears.

The other way around, click the lane to merge the next lane. Right-click the lane. In the
generated pop-up window, hover the pointer over Lane Functions and click the Merge Next
Lane button in the hover box that appears. Linkage between the lanes must be ensured to
merge them, and the linkage between waypoints is also crucial.

3.2.10. Increase Action Cost

If necessary, increase the action cost, the default value of which is set to zero. Editing
the traversal cost can help the global planner generate the optimal path. With a cost of
zero, only the global path with the shortest distance is generated. However, in reality, the
shortest path is not always the optimal path, for example, if it includes back streets full of
illegal parking.

To optimize the path, change the action cost by clicking the lanes to be avoided. Enter
the increased cost into Action Cost. The increased cost is then reflected to all the waypoints
on the lane. The increased cost can be also reflected to a specific waypoint by clicking the
waypoint, instead of the lane.

3.2.11. Decrease Maximum Speed

If necessary, decrease the maximum speed. Editing the maximum speed can help the
global planner generate a safe speed profile. Although not mentioned in the previous stage,
the target speed assigned to each waypoint is determined by the maximum speed specified
by the Road Traffic Act. The default value of the maximum speed is based on this value.
Although the global planner uses the target speed as is, the local planner changes the speed
to evade obstacles within the lane. The local planner also decreases the target speed during
a turn; however, the target speed decreases as a function of the lane curvature in a tight
corner. In this scenario, a vehicle may not decelerate in a timely manner during a turn. To
avoid such problems, it is beneficial for the global planner to decrease the target speed in
the mapping process.

Change the maximum speed by clicking the lane in which the vehicle must slow down.
Enter the reduced speed as the Max Speed. The reduced speed is then reflected to all the
waypoints on the lane and can be reflected to a specific waypoint by clicking the waypoint
instead of the lane.

3.2.12. Set Road Boundary

The road boundary must ideally be set such that the local planner only needs to react
to obstacles within the lane. This setting can help address the perceptual inaccuracy. A
representative example is swerving to avoid colliding with bollards. Because bollards are
placed in the middle or at the end of the road, they are likely to be misidentified as obstacles
within the lane. The boundary, also referred to as a wayarea, is in the form of a polygon
with a set of points. To position the points accurately, the generated pointcloud map can
be imported.

Right-click the map view. In the generated pop-up window, hover the pointer over
the Load PointCloud button and click the Folder of .pcd(s) in the hover box that appears.
Select the folder containing the relevant PCD files and click the Open button. Confirm that
the registered pointcloud map is overlaid with the road network map under construction.

Again, right-click the map view. In the generated pop-up window, hover the pointer
over Insert and click the Boundary button in the hover box that appears. Click the location
at which a point is desired. Add points sequentially and press the enter key to insert
the enclosed boundary or the Esc key to delete it. Click the added point and enter its z
coordinate into Z. Although not mandatory, the height of the added point must preferably

Sensors 2022, 22, 7056 20 of 25

be similar to those of nearby entities. To reshape the boundary, the existing points on
the boundary can be moved or removed. Alternatively, new points can be added. To
move points, click and drag the point while pressing the Shift key, or click and enter
its new coordinates as X and Y. To add or remove points, press the plus or minus sign
keys, respectively.

3.2.13. Insert Stop Lines

If necessary, insert a stop line, similar to inserting a new lane. Right-click the map
view. In the generated pop-up window, hover the pointer over the Insert and click the Stop
Line in the hover box that appears. The stop line can only consist of two endpoints. Click
the location at which one endpoint is desired. By adding the other endpoint, the stop line
can be approximately located.

To accurately locate the stop line, revert to the first stage. Launch Global Mapper to
convert the SHP file representing the stop line to a CSV file. The applicable SHP file is
B2_Surfacelinemark or A2_STOP, depending on the version of the NGII vector map format.

Load the converted CSV file and save it as a KML file. Right-click the map view.
In the generated pop-up window, hover the pointer over the Save Map button and click
ASSURE.kml in the hover box that appears. Type a KML filename and click the Save button.
Continue to run the ASSURE map editor to load the converted KML file and identify the
position of the stop line. Right-click the map view. In the generated pop-up window,
hover the pointer over Load Map, and click the Merge Items .kml button in the hover box
that appears. Note that the loaded stop line is not a part of the road network map being
constructed and used only to evaluate its position.

Click the endpoint; the properties of the selected endpoint appear under the Point Info
in the info view. Using the X, Y, and Z of the endpoint, the approximately located stop line
can be relocated. Ensure that the finely located stop line sufficiently reaches the lane to be
connected to. If not, extend the lane. Click the stop line; the properties of the selected stop
line appear under the Stop Line Info in the info view. The stop line and lane are linked by
entering the lane ID and stop line ID into the Lane ID and SL ID, respectively. To activate
the linked stop line, it must be joined again to either the traffic sign or lights, depending on
the presence of traffic lights at the intersection.

3.2.14. Insert Traffic Signs

If the stop line is located at a non-signalized intersection, insert the traffic sign. Right-
click the map view. In the generated pop-up window, hover the pointer over Insert, and
click the Sign button in the hover box that appears. The Sign button is used to specify the
position and type of the traffic sign. Only the stop sign is available at the present. Click to
set the position of the traffic sign and click again to set its orientation. Click the traffic sign;
the properties of the selected traffic sign appear under Sign Info in the info view. The traffic
sign ID is assigned to Sign ID. Click Type and press the right arrow key to select the stop
sign. Click the associated stop line and enter the Sign ID into Stop Sign ID. To relocate the
stop sign, click on it. The sign is represented by a rectangle with a midline and two points.
The large point is within the rectangle, and the small point is in the orbit around the large
point. To move the stop sign, click and drag the large point while pressing the Shift key, or
click and enter its new coordinates into X, Y, and Z. To rotate the stop sign, click and drag
the small point while pressing the Shift key.

3.2.15. Insert Traffic Lights

If the stop line is located at a signalized intersection, insert the traffic light. Right-click
the map view. In the generated pop-up window, hover the pointer over Insert and click the
Light button in the hover box that appears. The Light button is used to specify the position
and type of the traffic light bulb. The signal types for vehicles are green, yellow, red, left,
and right and those for pedestrians are green and red. Similar to the traffic sign, click to set
the position of the traffic light bulb and click it again to set its orientation. The positions

Sensors 2022, 22, 7056 21 of 25

of traffic lights must be as close to the real situation as possible because the TLR in the
developed AD system requires the accurate location of the traffic lights on the road network
map. Click the traffic light bulb; the properties of the selected traffic light bulb appear
under Traffic Light Info in the info view. The traffic light ID is assigned to TL ID. Click Type
and press the right arrow key to select the relevant signal type. Enter the associated stop
line ID into Stop Line. In addition, click Controlled Lanes, and press the plus sign key. In
the generated blanks > LID, enter the associated lane IDs. The opposite way around, click
the associated stop line. Click Related Lights, and press the plus sign key as many times
as the number of the traffic light bulbs to be linked. In the generated blanks > LID, enter
the associated traffic light IDs. The traffic light can be relocated in the same fashion as the
traffic sign.

3.3. Validation

The final stage is to test the edited vector data using the path-planning module of
Autoware. As mentioned, OpenPlanner is a representative path-planning module within
Autoware [16]. The module incorporates global, local, and behavior planners that are
implemented as a series of ROS nodes (see Table 14). The global planner uses the traversal
cost to determine the optimal path. Based on the global path, the local planner uses the
collision cost to determine the best trajectory among candidate trajectories, also referred
to as roll-outs. To this end, the lidar_kf_contour_tracker node from the detection module
and op_motion_predictor node are engaged between the op_trajectory_generator node and
op_trajectory_evaluator node in the path-planning module.

Table 14. List of ROS nodes comprising OpenPlanner and their main inputs and outputs.

Module ROS Node Main Input Main Output (ROS Topic)

Path planning
(Global planner) op_global_planner

Start pose
Goal poses
Vector map

Global path (/lane_waypoints_array)

Path planning
(Local planner)

op_common_params Common parameters for the local planner
op_trajectory_generator Global path Local trajectories (/local_trajectories)

Detection lidar_kf_contour_tracker Detected objects Tracked objects (/tracked_objects)
Path planning
(Local planner)

op_motion_predictor Tracked objects Predicted objects (/predicted_objects)

op_trajectory_evaluator Local trajectories
Predicted objects

Best local trajectory
(/local_weighted_trajectories)

Local trajectory cost (/local_trajectory_cost)
Path planning

(Behavior planner) op_behavior_selector Best local trajectory
Local trajectory cost

Behavior states (/op_current_behavior)
Final waypoints (/final_waypoints)

The global planner uses the traversal cost to determine the optimal path. Based
on the global path, the local planner uses the collision cost to determine the best trajec-
tory among the candidate trajectories, also referred to as the roll-outs. To this end, the
lidar_kf_contour_tracker node from the detection module and op_motion_predictor node
are engaged between the op_trajectory_generator node and op_trajectory_evaluator node
in the path-planning module.

Launch Autoware. The actual usage of Autoware for path planning has been screen
recorded in [17]. As in the previous validation process, specify Localizer and Baselink to
Localizer in the Setup Table The Vehicle Model and Vehicle Info can be optionally provided.
Instead of loading the edited vector data by pressing the Vector Map button in the Map
tab, edit the launch file of the op_global_planner node. Set the mapSource argument to
two (KML file) and provide its path and filename to the mapFileName argument. Revert
to the Map tab, and specify TF. In the Computing tab, launch the connector node by
checking off the box of vel_pose_connect. In the pop-up window generated by clicking
[app], check off the Simulation Mode box and press the OK button. As discussed, the
current pose is measured by the matching node. The current velocity is measured from

Sensors 2022, 22, 7056 22 of 25

the vehicle side and transmitted to the connector node via the CAN bus. In simulation
mode, these measurements are replaced with the estimates provided by the simulator
built in Autoware, which is known as the wf_simulator. Launch the tracker node by
checking off the kf_contour_tracker box. Launch the global planner node by checking off
the op_global_planner box. In the pop-up window that is generated by clicking [app], check
off the RViz Goals box and press the OK button. In doing so, the user can specify the start
and goal poses in RViz. In addition, check off the Enable Smoothing, Enable Replanning,
and Enable Lane Changing boxes. Click the RViz button. Confirm that the generated road
network map is displayed. In the Displays panel, check off the Vector Map Centerlines
box to display the lane edited in the previous stage. The name may differ according to a
configuration file (/vector_map_center_lines_rviz is published). Press the 2D Pose Estimate
and Nav Goal buttons to set the start and goal poses, respectively. The goal pose can be set
multiple times to allow the vehicle to navigate consecutively with replanning. By doing
this, the vehicle starts for the next goal as soon as it reaches the current goal. If the Global
Path box in the Displays panel is checked, the generated global path is displayed.

Repeatedly send the op_global_planner node all possible start and goal locations, and
see if the optimal path can be generated as a result of global planning based on the created
vector map. As previously mentioned, the operational area consists of main streets without
back streets. Hence, the global planning requires only a simple validation, and the shortest
path is the optimal path. In the operational area, the long loop is preferable to the short
loop because in the long loop, considerable validation is required for local and behavioral
planning, such as lane changing before traversing the signalized intersection. Starting from
a one-way road between the long and short loops, the global path around the long loop
can be generated by setting an intermediate goal; otherwise, the global path is generated
pertaining to the short loop (see Figure 11a).

Launch the local planner nodes by checking off op_common_params, op_trajectory_
generator, op_motion_predictor, and op_trajectory_evaluator. In the pop-up window that
is generated by clicking [app], check off the Enable Prediction box, and press the OK
button. In doing so, the op_trajectory_evaluator node can use the estimated trajectories of
dynamic obstacles and their measured contour to calculate the collision cost. The calculated
cost is reflected to the generated trajectories of the vehicle, which can be represented by
color. Generally, a darker red corresponds to a higher cost. Therefore, the red trajectory
represents the fully blocked trajectory with the highest cost, whereas the pink trajectory
indicates the optimal trajectory with the lowest cost. As the final node in the local planning
pipeline, launch the behavior planner node by checking off the box of op_behavior_selector.
Launch the filter node by checking off the twist_filter box, and launch the waypoint
follower node by checking off the pure_pursuit box. The pure_pursuit node publishes the
twist command to the twist filter node in/twist_raw. The twist filter node consecutively
publishes the modified command in/twist_cmd by smoothening and limiting the linear
and angular velocities. Provide the velocity command, and check if the vehicle can follow
the best trajectory generated as a result of local planning based on the created vector
map. Additionally, see if the vehicle can handle discrete behaviors, such as avoiding
dynamic obstacles and stopping before a stop line or traffic lights in consequence of
behavior planning.

The main test scenarios to validate the generated vector map were possible only
with the wf_simulator. This is because lane following, lane changing, and intersection
traversal can be performed without dynamic obstacles. Although not the main test scenario,
swerving to avoid dynamic obstacles was impossible due to the limited functionality
of the wf_simulator. For more rigorous and comprehensive validation, state-of-the-art
simulators, such as CARLA [18], LGSVL [19], and CarMaker [20–23] are required. We
instead performed physical tests in the operational area.

Sensors 2022, 22, 7056 23 of 25

Figure 11. Validation results of the generated road network map. (a) Vehicle trajectory from the
start to goal locations, generated based on lane centerlines. J, LC, and TR refer to junction, lane
changing, and right turn, respectively. (b) Positioning error, a measurement by comparing the current
positions of the vehicle and its nearest waypoint. (c) Behavior state transition according to operations
supported by the generated vector map.

While autonomously driving around the long loop, the positioning error between the
reference and actual trajectories was observed to be less than 0.1 m, except near intersections
(see Figure 11b). As mentioned, the reference trajectory was generated based on lane
centerlines in the created vector map, and the actual trajectory followed by the vehicle
was measured by the LiDAR localizer. The error can be attributed to the difference in the
current positions of the vehicle and its nearest waypoint. The long loop had four signalized
intersections (J1 to J4), and the vehicle turned right at J1, J3, and J4. To avoid illegal parking,
the vehicle drove in the middle lane and moved to the far-right lane when approaching
the intersection. The error increased during lane changing because the vehicle moved
between waypoints on the lanes. Moreover, the error increased when turning right because

Sensors 2022, 22, 7056 24 of 25

the vehicle was steered by more than the amount referenced by the local planner. This
behavior depended on the look-ahead distance in the pure_pursuit node. The behavior
states transitioned from/to FORWARD (2), STOPPING (3), TRAFFIC_LIGHT_STOP (5),
TRAFFIC_LIGHT_WAIT (6), STOP_SIGN_STOP (7), STOP_SIGN_WAIT (8), FOLLOW
(9), and OBSTACLE_AVOIDANCE (11) (see Figure 11c). Among the four signalized
intersections in the long loop, the vehicle stopped at a red light at J1 and J3. Moreover, the
vehicle stopped at both the vehicle and pedestrian traffic lights at J1, whereas it stopped
only at the pedestrian traffic lights at J3. In the case of the signalized intersections, the state
proceeded with 2, 3, 5, 6, and 2. In the case of the non-signalized intersections, states 5 and
6 were replaced by states 7 and 8, respectively. The vehicle almost stopped and swerved to
avoid colliding with a long truck parked near J4, and the state proceeded accordingly with
2, 9, 11, and 2.

4. Conclusions

In this paper, we presented two separate but successive HD map generation workflows
for pointcloud and vector maps. The generated HD maps were implemented into the
localization and path-planning modules, respectively. The implemented HD maps were
validated in the AD system of an environmental-monitoring vehicle. Exploiting the HD
maps, we obtained a provisional driving permit by passing a screening test held at K-City,
an unpopulated city for autonomous vehicles. K-City is equipped with five major test
environments: high-speed, urban, rural, pedestrian-centric roads, and a parking lot. The
driving permit was required to deploy the vehicle to the operational area, the Pyeong-dong
industrial complex in Gwangju-si. The Ministry of Land, Infrastructure, and Transport in
Korea has revised the provisional driving permit regulations. To facilitate the development
of unmanned vehicles, their types are subdivided into A, B, and C. Type C does not require
attendants to operate. The environmental-monitoring vehicle is of type C, and it was
recorded as the first vehicle to obtain the type C driving permit, according to the revised
regulations. Using the HD maps, we could subsequently achieve the accumulated mileage
of 200 km with no intervention in the operational area.

Future work is needed to generalize the HD map format. Although we selected AS-
SURE KML, owing to its compatibility with the path-planning module, more standardized
PSFs such as OpenDRIVE will be required to render the AD system more expandable. As
described, the HD maps were generated based on entities involved in the NGII vector
map: B2_Surfacelinemark and B3_Surfacemark for the pointcloud map and A2_Link for
the vector map. Therefore, map format conversion will be necessary, for instance, between
NGII and OpenDRIVE.

Author Contributions: Conceptualization, H.D. and W.S.; methodology, H.D. and W.S.; software,
J.J., H.D. and W.S.; validation, J.J., J.Y.Y., H.L. and W.S.; investigation, W.S.; writing—original draft
preparation, J.J. and W.S.; writing—review and editing, W.S.; visualization, W.S. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by Chosun University, 2019.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liu, R.; Wang, J.; Zhang, B. High definition map for automated driving: Overview and analysis. J. Navig. 2020, 73, 324–341.

[CrossRef]
2. Explanation and Guidance Materials of High-Definition Road Maps. Available online: https://www.ngii.go.kr/kor/contents/

view.do?sq=1251&board_code=contents_data (accessed on 25 June 2022).
3. Tsushima, F.; Kishimoto, N.; Okada, Y.; Che, W. Creation of high definition map for autonomous driving. Int. Arch. Photogramm.

Remote Sens. Spat. Inf. Sci.—ISPRS Arch. 2020, 43, 415–420. [CrossRef]
4. Operational Behavior of a High Definition Map Application White Paper. Available online: https://aecc.org/wp-content/

uploads/2020/07/Operational_Behavior_of_a_High_Definition_Map_Application.pdf (accessed on 25 June 2022).
5. Won, S.Y.; Jeon, Y.J.; Jeong, H.W.; Kwon, C.O. A comparison of Korea standard HD map for actual driving support of autonomous

vehicles and analysis of application layers. KAGIS 2020, 23, 132–145.

http://doi.org/10.1017/S0373463319000638
https://www.ngii.go.kr/kor/contents/view.do?sq=1251&board_code=contents_data
https://www.ngii.go.kr/kor/contents/view.do?sq=1251&board_code=contents_data
http://doi.org/10.5194/isprs-archives-XLIII-B4-2020-415-2020
https://aecc.org/wp-content/uploads/2020/07/Operational_Behavior_of_a_High_Definition_Map_Application.pdf
https://aecc.org/wp-content/uploads/2020/07/Operational_Behavior_of_a_High_Definition_Map_Application.pdf

Sensors 2022, 22, 7056 25 of 25

6. Choi, H.S.; Kim, J.D. A Comparative Study on the Regulation-Free Special Zone and the Regional Special Development Zone.
J. Digit. Converg. 2019, 17, 31–36.

7. Lee, M.H.; Jang, I.S.; Kim, M.S. A study on data model conversion method for the application of autonomous driving of various
kinds of HD Map. J. Cadastre Land Inf. 2021, 51, 39–51.

8. Darweesh, H.; Takeuchi, E.; Takeda, K. OpenPlanner 2.0: The Portable Open Source Planner for Autonomous Driving Applications.
In Proceedings of the 2021 IEEE Intelligent Vehicles Symposium Workshops (IV Workshops), Nagoya, Japan, 11–17 July 2021.

9. Behavior Signal Processing Laboratory at Nagoya University. Available online: https://sites.google.com/a/g.sp.m.is.nagoya-u.
ac.jp/takedalab-en/home (accessed on 25 June 2022).

10. Autoware—Mapping Using Rosbag. Available online: https://youtu.be/ss6Blrz23h8 (accessed on 25 June 2022).
11. 3D High-Definition Map (Shape) Download. Available online: http://map.ngii.go.kr/ms/pblictn/preciseRoadMap.do (accessed

on 25 June 2022).
12. Usage of CloudCompare for Pointcloud Mapping. Available online: https://youtu.be/xFhbmgWyUEA (accessed on

25 June 2022).
13. Magnusson, M.; Nuchter, A.; Lorken, C.; Lilienthal, A.J.; Hertzberg, J. Evaluation of 3D registration reliability and speed—A

comparison of ICP and NDT. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation (ICRA2009),
Kobe, Japan, 12–17 May 2009.

14. ASSURE Map Editor. Available online: https://github.com/hatem-darweesh/assuremappingtools/blob/master/docs/
ASSURE%20Map%20Editor%20Documentation%200.6.pdf (accessed on 25 June 2022).

15. Usage of ASSURE Map Editor for Vector Mapping. Available online: https://youtu.be/qBssNCAshTY (accessed on 25 June 2022).
16. Darweesh, H.; Takeuchi, E.; Takeda, K.; Ninomiya, Y.; Sujiwo, A.; Morales, L.Y.; Akai, N.; Tomizawa, T.; Kato, S. Open source

integrated planner for autonomous navigation in highly dynamic environments. JRM 2017, 29, 668–684. [CrossRef]
17. OpenPlanner V1.5 How to Start. Available online: https://youtu.be/BS5nLtBsXPE (accessed on 25 June 2022).
18. Dosovitskiy, A.; Ros, G.; Codevilla, F.; Lopez, A.; Koltun, V. CARLA: An open urban driving simulator. In Proceedings of the

Conference on robot learning, Mountain View, CA, USA, 13–15 November 2017.
19. Rong, G.; Shin, B.H.; Tabatabaee, H.; Lu, Q.; Lemke, S.; Možeiko, M.; Boise, E.; Uhm, G.; Gerow, M.; Mehta, S.; et al. Lgsvl

simulator: A high fidelity simulator for autonomous driving. In Proceedings of the 2020 IEEE 23rd International conference on
intelligent transportation systems (ITSC), Rhodes, Greece, 20–23 September 2020.

20. Aparow, V.R.; Choudary, A.; Kulandaivelu, G.; Webster, T.; Dauwels, J.; de Boer, N. A comprehensive simulation platform
for testing autonomous vehicles in 3D virtual environment. In Proceedings of the 2019 IEEE 5th International Conference on
Mechatronics System and Robots (ICMSR), Singapore, 3–5 May 2019.

21. Hong, C.J.; Aparow, V.R. System configuration of Human-in-the-loop Simulation for Level 3 Autonomous Vehicle using IPG
CarMaker. In Proceedings of the 2021 IEEE International Conference on Internet of Things and Intelligence Systems (IoTaIS),
Bandung, Indonesia, 23–24 November 2021.

22. Dixit, S.; Montanaro, U.; Dianati, M.; Oxtoby, D.; Mizutani, T.; Mouzakitis, A.; Fallah, S. IEEE Trans. Intell. Transp. Syst. 2019, 21,
2310–2323. [CrossRef]

23. Nalic, D.; Eichberger, A.; Hanzl, G.; Fellendorf, M.; Rogic, B. Development of a co-simulation framework for systematic generation
of scenarios for testing and validation of automated driving systems. In Proceedings of the 2019 IEEE Intelligent Transportation
Systems Conference (ITSC), Auckland, New Zealand, 27–30 October 2019.

https://sites.google.com/a/g.sp.m.is.nagoya-u.ac.jp/takedalab-en/home
https://sites.google.com/a/g.sp.m.is.nagoya-u.ac.jp/takedalab-en/home
https://youtu.be/ss6Blrz23h8
http://map.ngii.go.kr/ms/pblictn/preciseRoadMap.do
https://youtu.be/xFhbmgWyUEA
https://github.com/hatem-darweesh/assuremappingtools/blob/master/docs/ASSURE%20Map%20Editor%20Documentation%200.6.pdf
https://github.com/hatem-darweesh/assuremappingtools/blob/master/docs/ASSURE%20Map%20Editor%20Documentation%200.6.pdf
https://youtu.be/qBssNCAshTY
http://doi.org/10.20965/jrm.2017.p0668
https://youtu.be/BS5nLtBsXPE
http://doi.org/10.1109/TITS.2019.2916354

	Introduction
	Pointcloud Map
	Laser Scanning
	Mapping
	Registration (Remapping)
	Validation

	Vector Map
	Preprocessing
	Mapping
	Load Lanes
	Link Lanes (One-to-One)
	Insert Lanes
	Smooth Lanes
	Link Lanes (One-to-Many)
	Link Waypoints (Longitudinal)
	Inspect Linkage
	Link Waypoints (Lateral)
	Split/Merge Lanes
	Increase Action Cost
	Decrease Maximum Speed
	Set Road Boundary
	Insert Stop Lines
	Insert Traffic Signs
	Insert Traffic Lights

	Validation

	Conclusions
	References

