Ultra-High Sensitivity Ultrasonic Sensor with an Extrinsic All-Polymer Cavity
Abstract
:1. Introduction
2. Principle of the Sensor
3. Experimental Result and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Yuan, H.; Liu, X.; Bai, Q.; Zhang, H.; Gao, Y.; Jin, B. A Comprehensive Study of Optical Fiber Acoustic Sensing. IEEE Access 2019, 7, 85821–85837. [Google Scholar] [CrossRef]
- Xiang, Z.; Dai, W.; Rao, W.; Cai, X.; Fu, H. A Gold Diaphragm-Based Fabry-Perot Interferometer with a Fiber-Optic Collimator for Acoustic Sensing. IEEE Sens. J. 2021, 21, 17882–17888. [Google Scholar] [CrossRef]
- Bucaro, J.A.; Dardy, H.D.; Carome, E.F. Fiber-optic hydrophone. J. Acoust. Soc. USA 1977, 62, 1302–1304. [Google Scholar] [CrossRef]
- Cole, J.H.; Johnson, R.L.; Bhuta, P.G. Fiber-optic detection of sound. J. Acoust. Soc. USA 1977, 62, 1136–1138. [Google Scholar] [CrossRef]
- Dong, B.; Zhang, B.H.; Ng, J.H.; Wang, Y.X.; Yu, C.Y. Ultrahigh-Sensitivity Fiber Acoustic Sensor with a Dual Cladding Modes Fiber Up-Taper Interferometer. IEEE Photonics Technol. Lett. 2015, 27, 2234–2237. [Google Scholar] [CrossRef]
- Liu, B.; Lin, J.; Liu, H.; Ma, Y.; Yan, L.; Jin, P. Diaphragm based long cavity Fabry–Perot fiber acoustic sensor using phase generated carrier. Opt. Commun. 2017, 382, 514–518. [Google Scholar] [CrossRef]
- Fan, H.; Zhang, L.; Gao, S.; Chen, L.; Bao, X. Ultrasound sensing based on an in-fiber dual-cavity Fabry–Perot interferometer. Opt. Lett. 2019, 44, 3606–3609. [Google Scholar] [CrossRef]
- Liu, X.; Gang, T.; Tong, R.; Qiao, X.; Zuo, C.; Bai, X.; Bian, C.; Hu, M. Air-coupled fiber Fabry-Perot ultrasonic sensor formed by diaphragm for seismic physical model imaging. Optik 2018, 168, 794–799. [Google Scholar] [CrossRef]
- Li, C.; Peng, X.; Zhang, H.; Wang, C.; Fan, S.; Cao, S. A sensitivity-enhanced flexible acoustic sensor using side-polished fiber Bragg grating. Measurement 2018, 117, 252–257. [Google Scholar] [CrossRef]
- Campopiano, S.; Cutolo, A.; Cusano, A.; Giordano, M.; Parente, G.; Lanza, G.; Laudati, A. Underwater acoustic sensors based on fiber Bragg gratings. Sensors 2009, 9, 4446–4454. [Google Scholar] [CrossRef] [Green Version]
- Fomitchov, P.A.; Krishnaswamy, S. Response of a fiber Bragg grating ultrasonic sensor. Opt. Eng. 2003, 42, 956–963. [Google Scholar] [CrossRef]
- Liang, G.; Jiang, J.; Liu, K.; Wang, S.; Xu, T.; Chen, W.; Ma, Z.; Ding, Z.; Zhang, X.; Zhang, Y. Phase demodulation method based on a dual-identical-chirped-pulse and weak fiber Bragg gratings for quasi-distributed acoustic sensing. Photon. Res. 2020, 8, 1093–1099. [Google Scholar] [CrossRef]
- Vidakovic, M.; McCague, C.; Armakolas, I.; Sun, T.; Carlton, J.S.; Grattan, K.T. Fibre Bragg grating-based cascaded acoustic sensors for potential marine structural condition monitoring. J. Lightwave Technol. 2016, 34, 4473–4478. [Google Scholar] [CrossRef]
- Gang, T.; Hu, M.; Qiao, X.; Li, J.; Shao, Z.; Tong, R.; Rong, Q. Fiber-optic Michelson interferometer fixed in a tilted tube for direction-dependent ultrasonic detection. Opt. Lasers Eng. 2017, 88, 60–64. [Google Scholar] [CrossRef]
- Fan, P.; Yan, W.; Lu, P.; Zhang, W.; Zhang, W.; Fu, X.; Zhang, J. High sensitivity fiber-optic Michelson interferometric low-frequency acoustic sensor based on a gold diaphragm. Opt. Express 2020, 28, 25238–25249. [Google Scholar] [CrossRef]
- Liu, L.; Lu, P.; Liao, H.; Wang, S.; Yang, W.; Liu, D.; Zhang, J. Fiber-optic michelson interferometric acoustic sensor based on a PP/PET diaphragm. IEEE Sens. J. 2016, 16, 3054–3058. [Google Scholar] [CrossRef]
- Lan, C.; Zhou, W.; Xie, Y. Detection of Ultrasonic Stress Waves in Structures Using 3D Shaped Optic Fiber Based on a Mach–Zehnder Interferometer. Sensors 2018, 18, 1218. [Google Scholar] [CrossRef]
- Ouyang, B.; Li, Y.; Kruidhof, M.; Horsten, R.; van Dongen, K.W.; Caro, J. On-chip silicon Mach–Zehnder interferometer sensor for ultrasound detection. Opt. Lett. 2019, 44, 1928–1931. [Google Scholar] [CrossRef]
- Peternella, F.G.; Ouyang, B.; Horsten, R.; Haverdings, M.; Kat, P.; Caro, J. Interrogation of a ring-resonator ultrasound sensor using a fiber Mach-Zehnder interferometer. Opt. Express 2017, 25, 31622–31639. [Google Scholar] [CrossRef]
- Rivera, J.L.; Sánchez, M.P.; Miridonov, A.; Stepanov, S. Adaptive Sagnac interferometer with dynamic population grating in saturable rare-earth-doped fiber. Opt. Express 2013, 21, 4280–4290. [Google Scholar] [CrossRef]
- Hu, S.; Dong, B.; Yu, K.; Zhou, J.; Wang, L. A hydrophone based on high-birefringence fiber loop mirror. SPIE 2010, 7659, 197–202. [Google Scholar]
- Liu, B.; Zhou, H.; Liu, L.; Wang, X.; Shan, M.; Jin, P.; Zhong, Z. An Optical Fiber Fabry-Perot Microphone Based on Corrugated Silver Diaphragm. IEEE Trans. Instrum. Meas. 2018, 67, 1994–2000. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, J.; Wang, J.; Wan, H.; Zhang, Z. A multi-frequency fiber optic acoustic sensor based on graphene-oxide Fabry-Perot microcavity. Opt. Fiber Technol. 2021, 65, 102607. [Google Scholar] [CrossRef]
- Gang, T.; Zuo, C.; Liu, X.; Bai, X.; Hu, M. High-sensitive ultrasonic sensor using fiber-tip PVC diaphragm Fabry-Perot interferometer and its imaging application. Sens. Actuators A Phys. 2018, 279, 474–480. [Google Scholar] [CrossRef]
- Wang, M.; Liu, T.; Wu, Y.; Rao, Y. Highly Sensitive Optical Fiber Ultrasonic Sensor for Partial Discharge Detection. In Optical Fiber Sensors Conference 2020 Special Edition; Optica Publishing Group: Washington, DC, USA, 2020; p. W4.14. [Google Scholar]
- Wang, Z.; Gao, C.; Chen, Z.; Ren, W.; Xie, H.; Wang, W. A Novel EFPI Sensor for Ultrasonic Testing of Partial-Discharge in High-Voltage Electrical Equipment. IEEE Access 2021, 9, 163456–163460. [Google Scholar] [CrossRef]
- Qian, G.; Peng, Q.; Peng, H.; Wang, S.; Zhang, Z.; Lei, J. A Polyimide Diaphragm-Based Extrinsic Optical Fiber Fabry-Perot Acoustic Sensor for the Detection of High-Frequency Ultrasonic Signals in Transformer Oil. In 2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE, Beijing); 2020; pp. 1–4. Available online: https://ieeexplore.ieee.org/abstract/document/9279504 (accessed on 8 August 2022).
- Yao, M.; Zhang, Y.; Ouyang, X.; Ping Zhang, A.; Tam, H.-Y.; Wai, P.K.A. Ultracompact optical fiber acoustic sensors based on a fiber-top spirally-suspended optomechanical microresonator. Opt. Lett. 2020, 45, 3516–3519. [Google Scholar] [CrossRef]
- Yin, X.; Shen, Y.; Su, D.; Shao, Z. High-spatial-resolution ultrasonic sensor using a fiber-optic Fabry–Perot interferometer. Opt. Commun. 2019, 453, 124422. [Google Scholar] [CrossRef]
- Si, W.; Fu, C.; Wu, X.; Lu, Q.; He, L.; Yuan, P. Study on the fiber optic EFPI ultrasonic transducer with a beam-supported membrane structure for PD measurement. In 2019 IEEE Sustainable Power and Energy Conference (iSPEC, Beijing); 2019; pp. 2856–2859. Available online: https://ieeexplore.ieee.org/abstract/document/8975217 (accessed on 8 August 2022).
- Wang, W. Fabry-Perot Interference Fiber Acoustic Wave Sensor Based on Laser Welding All-Silica Glass. Materials 2022, 15, 2484. [Google Scholar] [CrossRef]
- Xiao, M.; Yin, S.; Xie, S.; Zhou, C.; Tian, J.; Yao, Y. All-Fiber Ultrasonic Sensor Based On Ultrathin Silica Reflective Diaphragm. In Proceedings of the 2019 18th International Conference on Optical Communications and Networks (ICOCN, Huangshan), Huangshan, China, 5–8 August 2019; pp. 1–3. [Google Scholar]
- Gong, Z.; Chen, K.; Zhou, X.; Yang, Y.; Zhao, Z.; Zou, H.; Yu, Q. High-Sensitivity Fabry-Perot Interferometric Acoustic Sensor for Low-Frequency Acoustic Pressure Detections. J. Lightwave Technol. 2017, 35, 5276–5279. [Google Scholar] [CrossRef]
- Heming, W.; Sridhar, K. Femtosecond laser fabricated Fabry-Perot sensors on optical fiber tip for acoustic sensor. SPIE 2019, 10972, 265–271. [Google Scholar]
- Ma, J.; Xuan, H.; Ho, H.L.; Jin, W.; Yang, Y.; Fan, S. Fiber-Optic Fabry–Pérot Acoustic Sensor With Multilayer Graphene Diaphragm. IEEE Photonics Technol. Lett. 2013, 25, 932–935. [Google Scholar] [CrossRef]
- Gong, Z.; Chen, K.; Yang, Y.; Zhou, X.; Peng, W.; Yu, Q. High-sensitivity fiber-optic acoustic sensor for photoacoustic spectroscopy based traces gas detection. Sens. Actuators B Chem. 2017, 247, 290–295. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Dong, B.; Huang, W.; Yi, Y.; Chan, C.; Ruan, S.; Hou, S. Ultra-High Sensitivity Ultrasonic Sensor with an Extrinsic All-Polymer Cavity. Sensors 2022, 22, 7069. https://doi.org/10.3390/s22187069
Chen Z, Dong B, Huang W, Yi Y, Chan C, Ruan S, Hou S. Ultra-High Sensitivity Ultrasonic Sensor with an Extrinsic All-Polymer Cavity. Sensors. 2022; 22(18):7069. https://doi.org/10.3390/s22187069
Chicago/Turabian StyleChen, Zongyu, Bo Dong, Wobin Huang, Yunji Yi, Chichiu Chan, Shuangchen Ruan, and Shaoyu Hou. 2022. "Ultra-High Sensitivity Ultrasonic Sensor with an Extrinsic All-Polymer Cavity" Sensors 22, no. 18: 7069. https://doi.org/10.3390/s22187069
APA StyleChen, Z., Dong, B., Huang, W., Yi, Y., Chan, C., Ruan, S., & Hou, S. (2022). Ultra-High Sensitivity Ultrasonic Sensor with an Extrinsic All-Polymer Cavity. Sensors, 22(18), 7069. https://doi.org/10.3390/s22187069