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Abstract: In recent decades, the increased use of sensor technologies, as well as the increase in
digitalisation of aircraft sustainment and operations, have enabled capabilities to detect, diagnose,
and predict the health of aircraft structures, systems, and components. Predictive maintenance and
closely related concepts, such as prognostics and health management (PHM) have attracted increasing
attention from a research perspective, encompassing a growing range of original research papers
as well as review papers. When considering the latter, several limitations remain, including a lack
of research methodology definition, and a lack of review papers on predictive maintenance which
focus on military applications within a defence context. This review paper aims to address these
gaps by providing a systematic two-stage review of predictive maintenance focused on a defence
domain context, with particular focus on the operations and sustainment of fixed-wing defence
aircraft. While defence aircraft share similarities with civil aviation platforms, defence aircraft exhibit
significant variation in operations and environment and have different performance objectives and
constraints. The review utilises a systematic methodology incorporating bibliometric analysis of
the considered domain, as well as text processing and clustering of a set of aligned review papers
to position the core topics for subsequent discussion. This discussion highlights state-of-the-art
applications and associated success factors in predictive maintenance and decision support, followed
by an identification of practical and research challenges. The scope is primarily confined to fixed-wing
defence aircraft, including legacy and emerging aircraft platforms. It highlights that challenges in
predictive maintenance and PHM for researchers and practitioners alike do not necessarily revolve
solely on what can be monitored, but also covers how robust decisions can be made with the quality
of data available.

Keywords: aircraft; decision-making; defence; diagnostics; maintenance; predictive; prognostics;
uncertainty

1. Introduction

Current strategies and policies for aircraft maintenance serve the goal of keeping
aircraft in an airworthy state, meaning they are safe for continued operations. Continued
airworthiness must be ensured while meeting objectives regarding the availability and
cost of aircraft operations, to ensure the economic use of aircraft. Current maintenance
programs—both in civil and military contexts—predominantly use “fixed-time-interval and
preventive maintenance programs . . . [which] . . . can lead to unplanned maintenance activ-
ities, comprehensive inspections when no damage is present, or unnecessary replacement
of undamaged parts” [1,2]. Over the last decades, the continued increase in the introduction
and use of sensor technologies, as well as the increased digitalisation of aircraft operations
and support, have opened avenues to monitor, assess, and predict the health of aircraft
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structures, systems, and components. These activities—typically encapsulated using terms
such as predictive maintenance, prognostics and health management (PHM), integrated
vehicle health management (IVHM) or aircraft health management (AHM)—feed into a
condition-based maintenance (CBM) strategy, which is estimated to provide significant ben-
efits in terms of both cost and time. For instance, a potential benefit of EUR 700 million per
year for the European aviation industry alone has been quoted [3], which does not account
for other regions, let alone other markets, such as defence sustainment and operations.

Besides promising major economic impact, the areas of predictive maintenance, CBM,
PHM, IVHM and closely related concepts have attracted increasing attention from a re-
search perspective. As shown in more detail in Section 2 of this paper, these areas have
received a recent surfeit of review papers, as well as original research papers studying vari-
ous aspects of detection, diagnostics, prognostics and decision support in detail. However,
despite this increase in interest, existing research has several major limitations:

1. While recent literature includes about 50 review papers addressing predictive main-
tenance or similar topics, such as PHM, across various application domains (such
as aerospace engineering, mechanical engineering, civil engineering, etc.), virtually
all authors do not define their review methodology. Little to no attention is paid
towards the review technique(s), definitions of scope and use of keywords. Further-
more, limited bibliometric analysis is available in the literature; only a few papers
make an effort to analyse the state-of-the-art using quantitative analysis. While the
findings of the review papers are typically insightful, the lack of definition of the
underlying methodology and non-compliance with PRISMA guidelines [4] makes
potential bias of these reviews a major issue.

2. There are no review papers on predictive maintenance which focus on military
applications and a defence context. As will be shown later, this context provides very
specific considerations to be taken into account for all stages of predictive maintenance,
including detection, diagnostics, prognostics, and decision-making. Current original
research papers in predictive maintenance for military applications are available but
have never been subjected to a structured review.

3. Despite several reviews covering the area of predictive maintenance and PHM, most
reviews provide limited insight into how the individual stages of predictive main-
tenance connect and integrate with each other, especially when considering the use
of prognostics output in decision-making.

This paper contributes to the state-of-the-art by addressing these shortcomings. With
reference to the first limitation identified above, it aims to provide a systematic two-stage
review of predictive maintenance. To address the second issue described above, this review
is focused on the defence domain context, with particular focus on the operations and
sustainment of fixed-wing defence aircraft. It applies high-level bibliometric analysis and,
uniquely, follows this up with relevance and clustering analysis of recent other review
papers via natural language processing algorithms, allowing the identification of clusters
of research which subsequently guide the discussion and interpretation of specific elements
of the typical predictive maintenance process. To address the third limitation, this paper
considers these typical elements in a consistent chain spanning from data acquisition to
detection, diagnostics, and prognostics of maintenance events (such as failures), followed
by decision-making.

The structure of this review paper is as follows. In Section 2, the review methodology
is described in detail, and quantitative results are provided. This includes a high-level
bibliometric analysis of predictive maintenance, showing trends in the state-of-the-art
over time. Subsequently, a systematic analysis of a set of 50 review papers is conducted
using natural language processing techniques, allowing for the identification of particular
terms of relevance as well as major clusters of research in predictive maintenance. These
results are used to inform the subsequent structure of this paper. The major stages of
predictive maintenance are adhered to, leading to a discussion of core aspects of predictive
maintenance in defence sustainment and operations in Section 3. At this point, it should
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be made clear that sustainment in this context refers to the on-going maintenance, system
replacement or modification, as well as maintenance programming, resourcing capabilities
and strategic planning that ensures defence aircraft are mission ready [5]. Subsequently,
major elements of decision-making are discussed in Section 4. This is followed by a
synthesis of major challenges and opportunities in predictive maintenance for defence
sustainment and operations in Section 5, followed by some brief conclusions.

2. Review Methodology: A Systematic Review Incorporating a Bibliometric Approach

To address one of the identified issues with existing review papers—as mentioned in
the introduction—it is imperative to conduct a systematic review while clearly explicating
the review methodology. As such, this section supports the overall problem statement
of the paper and explains the underlying review methodology. It is important that gaps
and challenges in the state-of-the-art are identified as well as trends in progressing prog-
nostics in aircraft maintenance. Therefore, a two-stage review methodology has been
implemented, incorporating:

1. Bibliometric analysis of literature within the scope of application: the aim of the
bibliometric analysis is to present a macro-view of predictive maintenance and its
trends over time.

2. Systematic analysis of existing review papers using natural language processing:
within the relevant body of research, existing review papers on predictive maintenance
and closely related terms, such as condition-based maintenance (CBM), integrated
vehicle health management (IVHM), Integrated System Health Management (ISHM)
and prognostics and health management (PHM), have been collated and analysed
using two natural language processing techniques. The aim of this analysis is to
identify key clusters of research. To this end, fifty recent review publications have
been analysed. The review papers are within the past 20 years, dating from 2000 to
2022. Machine learning and natural language processing algorithms, namely K-means
clustering and TF-IDF (Term Frequency-Inverse Document Frequency), have been
employed to analyse large amounts of text across the considered fifty documents.
These algorithms have been implemented using programming scripts within the scikit-
learn Python libraries [6]. Analysis has been performed across all fifty documents to
summarise the content into respective clusters of terms denoting the overall focus of
each individual paper. The results are shown in the subsequent sections.

2.1. Publication Trends in the Relevant Body of Knowledge

In Figure 1, four charts present a macro-view of the current body of knowledge relating
to engineering disciplines and specific to terms falling under predictive maintenance.
This is contrasted with research data on an alternative maintenance strategy, preventive
maintenance, for context. The data are sourced from Scopus (https://www.scopus.com/,
accessed in the period of 18 August 2022, one of the largest databases of scientific literature,
providing a curated dataset focussed on publications relevant to state-of-the-art research.
Analysis of the chart trendlines shows that over the past twenty years, there is a large
increase in the number of publications including the terms ‘predictive’ and ‘maintenance’,
while in contrast, publication numbers for ‘preventative’ or ‘preventive’ and ‘maintenance’
have not grown substantially.

The publications year-on-year with a moving average of five years to smooth out the
variability in publishing cycles are presented in Figure 2. It is evident that there is a large
rise year-on-year in predictive maintenance and prognostics publications, compared to a
steady flattening in preventative maintenance over the past five years.

https://www.scopus.com/
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Figure 2. Year-on-year trend comparison of publications at a rolling average of five years for the
period 2000–2021: “Prognostics”; “Diagnostics”; “Predictive Maintenance”; “Preventative OR Preven-
tive AND Maintenance” (source: Scopus).

Over the previous five years, publications have increased by 19% year-on-year rele-
vant to “Prognostics”, while in the same period, “Diagnostics” related publications have
increased by 8.1% year-on-year. This is indicative of the rising shift towards prognostics
capabilities and demand in engineering applications. Similarly, over the past five years,
publications have increased by 30.4% year-on-year relevant to “Predictive Maintenance”,
contrasting this with a lower year-on-year increase of 4.8% relevant to “Preventative OR
Preventive AND Maintenance” publications. At a high-level this is a clear distinguishing
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trend away from reactive preventative maintenance practices and a move towards more
proactive predictive maintenance.

2.2. TF-IDF and K-Means Clustering of Review Papers

This section takes a more in-depth view of the state-of-the-art, narrowing the analysis
to fifty review papers. These papers have been manually selected for relevance to the do-
main of aircraft predictive maintenance through an initial selection by keyword, subsequent
abstract review, followed by full paper review, bringing down the sample from several
hundred papers to the selected fifty. This down-selection was performed systematically
through identification of papers published within the past twenty years, focusing on review
papers only. Furthermore, these review papers were only selected if they had relevance to
aircraft maintenance or defence relevance in the context of fixed-wing aircraft, in line with
the scope of this review. The relevance was established by a thorough review of individual
review papers, including their stated scope, aims and objectives, and application domain(s).
Using TF-IDF and unsupervised learning K-means clustering, analysis has been performed
to identify and cluster the most critical key terms in the down-selected fifty papers. It is
important that the reader understands the basic underlying approach to the TF-IDF and
K-means analysis, both for contextualising the authors’ approach and for reproducibility
purposes. Hence, key analytical elements are detailed here, including the equations derived
in Python library scikit-learn scripts, namely the TF-IDF Vectorizer [7]. The term frequency
(TF) equation is defined by the number of times a term appears in a document, divided by
the total number of terms within the document:

TF(t, d) =
ft,d

∑t′∈d ft′ ,d
(1)

where f is the frequency of the term t within the document d. Similarly, the Inverse
Document Frequency (IDF) equation is defined as the natural log of the total number of
documents N in the corpus, divided by the number of documents D that contain the term t:

IDF(t, D) = log
(

1 + N
1 + ft,D

)
+ 1 (2)

Noting that 1 is added to the variables to ensure no division-by-zero; for example,
if the term is not in the corpus. Finally, a TF-IDF score is calculated by multiplying
Equations (1) and (2):

TF-IDF = TF(t, d)× IDF(t, D) (3)

The TF-IDF score is a simple straight-forward numerical statistic, indicative of how
important a word (or term) is to a document in a collection of documents (or corpus). It
should be noted that a level of pre-processing of the documents is carried out to remove
artefacts of text processing and to avoid terms such as ‘the’, being the most common word
in written English language.

The initial results of the TF-IDF analysis are shown in Table 1, where important terms
have been systematically identified across the corpus of 50 review publications relevant to
predictive maintenance in the engineering disciplines. This analysis is an objective method-
ology to assess high-level indicators in the state-of-the-art and categorise the documents
that share similarities. Furthermore, to identify overall trends, the terms across the corpus
can be ranked in order from highest to lowest according to their TF-IDF scores.
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Table 1. Fifty recent review publications analysed using TF-IDF with terms ranked in order by the
highest total score for all papers across the entire corpus.

Rank Term Rank Term Rank Term Rank Term

1 PHM 6 Damage 11 Composite 16 Decision
2 Fault 7 Structural 12 Diagnostics 17 Driven
3 Learning 8 Prognostics 13 Machine 18 Nonlinear
4 RUL 9 Engine 14 Noise 19 Turbine
5 SHM 10 Degradation 15 Deep 20 Reasoning

This is shown in Table 1, identifying that over the past approximately twenty years,
there is a clear trend towards terms such as PHM (prognostics and health management),
Fault, Learning (relating to machine learning and deep learning), RUL (remaining useful
life) and SHM (Structural Health Monitoring). Plotting the top five terms across the corpus
timeline, as shown Figure 3, it is indicative that there is a sustained focus on prognostics
over the years. Furthermore, it is evident that there is an increase in machine learning
related terms in recent years, while RUL has reduced in importance. However, terms further
down the ranking show an emergence of terms such as ‘decision-making’, ‘composite’ and
‘reasoning’. This becomes clearer in the clustering of these terms, which is performed in the
subsequent analysis.
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Figure 3. TF-IDF scores for the top five terms across the fifty review papers grouped by year.

TF-IDF is calculated for all fifty review papers over the past twenty years relevant to
aircraft predictive maintenance. Further to this, K-means clustering of terms is used to find
papers similar in terms to each other. This is an iterative approach, performed by dividing
TF-IDF values into K clusters (K denoting a random constant, in this case, the number of
clusters). The approach is based on minimising the variance between values, hence ’means’
referring to the averaging of data across the clusters. For reproducibility purposes, the key
parameters used in the TF-IDF and K-means analyses are as detailed in Table 2:

Table 2. Analysis key parameters used for TF-IDF and K-means text clustering.

TF-IDF Key Parameters: K-Means Key Parameters:

• ngram_range = (1, 1)
• stop_words = English + [(e.g., “http”, “doi”, etc.)]
• max_features = 100
• max_df = 0.8
• min_df = 5

• n_clusters = 5
• random_state = 0
• max_iter = 10,000
• init = “k-means++”
• n_init = 10

The TF-IDF analysis key parameters include limiting terms to only single whole words,
excluding terms made up of two or more words. To clarify this, only unigrams have been
considered, where the term contains only a single word in sequence. For example, the
TF-IDF analysis returned the unigram terms “PHM” and “prognostics”, in contrast to the
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potential for n-grams, such as “prognostics health management”. Furthermore, a library of
common English stop words is used to exclude terms that are insignificant, such as articles,
pronouns, prepositions, conjunctions, and additional terms that are artefacts of the docu-
ment processing, such as “http” and “doi”. The TF-IDF analysis is constrained to 100 terms,
so sufficient comparison within the corpus can be made, and manual fine-tuning of param-
eters is made easier with a review of these mid to high-ranking terms. The key parameters
“max_df” and “min_df” ignore corpus terms with maximum and minimum thresholds,
respectively, which subsequently decreases processing time. Parameter “max_df” is set to
0.8, which ignores terms that appear in more than 80% of the documents, in turn removing
terms that appear too frequently specific to the corpus. Similarly, parameter “min_df” is
set to 5, which ignores terms that appear in less than five documents, which removes terms
that appear too infrequently.

Using the K-means clustering machine learning algorithm [8], five clusters are set,
with key parameter “n_clusters”, a simple nominal amount for ease of analysis, and for
reproducibility, a “random_state” parameter of zero was selected to ensure deterministic
results. It should be noted that the randomisation parameter was checked for multiple
distinct random seeds, and the results were found to be stable. Furthermore, as shown
in Table 2, the key parameter “max_iter” was set to 10,000 to ensure consistency across
runs. Furthermore, “n_init” was default at ten runs for varying centroid seeds and “init”
set to “K-means++” was also a default parameter with faster convergence, compared with
random initialisation of centroids.

As shown in Figure 4, the individual review papers are plotted within their respective
clusters (A–E) along the vertical axis, and along the horizontal axis against the normalised
TF-IDF score for each paper. The reader can use Table 3 to refer to the fifty papers, which
are referenced in Figure 4. It should be noted that the normalised TF-IDF score is indexed
for each paper from the summation of the top 100 terms, and this min–max normalisation
is described by Equation (4) as follows:

Normalised TF-IDF score =
TF-IDFo − TF-IDFmin

TF-IDFmax − TF-IDFmin
(4)
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Table 3. Top ten terms of fifty review papers using TF-IDF and K-means clustering, with reference to
corresponding numbers from Figure 4 and supporting references to papers in brackets [].

Cluster A Cluster B Cluster C Cluster D Cluster E

Noise
Engine
Fault
Power
Turbine
Gas
Vibration
Diagnostics
Engines
Frequency

Gas
Turbine
Engine
Fault
Diagnostic
Vector
Linear
Parameter
Fuzzy
Simulation

SHM
Composite
Damage
Wave
Structural
Structures
Fusion
Figure
Inspection
Frequency

RUL
Decision
CBM
Structural
PHM
Prognostic
SHM
Fault
Fuel
Degradation

PHM
Fault
Learning
RUL
Deep
Diagnosis
Prognostic
Reasoning
Machine
Degradation

2[9] 24[10] 1[11], 7[1], 9[12],
11[13], 34[14]

4[15], 5[16], 6[17], 8[18],
10[19], 12[20], 13[21],
16[22], 17[23], 18[24],
20[25], 21[26], 22[27],
29[28], 31[29], 32[30],
36[31], 37[32], 39[33],
40[34], 41[35], 42[36],
43[37], 46[38], 47[39]

3[40], 14[41], 15[42],
19[43], 23[44], 25[45],
26[46], 27[47], 28[48],
30[49], 33[50], 35[51],
38[52], 44[53], 45[54],
48[55], 49[56], 50[57]

In Figure 4, the normalised sum TF-IDF score per paper shows to what degree individ-
ual terms within a paper vary relative to their cluster.

In clusters A and B, there is only one paper per cluster, meaning they are significantly
different in comparison to the corpus. While in clusters C, D and E, most of the papers are
grouped together with greater similarity and can be briefly summarised with the high-level
terms as shown in Table 3. The horizontal axis in Figure 4 shows the variability within
each cluster and how much each paper differs in terms. For example, review paper 27 in
cluster E differs from the cluster with a relatively high TF-IDF score, and this is a result of
the content being comparable in-depth on RUL and degradation, but specific to machine
bearings. This highlights how a review paper within the overall corpus and subsequent
cluster can differentiate with greater depth on a specific aspect of predictive maintenance.

In Table 3, the top ten terms belonging to clusters A through to E are shown with the
corresponding fifty review papers referenced. Although this is a convenient snapshot of
the papers, distilled down to ten terms, only limited conclusions can be drawn from each
cluster, as there is overlap in cluster terms. As such, the sections to follow provide greater
depth of analysis relative to several terms of particular relevance in the identified clusters.

In summary, this section helped frame the literature review problem statement. With
the support from the bibliometric methodology, this literature review identifies what is the
current focus of the body of knowledge, as expressed in clusters of relevant terms. The
focus of the remainder of this review paper is on various terms identified in the clusters,
while ensuring connection with the high-level research gaps identified in the introduction
and problem statement. As such, the next sections aim to review the existing literature
relating to predictive maintenance and decision-making for defence aircraft sustainment
and operations.

3. Predictive Maintenance in Defence Sustainment and Operations

Aircraft structural PHM is progressing towards proactive condition-based mainte-
nance technology. Structural PHM aims to provide actionable data-driven decision-making,
greater operational efficiencies, reduced maintenance costs and improved structural de-
sign [43]. Although the basis and notion has been in development for several decades
with various forms of SHM systems, it has struggled to be fully implemented effectively
on in-service aircraft [57]. This is due in part to business processes [58], high sustainment
costs, data analysis capabilities, data ownership rights and computer technology limita-
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tions [53,54]. A recent review of integrated vehicle health monitoring systems highlights the
progress to date and the future challenges in adopting this technology, as well as the human
and regulatory hurdles [50,59]. Moreover, the regulations of implementing condition-based
monitoring, with the growing use of on-board condition monitoring systems, require guide-
lines to reach industry standards [60], and be rigorously tested before likely wide-spread
operator adoption is realised. This is a slow process for both civil and military aircraft
operators [61]. At present, standards are available for SHM technologies on fixed-wing
aircraft, but this is restricted to civil aerospace applications [62].

For ease of reference for readers, Table 4 provides a brief list of relevant research into
predictive maintenance, including the type of paper, the year of publication and a brief
description of the paper contribution(s) and relevance.

Table 4. Review papers, articles, and standards relevant to predictive maintenance.

Type Year Relevance Ref.

Review 2022
Directions for assisting researchers and practitioners in
advancing PHM methodologies and maturing practical
PHM technologies.

[43]

Review 2022

Extensive review of key advancements and contributions to
knowledge in the field of Integrated System Health
Management for the aerospace industry, with a particular
focus on various architectures and reasoning strategies
involving the use of artificial intelligence.

[50]

Review 2022
Aims at pointing out the main challenges and directions of
advancements in PHM, for full deployment of condition-based
and predictive maintenance in practice.

[57]

Review 2019 Reviews the challenges, needs, methods, and best practices for
PHM within manufacturing systems. [53]

Review 2015
Shed light on the various maintenance models and their use in
real-world applications, exploring the gap between academic
research and practice.

[58]

Article 2018
Discusses the evolution of maintenance, the goals of the
various stakeholders and implementation of PHM at
commercial airlines.

[54]

Article 2013

Summary of SAE ARP 6461A [62] guidelines focuses on the
key steps needed to implement SHM technologies within the
regulatory environment and prevailing aircraft structural
design and maintenance practices.

[61]

Article 2006
ISO Standards for Condition Monitoring, outlining processes
for condition monitoring system design and implementation
of diagnostics and prognostics.

[60]

Article 2005

Technical overview of Integrated System Health Engineering
and Management (ISHEM) outlines a functional framework
and architecture for ISHEM operations, describes the processes
needed to implement ISHEM in the system lifecycle, and
provides a theoretical framework to understand the
relationship between the several aspects of the discipline.

[59]

Standards 2021

SHM standards applicable to civil aerospace, for stakeholders
seeking guidance on the definition, development, and
certification of SHM technologies for aircraft health
management applications.

[62]

An in-depth discussion of predictive maintenance for defence sustainment and opera-
tions is provided in the following five subsections.

First, the current landscape of sustainment and operations is briefly outlined in
Section 3.1. One of the major issues within this context is the issue of unscheduled main-
tenance; several studies highlighting unscheduled maintenance occurrences in a defence
context are discussed in Section 3.2. Prevention of unscheduled maintenance is one of
the primary drivers behind the adoption of sensor technology and subsequent Structural
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Health Monitoring (SHM) approaches; as such, SHM for defence fixed-wing aircraft is
discussed next in Section 3.3. Two major phases of SHM are on-board sensor diagnostics
and prognostics, which are the subject of the final two subsections (3.4 and 3.5). Preceding
this discussion, it is useful to outline that the typical flow for data-driven SPHM systems
is discussed in [35,63]. In most cases, SPHM begins with the on-board architecture avail-
able for data acquisition and condition monitoring systems, which is followed in most
cases by off-board data processing, feature extraction and analysis to be used for statistical
modelling and fault diagnostics. Subsequently, prognostics algorithms may be developed,
tested, and applied. To distinguish the step from diagnostics to prognostics, [52] proposes
a simple delineation: diagnostics involves identifying and quantifying the damage that has
occurred (and is thus retrospective in nature), while prognostics is concerned with trying to
predict the damage that is yet to occur. Although diagnostics may provide useful business
outputs on its own, prognostics often relies on diagnostic outputs (e.g., fault indicators,
degradation rates, etc.) and therefore cannot be viewed in isolation.

3.1. Current Sustainment and Operations

Modern aircraft operator maintenance programs are underpinned by the regulatory
and industry guidelines of Reliability-Centred Maintenance (RCM) processes [64] and the
current Maintenance Steering Group (MSG-3) [65], based on the iterated approach first
developed for the Boeing 747-100 in 1968. The first approach, MSG-1, was primarily a
preventative maintenance program addressing operational safety and identifying hidden
functional failures through interval driven, hard-time limited and on-condition inspec-
tion tasks. The updated approach, MSG-2, in 1979 further developed processes, adding
condition-based maintenance practices that monitor aircraft systems at a component level,
though such a bottom-up approach has a greater economic burden with an increase in
tasks. The latest maintenance program process, MSG-3, takes a top-down approach, which
considers the impact a system failure has to operational cost and safety if scheduled main-
tenance is not performed, which in turn reduces the number of tasks and increases aircraft
availability [54]. Military aircraft are typically designed on a Damage Tolerance Analysis
(DTA) principle, which for aircraft sustainment is a deterministic fail-safe approach [66,67].
Military aircraft accrue greater structural damaging flight hours compared to passenger
aircraft, experiencing higher normal load factors with higher cumulative occurrences in
varying operational conditions [68]. A fail-safe approach does not consider individual
aircraft conditions, hence the practice of applying scatter factors and safety factors to a
maintenance program. This practice has a tendency for overly conservative life estimates
and inspection intervals, which leads to inefficiency in a maintenance program. For this
reason, the introduction of condition-based maintenance with the support of SPHM tech-
nologies has the potential to lower the costs of inspections and availability can be increased,
including the life-time of the structure [69].

3.2. Unscheduled Maintenance Events

Aircraft component failure rates over time, shown in [70], identify that preventative
maintenance practices are inadequate in addressing unscheduled maintenance. Indeed,
an analysis of United Airlines aircraft maintenance demonstrated that 89% of components
exhibited no wear-out. This led to the conclusion that the performance of the component
could not be improved by setting age limits. Failure rate and type for mechanical systems
on aircraft can be characterised by the following two groups—age-related and random,
accounting for 11% and 89%, respectively, of failure types. Age-related failures are char-
acterised as either occurring in a ‘bathtub’ failure curve (4%), wear-out (2%) or fatigue
(5%). Random failures are the majority of failure rate types, being break-in period (7%),
random (14%) or infant mortality (68%). It was found that conditional probability of failure
at a period remained constant and reliability would remain constant or actually improve
with age. This challenges conventional maintenance regimes and brings significance to
condition-based or predictive maintenance in identifying patterns as a function of the
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condition rather than the age of components and wear-out rates. This is found in military
technical manuals used for aircraft operations, which again state that 89% of system failures
cannot benefit from simple rules that limit operating age [71]. As such, the procedures for
assessing the risk of aircraft system failures are a mixture of quantitative and qualitative
inputs, determined analytically using reliability data and by engineers subjectively ranking
severity with discrete occurrence levels. Similarly, this approach is common in other do-
mains, such as maritime vessel system failure behaviour; in [72], it is found that failures
could be reduced with a predictive maintenance strategy. This reinforces the need for SPHM
to deliver higher-resolution information for data-driven and quantitative decision-making
for fleet managers—see discussion in Section 4.

3.3. Structural Health Monitoring in Military Fixed-Wing Aircraft

Developments in SPHM systems for next generation military aircraft have seen a shift
from rudimentary sensor data monitoring to end-to-end integrated asset management.
An example of this is implemented for the Lockheed Martin F-35 Lightning II Joint Strike
Fighter, which has information-rich systems supporting a mandated Autonomic Logistics
Information System (ALIS) [73]. The future of PHM systems in isolating faults, preventing
spurious faults (or “Fault not Found”, as opposed to NFF (No Fault Found)), considering
that studied unscheduled removals of LRUs (Line-Replaceable Units) can be in excess of 40%
No Fault Founds [74]. Progressing towards more condition-based maintenance approaches
is shown in the integration into the latest next-generation military aircraft, for the purpose of
combining on-board sensory systems with off-board support architecture [75]. The SPHM
system capabilities are detailed in [76], introducing a data-driven approach to supporting
the F-35 fighter aircraft and highlighting—now over a decade ago—the vision for enhanced
diagnostics, prognostics of material condition and prediction of remaining useful life
and time to failure of components. This includes aircraft health management to provide
decision-making support to optimise planning or defer maintenance and manage the
remaining life of components. However, the article demonstrates that the PHM architecture
is centred on aircraft component systems and the short- to medium-term diagnosis of
faults, as opposed to the airframe structures, which typically have longer intervals in fault
occurrences. Furthermore, the example provided in [76] highlights the significant effort
involved in off-board data analysis and the development of prognostic algorithms required
to support fleet management decision-making, which is the scope of the subsequent section.

A recent condition-based maintenance (CBM) technology impact study [77], published
by the Australian Defence Science and Technology Group (DSTG), found that effective use
of CBM also requires establishing a data management strategy, analysis, decision support,
as well as development of prognostic and diagnostic algorithms. Furthermore, the study
highlights past examples of CBM in the air domain, which have needed to incorporate
allowances for the short life cycle of certain CBM technology. These are challenged by the
associated rapid obsolescence rates of parts, in the case of extended planned withdrawal
dates of fleets, and unclear contractual arrangements for data ownership and data mining
from CBM systems. Recent technical reports and United States Department of Defense
(DoD) orders have mandated CBM, as emphasised by DoD Instruction 4151.22 [78]. In
such case, CBM is expanded and termed CBM+, which shall be used as the principal
consideration for the selection of proper maintenance concepts. CBM+ is defined as the
application and integration of processes, technologies, and knowledge-based capabilities
to achieve target availability, reliability, and operation and support costs of Marine Corps’
systems and components across their lifecycle [79]. This development is further highlighted
in Figure 5.
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3.4. Diagnostics Approaches for Military Fixed-Wing Aircraft Applications

Aircraft structural anomaly diagnostics has been an area of research for decades, with
a focus on damage detection of material components, fatigue, environmental or accidental
damage. As mentioned previously, [52] proposes that diagnostics involves identifying and
quantifying the damage that has occurred (and is thus retrospective in nature). Nevertheless,
this retrospective understanding may still help to refine existing maintenance policies,
helping to decrease unscheduled maintenance events and/or their impact.

Research mainly consists of experimental work carried out on-ground with test
coupons using guided wave, lamb waves, Fibre Bragg Grating (FBG) optic sensors, piezo-
electric transducers and other experimental SHM technology [81–87]. Although these
approaches tend to deliver consistent and accurate results, it comes at a large cost to main-
tain sensor systems, modify existing components and time in acquiring data from systems
that require skilled labour, and predominately at technology readiness levels (TRL) 5–6, i.e.,
below implementation level, making it difficult to implement on-wing [13].

A large body of research exists relative to diagnostics. In this review, two categories of
diagnostics are discussed in more detail to highlight typical considerations and outputs.

The first category focuses on identifying non-linearities in aircraft structures using
PHM system data. Where structural non-linear behaviour can occur routinely and accumu-
late over the operational life of aircraft, such non-linear behaviour can impact the structural
health of the system and limit aircraft flight envelope performance, for example, Limit
Cycle Oscillations (LCO) [88]. Aircraft control surfaces with structural non-linearities could
include free-play, a dead-zone in an actuator mechanism and/or loosened mechanical
connections. The impact of control surface free-play faults, in the context of SPHM and
operations, can be considered high risk, with most aircraft system flight controls ATA
Chapter 27 [89] constrained to “Go/No-Go” operational decisions [90]. Furthermore, air-
craft manoeuvrability and flight envelope performance, especially relevant to military
fighter aircraft, is greatly impacted by excessive free-play in control surfaces, as a func-
tion of aeroelastic instabilities [91]. Free-play severity and operational impact vary across
platforms; in some instances, small amounts of free-play are not a problem, as the control
surface is sufficiently aerodynamically loaded as described in [92] for the horizontal tail of
the General Dynamics/Lockheed Martin F-16 Fighting Falcon. However, military specifica-
tion (MIL-SPEC) MIL-A-8870, based on the wind-tunnel results conducted by the Wright
Air Development Centre in 1955 [93], requires free-play for all-movable control surfaces to
be within 0.034 degrees (peak-to-peak value) to ensure freedom from LCO during normal
operations. The United States Federal Aviation Administration (FAA) adopts the same
free-play specification for commercial aircraft. This requirement is typically difficult to
meet, and in the case of the F-16 all-movable horizontal tail, it can operate at six times
above the allowable free-play angle. Similar control surface free-play studies on LCO
characteristics [94,95] suggest that an improved standard for free-play limits could have a
substantial impact on future aircraft structural design and sustainment. Considering this
current operational constraint, a method to identify non-linear behaviour regions is based
on Higher-Order Spectra (HOS) analysis, a signal processing technique revealing non-linear
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phase-coupling between frequencies within the aeroelastic system, originating from non-
linear structural and aerodynamic mechanisms. Bi-spectral and tri-spectral density analysis
can be used to identify the quadratic and cubic processes within the system, generated
under different flight conditions. This is critical to understanding the transition from linear
to non-linear aeroelastic behaviour, including LCO phenomena [96,97]. Recent empirical
research using flight test datasets on a military aircraft all-movable horizontal tail has
produced accurate and consistent results for such an approach [98–101]. The framework
includes data-driven signal processing system identification, utilising HOS to detect and
localise non-linear phase-coupling between frequency components from time-domain sen-
sor data within an aeroelastic system [102–105]. It is a well-established approach to signal
processing, and in early iterations of the technique was used for methods in fatigue crack
detection, being much less affected by noise interference, making use of sideband peak
counts [106,107]. However, it relies on the manual classification of normalised bi-spectral
and tri-spectral density plots to identify quadratic and cubic processes, requiring both high
levels of free-play and a good understanding of the platform configuration for accurate
results. In order to make use of the diagnostics, a method to quantify the magnitude
of free-play is achieved using an Empirical Mode Decomposition (EMD) approach, to
sift and extract the non-linear frequencies in the form of Intrinsic Mode Functions (IMF),
which is used to directly estimate the free-play magnitude [108]. This framework is a
major contribution towards detecting, localising, and quantifying the free-play magnitude,
although manual filtering steps throughout the process limit the tuned framework to a
specific platform configuration and flight test sensors, such as accelerometers. The scope of
future work has the potential for utilising available on-board sensors (e.g., strains) present
on fleet aircraft. This is described in [109], where in the case of strain sensors being the
only available channel output, complexity is added in the pre-processing stage. To convert
strains into response information that is useful for free-play diagnosis under the data-
driven framework, a pre-processing step would involve data-manipulation and data-fusion
strategies that may include a modal expansion or virtually expanded sensor data [110],
transfer functions, regression or machine-based learning processes, among others. This is
critical to developing the next phase of prognostics, understanding the failure mechanisms,
and developing the degradation models with the right inputs to estimate the RUL.

The second category of diagnostics considers vibration analysis of aircraft structures,
consisting of both composite and metallic materials. Vibration analysis can be used to
diagnose global and local damage and is commonly performed by evaluating the variations
in natural frequencies and modal shapes. This is an established approach with model-based
simulations generating good results with low computational intensive approaches [111],
including using artificial neural networks (ANN) techniques [112]. While detection has
reasonable accuracy and the location of damage can be identified efficiently, it often stops
there, with a subsequent recommendation that this could be used in future approaches
combined with condition monitoring systems. Recent experimental testing on an Airbus
A350-900 aircraft showed the next steps towards implementation with promising perfor-
mance [113], where six bi-axial accelerometers attached to the fuselage could localise impact
damage with a mean error of two metres or approximately four percent of the effective
structure length.

Military fixed-wing aircraft sustainment has a long history of SHM technologies;
however, unlike the previous civil aviation example, military aircraft relate largely to
loads monitoring for airframe fatigue life analysis and accelerometers measuring load
exceedances over longer periods of time [114]. Military aircraft, such as the Panavia
Tornado fighter jet and Eurofighter Typhoon, had operational loads monitoring (OLM)
technologies at 16 critical load locations. Furthermore, in the case where aircraft are assessed
for planned withdrawal date (PWD) extensions, this is common as defence operators fly
the aircraft varied to the design conditions or often go beyond the designed life of assets
either constrained by budgetary pressures or awaiting fleet replacements. A recent example
of this can be found for the Pilatus PC-9/A aircraft operated by the Royal Australian Air
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Force (RAAF), where an OLM program included placing accelerometers and strain gauges
across the aft fuselage and empennage [115]. This was critical to meeting the extended
PWD and ensuring it met the sustainment practices aligned with the Aircraft Structural
Integrity Program (ASIP) [116]. It remains that strain gauges are the most prevalent
sensor available on-board fixed-wing aircraft SHM systems. Military aircraft, such as the
A400M and F-18, have trialled acoustic emission technologies and damage monitoring and
diagnostics systems; however, this is more specifically used for fatigue damage analysis or
crack propagation over longer periods of time. The C-130 transporter and KC-30 tanker
transporter have similar OLM systems [114].

Fundamental to these on-board SHM technologies is the off-board analysis, which is
carried out using signal processing techniques underpinned by statistical methods. Two
time-domain statistical parameters proved good diagnostic techniques for anomalies in ball
bearings [117]; namely, root mean square (RMS) measuring mechanical and environmental
noise levels, which is compared to nominal sensor conditions, coupled with monitoring
high Kurtosis (standardised fourth central moment) values measuring vibration data for an
increase in spikes, which is symptomatic of faults. A fundamental advantage of data-driven
techniques is that the physical system they model does not need to be related, and only
needs to relate to the input data, independent of the type of sensor [118]. Machine learning
approaches are typically data-driven techniques, which involve a training step initially and
a testing step. These machine learning techniques are known as “supervised” learning,
while “unsupervised” learning techniques are typically ANN approaches. Once supervised
machine learning techniques are trained, they do not require high computational resources
and return fast classifications of new input data. For rapid diagnostic frameworks, the
speed of classification could be of relevance, while longer lead time prognostics could
benefit from either machine learning approach.

3.5. Prognostics and Remaining Useful Life (RUL) Prediction for Military Fixed-Wing Aircraft

Prognostics in aerospace structures is often referred to as the early detection of faults,
and the capability to predict the progression of a fault condition. Although prognostics
is not new to aerospace, it is yet to be fully implemented on a fleet-wide level and varies
in application across aircraft structures and systems. The development of prognostics for
complex aerospace structures requires a multi-disciplinary approach, a fusion of prognostic
methods, exploiting the strengths of various tools to estimate RUL [119]. The estimation
of RUL is central to PHM and condition-based maintenance of operational assets, broadly
defined in [32]. The RUL of an asset is a random variable and dependent on current age,
the operational context and observed condition monitoring. Defining xt as the random
variable of the RUL at time t (usage), with the probability density function (PDF) of xt
conditional on Yt is denoted as f (xt|Yt), where Yt is the historical condition monitoring
profile up to t. If Yt is unavailable the estimation of f (xt|Yt) is:

f (xt|Yt) = f (xt) =
f (t + xt)

R(t)
(5)

where f (t + xt) is the PDF of the life at t + xt and R(t) is the survival function at t. The
availability of Yt provides more information about the RUL. However, it is a non-trivial
task to incorporate Yt into the estimation of Xt. RUL estimation can be greatly varying
in their inputs, and Equation (5) may require more condition monitoring inputs and a
data fusion approach to correlate the varying inputs [32]. As such, Equation (5) is not
conclusively an effective means of estimating RUL for all systems. Additionally, the matter
of how subjective human judgemental information (heuristics) is processed into RUL is
an area of research to be addressed and in the scope of decision-making [48]. Condition
monitoring enables early detection through diagnostics specific to a system component,
but the importance of failure mode predictability in calculating a reliable RUL is critical for
scheduling maintenance effectively [120].
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Several reviews and original research papers consider applications and challenges for
prognostics in more detail. Kan et al. [44] assess the suitability of prognostic techniques for
non-stationary and non-linear rotating systems, identified by machine type (e.g., aircraft),
where vibration data are accessible. The review finds particle filtering (also referred to as
sequential Monte Carlo methods using Bayesian inference) performs well for prognostics
that require low computational loads for resampling and have a reduced number of samples
for approximating future states. This approach applied to crack faults generates satisfactory
results as proposed in [121]. Low cost, efficient data-driven approaches can produce very
good results, as in a particle filter prognostics approach used for estimating the RUL for
battery life as studied in [35]. Given a test degradation curve for battery capacity, Bayesian
filtering is carried out to produce a probability distribution function (PDF) at each time
stage; as usage time progresses, the PDF narrows at the later battery life stage. Furthermore,
prognostics for aircraft brake wear demonstrate the effectiveness of Bayesian Networks
for the remaining useful life of brake material thickness, benchmarked against standard
degradation or simple extrapolation approaches [122]. Deep learning (DL) in prognostics
and health management applications is reviewed in a comprehensive evaluation of current
developments over the last decade in [42], remarking on both the potential and challenges.
For PHM systems, unsupervised learning techniques are relevant where the true end of life
is often unknown, which is often the case for current preventative maintenance practices
being carried out, where limited data are available, in part due to cost or impracticalities
to label what is a true system health. In most PHM condition monitoring, unsupervised
learning approaches, such as signal reconstruction (residual-based) used with data-driven
or physics-based approaches can distinguish normal behaviour from signal anomalies.
Current challenges for DL approaches include the efficient composition of training datasets,
particularly where operational conditions and environments vary, and training datasets
cannot be representative of the full range, where uncertainty propagation is to be addressed
by developing Monte Carlo simulation methods that have sufficient accuracy for non-linear,
non-Gaussian, non-stationary stochastic processes. Furthermore, the data availability for
training, variability of data sources, and accessibility or ownership rights challenge progress
in developing DL processes for PHM systems.

For free-play SPHM, the use of artificial intelligence (AI) has merit in terms of machine
learning and artificial neural networks, given the near non-deterministic nature of struc-
tural anomaly prognostics and gradual degradation rates [123]. Important to consider are
the risks and regulatory challenges around “black-box” artificial intelligence approaches.
Fairness, Accountability and Transparency (FAT) is an emerging requirement as AI becomes
more widespread in use. This is covered in greater depth in the subsequent Section 4, which
addresses, amongst other topics, operational decision-making [124]. A framework for real-
time diagnostics and prognostics RUL of an electro-mechanical actuator (EMA) for aircraft
flight control systems is proposed in [125], using on-board measurement of the motor
current. This produced consistent and accurate results, including reconstructing on-board
sensor signals using a combination of off-board physics-based knowledge, and on-board
(on-wing) computationally efficient machine learning techniques for RUL estimation, such
as Support Vector Machine (SVM) for rapid data assessment. The study found that the RUL
estimate would underestimate with longer lead times, thus proposing future work is re-
quired for alternative machine learning approaches to capture the uncertainty propagation.
However, it should be noted that next generation military aircraft rudders, flaperons and
horizontal tails are powered by electro-hydrostatic actuator (EHA) systems [126]. Primary
advantages of EHA systems are precise positioning with no error caused by gaps between
mechanical components, meaning internally there are little to no backlash issues, and
furthermore reduces the reliance on high maintenance, heavy central hydraulic systems.
However, this does not exclude control surfaces from backlash or free-play faults, as there
are several points of contact on the hinge line that can develop damage or fault, with high
loads experienced on rudder hinges [127].
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Taking a more general perspective, the stochastic nature of defect propagation and
epistemic sources of uncertainty (see Section 4) generate significant prediction errors for
model-based numerical simulations, where accurate long-time predictions are impossible
to achieve without continuous adaptation and monitoring [128]. Although, where there are
condition monitoring systems, predicting the degradation must factor sensor resolution
and precision, as the variance needs to be small enough for a longer time horizon prognosis
to be of use for maintenance scheduling. As supported in [21], understanding the failure
mechanisms of the system that is being monitored is a major factor in estimating RUL,
and a combination of model-based and data-driven methods shows promising results.
The Digital Twin (DT) concept, a virtual digital version of a physical asset, makes use of
parallel operations, enabling a DT to be run simultaneously to the mission or in advance of
the physical model operating. This is explored in [129], where an aircraft engine that has
21 sensor inputs is continually updating RUL for the physical engine using a long short-
term memory (LSTM) neural network. The dynamic model, which is based on the NASA
C-MAPSS dataset, found that the LSTM approach yielded far better performance than
similarity-based linear regression and an improvement on feed-forward neural network
approaches. A subsequent study improved RUL estimation accuracy using C-MAPSS
FD001 dataset employing an Adaptable Time Window–Acyclic Graph Network approach
with Convolutional Neural Network (CNN)-LSTM [123]. A study of a non-deterministic
prognostics approach using Monte Carlo methods, and high-fidelity finite element DT
models, were used to generate four probabilistic estimates of crack state throughout the life
of a geometrically complex test specimen [130]. The DT demonstrated accurate prediction
of RUL to within 10% of the true test, while time to failure (or end of life) was within
0.2%. Incorporation of diagnostic data over time using Bayesian inference could reduce
the variance in these predictions. Additionally, understanding the probability distribution
function for component failure allows for scheduling maintenance, with optimal cost-
benefit, and minimising the useful life waste of a component [131].

4. PHM-Enabled Decision Support for Military Fixed-Wing Aircraft Applications

Decision-making and decision support are accepted as an integral part of prognostics
and health management. This is reflected in several PHM methodologies and process
representations (e.g., OSA-CBM [132]) as well as review papers addressing the PHM
state-of-the-art. All these sources serve to express that a crucial part of the PHM chain
is to consider how any output from anomaly detection, diagnostics or prognostics algo-
rithms is employed to deliver actionable information supporting meaningful, informed
decision-making. The same considerations hold true for military aviation applications,
with this section providing a more in-depth discussion of PHM decision support in this
military context.

Various review papers provide a discussion of decision support in the context of PHM,
with Bousdekis et al. [133] covering several decision-making requirements associated
with CBM applications. It is highlighted that available input, desired output and user
requirements related to accuracy, responsiveness and other aspects effectively combine
to create a design space for decision methods and combinations of methods. Zio [57]
provides a fairly comprehensive review of PHM model aspects with an influence on
decision-making. This discussion covers the interpretability of models, in particular the
robustness, causality and quantifiable reliability of outcomes and predictions to be used in
decision-making. In addition, aleatory and epistemic sources of uncertainty are discussed,
which include uncertainty regarding future operation profiles and state evolution. The
latter aspects are mirrored by [134] and [42], who extend the discussion of uncertainty to
include measurement uncertainty and modelling uncertainty.

These existing perspectives fall short in three important aspects:

(1) Existing PHM literature—which covers both review papers and original research
papers—does not account for the different time horizons, objectives and metrics
involved in maintenance decision-making. As expressed by Bousdekis et al. [133],
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“the [decision] output can be either the optimal time for a pre-defined maintenance
action or the optimal action and the optimal time for its implementation”. While this
consideration is a good start, it foregoes a more in-depth discussion of the various
time horizons and types of decisions associated with aircraft maintenance. In addition,
the main objectives and associated metrics driving maintenance decision-making for
military aviation applications have not been discussed in a comprehensive way in
the state-of-the-art. Finally, while maintenance task determination and timing are
the essential aspects of maintenance decision-making, there is little recognition of the
constraints in terms of applicable regulations and standards.

(2) Existing literature falls short in defining, standardising, and incorporating elements of
uncertainty into the various stages of maintenance decision-making. As highlighted
by Javed et al. [134] and Saxena et al. [31], it is “crucial to take into account the uncer-
tainty in the prognostic output, especially when using them for decision making”. As
such, the term ‘uncertainty’ and its characteristics should be defined in unambiguous
terms. What kind of uncertainty is considered? Often sources of uncertainty are
being confused or mixed, or it is not clear what kind of uncertainty is being charac-
terised or quantified. Furthermore, with a lack of standardisation of methodologies
in prognostics in general, standardisation of uncertainty—involving representation,
quantification, propagation, and management [134]—is also far from achieved.

(3) The existing literature generally does not account for a military aviation context,
which has its own characteristics which set it apart from civil aviation applications.

In the following subsections, these challenges will be addressed in detail.

4.1. Maintenance Decision-Making: A Multi-Level Perspective

To address the first challenge as highlighted above, it is first necessary to put PHM-
enabled maintenance decision support in the context of applicable types of decisions and
associated time horizons. Figure 6 represents the primary maintenance activities across a
range of decisions, from strategic to tactical to operational. In addition, the associated time
horizons are indicated using a scale from long-term to short-term. While the specific times
associated with this scale will vary across different platforms with different lifespans, as
well as different defence organisations, a typical representation is for strategic decisions
to be coupled with time horizons in excess of 1 year (ranging up to the entire lifecycle of
a platform, which may be 20+ years and sometimes far beyond that, as for instance for
the B-52 Stratofortress). As such, strategic maintenance decision support involves consid-
erations flowing into and out of platform acquisition, setting the stage for the platform
capabilities and the associated strategic maintenance requirements. Examples include
resource acquisition (including maintenance facilities, tooling, and know-how), as well
as organisational preparedness. Strategic maintenance requirements flow down into fleet
management decisions, where multi-year decisions regarding fleet objectives, composition,
required maintenance resources and their strategic allocation are made [68,135–137].

Moving down in scope but closer to maintenance execution, tactical decisions typically
involve time horizons between one month and a year, though it is not unusual for anything
above one week to be considered in this category. Maintenance decision support for
these types of decisions typically focuses on scheduling, in which assets and resources are
allocated to generate the required mission readiness and flight hours for the considered
unit of analysis (which may be at fleet, wing or squadron level). Managing a fleet, wing or
squadron of aircraft is a dynamic and, at times, uncertain task, hence developing models
to optimise fleet serviceability has numerous constraints [138]. More certainty on the
parameters that are inputs to a model, for example component level data, can enhance the
predictability of unscheduled maintenance events and, in turn, realise efficiency gains at
an aggregated data level. Fleet management of military aircraft typically works around
planning and scheduling of operations and maintenance, driven by aircraft availability,
which differs from civil commercial aircraft more focussed on fuel burn and passenger and
cargo profitability drivers [139,140]. While it is difficult to factor in discrete unscheduled
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maintenance events, the overall goal for military aircraft fleet managers is to ensure a steady-
state flow or ‘stagger’ of aircraft flying hours in the fleet that moves into maintenance [141].
In the flight and maintenance planning phase, the allocation of tails to flights as well as
maintenance is scheduled, helping to produce the required availability as well as ensuring
stability in flight and maintenance operations, as studied in more detail in [138,142,143].
Aircraft fleet management simulation experiment modelling shows that fleet performance
is most influenced by two factors, which are the management of unscheduled maintenance
events, and the balance of flying loads across the fleet. Findings from simulation modelling
carried out by [144] show that aircraft fleet management policies should first address the
impact of unscheduled maintenance and tail rotation within the operation, as this will
generate the greatest benefit to fleet performance over the serviceable life of the aircraft
fleet. This is a significant driver for implementing SPHM technology, enabling greater lead
times to address unscheduled maintenance before it impacts overall fleet management
performance. From the SPHM perspective, the output of prognostics with sufficiently long
prognostic horizons would consequently be most useful to be integrated into this process.
Only a few studies are available which consider the relation of prognostics with scheduling
in the military context [145–147].

Finally, operational decisions are associated with very short time horizons, typically
looking at operations for the next week, with an emphasis on the next day or even decisions
taken on the day of maintenance task execution itself. In relation to PHM, it is here
that detection and diagnostic aspects are leveraged, with a number of studies (e.g., [148])
considering the output of anomaly detection and diagnostic algorithms and their potential
role in maintenance decision-making.
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While the preceding discussion focused on the type of decisions and their operational-
isation with respect to military (fixed-wing) aviation, in keeping with the third challenge
identified above, it is necessary to understand the associated objectives, constraints and met-
rics which drive decision-making in this domain. To this end, Table 5 gives a comprehensive
overview of these aspects drawing together information from various sources [138,142,150]
as well as original insights. It is noteworthy that cost is not included into the objectives
at any level; while cost is definitely a constraining factor in military maintenance, the
minimisation of cost is usually not an explicit objective. Rather, military operators will try
to increase their mission readiness (in its various forms) within a given budget.

Table 5. Maintenance decision-making objectives, constraints, and metrics for military avia-
tion applications.

Decision Types Objectives Constraints Metrics

Strategic

Deployment capability
Responsiveness Mission
readiness Logistic footprint
Lifecycle cost

Budget Workforce composition, size and
training Base facilities and positioning
Spare parts supply chain (parts
availability/obsolescence) Mid-life
upgrades/major modification programs

Operational expenditure
Maintenance expenditure
Fleet status

Tactical
Fleet availability Fleet
health/reliabilityAircraft
availability

Budget Space/facility constraints
Workforce availability, skills Inventory
status Spare part lead times Usage profiles

Availability Serviceability
Sustainability Flight hour
requirements + production

Operational Aircraft availability Minimise
unnecessary maintenance

Spare parts/component availability Person
power availability (incl. skills) Minimum
number of daily spare aircraft Minimum
and maximum daily flight hours

Serviceability (instantaneous
availability) Residual Flight
Time (RFT)

Within the context of these types of decisions, PHM can influence all levels. At the
strategic level, PHM has the potential to influence maintenance task requirements through
substitution or escalation. In simple terms, the presence of a monitoring system may
prevent the need to perform certain tasks, such as visual inspections or operational checks,
with the PHM capability taking over these responsibilities. If tasks cannot be substituted,
the PHM capability may generate sufficient trust in the estimation and prediction of health
to allow for the escalation of maintenance intervals, extending the periods between mainte-
nance tasks such that the overall maintenance requirements decrease. On the other hand,
including a PHM capability into a fleet of aircraft generates its own challenges, usually
associated with additional power requirements and weight implications, as well as the
need to develop, operate and maintain the monitoring system. Task substitution or es-
calation percolates down to the tactical level, where the scheduling effort benefits from
decreased task requirements. Several original research papers consider the implications
of task requirements and long-term uncertainty at the fleet management level for military
applications, such as the work by Mattila et al. [151] on various techniques to analyse fleet
management issues in the Finnish Air Force. Particular challenges at the tactical level
include how to deal with uncertain or incorrect predictions, a topic which will be covered
in more detail in Section 4.2. From the military domain perspective, Mikat et al. [152]
have performed an evaluation of different options for dynamic mission and maintenance
scheduling. Marlow et al. [153] study the application of various optimisation techniques
to help address problems with unscheduled maintenance effects in military aircraft fleet
management, applying these techniques to “both day-to-day planning and medium-term
forecasting”. As such, their work crosses over into the operational level. At this level, PHM
capabilities may support the detection and troubleshooting of degradation, defects and/or
failure events. This is evident by the text clustering analysis highlighted in Section 2.2,
showing the two major clusters D and E include relevant terms for PHM decision-making
and degradation in faults among the top ten most frequent terms. Possible benefits include
the detection of hitherto unknown defects or events, as well as reduced time to figure
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out what is going wrong with an aircraft, or, more typically, its components, subsystems
and/or systems. Furthermore, PHM may increase decision capability through advanced
visualisation methods, integrating various decision inputs with multi-criteria decision-
making methods to offer decision alternatives for the operator or technician to select [154]
and reducing the time for required maintenance interventions [81,155–159]. Of particular
relevance are recent advances in mixed reality, which is an emerging technology and can
support better comprehension of complex tasks and enhance in situ decision-making for
maintenance practitioners [160–162]. Currently, mixed reality has had limited implementa-
tion into aircraft sustainment, given the technology is an emerging tool at a TRL of 6 [163],
balancing actual need, fit-for-purpose, “fashnology” and operational risk factors [164].
However, for training purposes there is early adoption, with aircraft technicians utilising
Microsoft HoloLens head-mounted devices for remote communication with technical ex-
perts, for example, the Royal Australian Air Force (RAAF), together with overseas Boeing
technicians used the HoloLens II primarily as a remote assistance tool for Boeing C-17A
Globemaster III maintenance tasks [165], proving to be a collaborative tool for training
and familiarisation [166].

4.2. Uncertainty in PHM-Enabled Maintenance Decision-Making

To use PHM output in maintenance decision-making, it is crucial to incorporate the
fact that model inputs and outputs will have a certain degree of uncertainty. Unfortunately,
existing literature falls short in defining, standardising, and incorporating elements of
uncertainty into the various stages of maintenance decision-making, especially when
considered within the military domain.

In terms of definition, uncertainty is defined and interpreted across a wide range of
domains and applications, as set out comprehensively by Thunissen [167]. Consequently,
there are substantial differences to be considered, and one cannot assume that the mention
of uncertainty in the context of research leads to an unambiguous understanding. As
highlighted by Thunissen [167], within decision-making research, uncertainty is typically
simplified into representing “risk and uncertainty (ignorance)”. Risk describes a situation
where each action may lead to one outcome from a set of possible outcomes, with each
outcome occurring with a known probability. Therefore, all possible actions are known, all
possible outcomes arising from an act are known, and the associated probabilities can be
quantified. Uncertainty represents a situation where either action or a combination of action
and outcome has a set of possible outcomes which cannot be quantified probabilistically.
Notably, this definition is quite different from that which is prevalent in engineering, which
is the category of research with which PHM is most closely aligned. Here, uncertainty
represents incompleteness of knowledge which drives a difference between model-based
predictions and reality, or as defined by [168]: “the incompleteness in knowledge (either
in information or context), that causes model-based predictions to differ from reality in
a manner described by some distribution function”. As a third option, uncertainty is
characterised into different categories, each having its own definition [167]. These different
types are ambiguity, epistemic uncertainty, aleatory uncertainty, and interaction uncertainty.
In particular, epistemic and aleatory uncertainty are frequently highlighted in discussions
of PHM uncertainty and associated uncertainty quantification, where others propose to
recognise ontological uncertainty as well [169]. Epistemic uncertainty represents any lack
of knowledge or information in any phase or activity of the modelling process, where the
fundamental cause is incomplete information or incomplete knowledge of some charac-
teristic of the system or the environment. Further subdivisions in epistemic uncertainty
incorporate model, phenomenological and behavioural uncertainty. Aleatory uncertainty
represents “inherent variation associated with a physical system or environment under con-
sideration” [167], which cannot be controlled by a decision-maker. Ontological uncertainty
is uncertainty due to completely unknown factors [169], which is relevant for PHM systems
developed for military applications which may have lifespans ranging into decades; as
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Dewey et al. [169] note, “unknown or poorly categorized phenomena [may] dominate the
response of the system in the far term”.

Within PHM-enabled decision-making, several sources of uncertainty are acknowl-
edged. Javed et al. [134] identify “input uncertainty from system, measurement uncertainty
from sensors, operational environment uncertainty from usage conditions, and modelling
uncertainty from degradation model”. They note that any of these sources of uncertainty
will impact the accuracy of RUL predictions and the associated decisions, highlighting that
a certain level of confidence is required to enable offline or online decisions. Similar sources
of uncertainty are identified by Fink et al. [42], who highlight that degradation behaviour
may not be exactly known (with models that are an approximation), measurement errors
may occur, and future operating profiles and loading may be unknown. Another alternative
is posited by Dewey et al. [169], who highlight model input uncertainty, model discretisa-
tion uncertainty, and model form uncertainty as the main sources of uncertainty. In this
perspective, model input uncertainty is the uncertainty in any input to the mathematical
models used to perform the analysis, whereas model discretisation uncertainty is “the
uncertainty in the implemented mathematical model due to the finite resources available
on computer systems” [169]. Finally, model form uncertainty relates to the uncertainty
in the degree to which the implemented mathematical model represents the real-world
behaviour of the physical objects that are represented in the model (via assumptions).

To tackle the issue of uncertainty, Javed et al. [134] propose the following steps:

• Represent uncertainty: the representation of uncertainty involves the choice of mod-
elling and/or simulation approach. Within the PHM domain, a probabilistic represen-
tation of uncertainty is most commonly adopted. As Fink et al. [42] note, estimates
should “at the very least be accompanied by confidence intervals and, which is even
better, by a description through probability distributions if at all possible, or by
fuzzy representations.”.

• Quantify uncertainty: Dewey et al. [169] define uncertainty quantification as ”the
combination of verification (assessment of mathematical accuracy) and validation
(assessment of applicability) of mathematical models of real-world phenomena”. They
highlight that uncertainty quantification is a requirement for PHM as the purpose of a
PHM system is to ascertain the reliability of an asset via probabilistic methods, and
furthermore assert that “those working in the field of PHM have traditionally quan-
tified sources of uncertainty from the aleatory risk of a component in their analyses
while completely ignoring other sources of uncertainty that may occur from epistemic
risks” [169]. Javed et al. [134] note that the quantification of uncertainty involves the
identification and inclusion of different sources of uncertainty in the most accurate
and reliable way possible.

• Propagate uncertainty: importantly, uncertainty is not (just) a point measure, it acts
and potentially grows over time. Certainly, with PHM applications, it is natural to
expect predictions to include additional variance the longer the prognostic horizon
will be, as noted by Mikat et al. [152]. Uncertainty propagation accounts for a time-
based representation of previously quantified uncertainties, which is used to predict
future states and their uncertainty, as well as estimate RUL and its uncertainty. These
considerations are particularly relevant for the tactical maintenance decision support
phase, where the scheduling of maintenance activities is highly dependent on the
level of uncertainty over time, as well as the tolerance of the maintenance system to
accommodate for this uncertainty.

• Manage uncertainty: the representation, quantification, and propagation of uncer-
tainty open up the possibility of proactively managing the uncertainty of future states
and RUL estimates. As noted by Javed et al. [134], the quality, reliability and configura-
tion of sensors may help to decrease the uncertainty, as well as improve modelling for
health assessment and prognostics, for instance, through hybrid approaches, which
decrease epistemic uncertainty regarding underlying physical behaviour.
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In the military domain, very limited examples exist of research works that span the
bridge from PHM to decision support while incorporating uncertainty. Early work by
Byington et al. [170] considered some novel applications of proposed prognostic enhance-
ments to diagnostics systems. In more recent work, Vandawaker et al. [171] have examined
the impact of prediction accuracy uncertainty in remaining useful life prognostics for a
squadron of 12 aircraft, with an uncertainty factor being applied to the useful life pre-
diction and subsequently explored through discrete event simulation covering pre-flight,
flight, and post-flight operations, as well as maintenance and logistics activities. Results
are compared to a baseline case constituting traditional time-driven maintenance. Some-
what similarly, Macheret et al. [172] analyse and compare overhaul and prognostic asset
management strategies for military platforms. The authors highlight that prognostics
has the potential for improved operational availability at a significantly lower cost (as
expressed via a number of spares) compared to that of the overhaul maintenance strategy,
as well as reduced risk of failure due to informed decision-making on asset selection for
upcoming missions.

5. Future Challenges and Opportunities for Predictive Maintenance in
Military Aviation

Despite recent advances in predictive maintenance driven by new aircraft designs,
increased sensor capabilities and digitalisation of operations and maintenance processes,
and improved models and algorithms, there are some major challenges to address before
predictive maintenance, SPHM and similar initiatives will have a major impact within
defence sustainment and operations.

In line with the order of discussion in this review, the following challenges can
be distinguished:

• Several challenges focus on the availability and suitability of data, which relate to
sensor capabilities on aircraft as well as the supporting data (pre-)processing infras-
tructure and processes.

• The availability and (long-term) reliability of sensors on military aircraft has to be
ascertained per platform. Not every aircraft type has the same capabilities in terms
of data capture and storage. Legacy platforms typically have less—or less precise—
sensors, which are typically geared towards aircraft control purposes rather than being
purposely designed to support predictive maintenance.

• The specific topology of sensors or sensor networks on specific platforms may pre-
clude the generalisation of models towards other platforms (e.g., what works on the
F-35 Joint Strike Fighter may not work on the F-22 Raptor).

• There are several challenges related to data integration: acquiring data is not as
straightforward as it sounds on paper, whether that is due to complexities in data
acquisition systems or a lack of necessary infrastructure to record and transmit data to
maintenance engineers.

• Processing aircraft data is still a challenge for operators, even if big data analytics are
feasible, a point which is related to having sufficient skilled labour to realise the full
potential within the gathered data.

As highlighted in a broader context by Zio [57], the next step in the SPHM chain is
fault/damage detection, the success of which is strongly impacted by the quality of the
features selected by pre-processing. As Zio [57] notes, “unfortunately there is no universal
rule for choosing the optimal pre-processing method”, an observation which is as true for
military aviation applications as it is for other domains. A further complication is the fact
that various epistemic uncertainties start to apply in the detection stage to make signal
processing a major challenge. In the defence context, several examples of this have been
highlighted in the discussion of non-linearities for free-play detection.

For diagnostics, the application of SPHM is also impacted by the presence of un-
certainty which derives from the processing of data from measured sensor signals. The
additional variance introduced by the more challenging load spectra of military aircraft
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makes this issue even more pressing. Within the military context, individual aircraft track-
ing (including loads tracking, environmental exposure tracking, etc.) is strongly advisable
to counter this issue of variance. Tracking and subsequent condition monitoring of en-
gine component systems are well established and applied; however, tracking of structural
components and subsystems is typically not yet implemented for individual aircraft. An-
other issue is formed by long-term dependencies in tracking data, which are difficult to
account for in most diagnostic algorithms. Yet, with the long lifespans of military platforms,
which include major life events, such as mid-life upgrades, these dependencies have a
high probability of being present. Beyond these considerations, successful diagnostics
typically relies on the availability of high-quality labelled data regarding failure or damage
events. To detect, localise and characterise what happened (for instance, in terms of failure
mode determination), data labelling is required, but this is typically difficult, expensive
and labour-intensive [57].

In terms of prognostics, a primary issue relates to the future usage and mission
profiles of military aircraft, as well as epistemic and ontological uncertainty regarding the
operational environment in which these aircraft will operate. Some theatres of operation
can be predicted well during the design phase of military aircraft, but other theatres may
be outside of the original design spectrum.

Another issue is the effect of missing data on prognostics performance. As highlighted
previously, individual flight tracking is not always established yet, let alone the supporting
infrastructure to consistently capture condition data over the life of an aircraft (which may,
for instance, require data capture at remote outstations in difficult theatres of operation).
What is more, very few research works tackle the issue of missing data and their effect
on prognostics performance. For the military context, while a comprehensive review of
prognostics [52] identified there are few case studies published that apply prognostics to
real-world problems in realistic operational environments, the fact that current industry-
based prognostics widely use trend extrapolation poses a concern as it is often the least
accurate method and not considered sufficient for practical purposes.

The latter point impinges on some of the challenges related to decision-making using
PHM solutions. First of all, there is a lack of standards for SPHM technology implementa-
tion for military fixed-wing aircraft. While some initiatives are underway for civil aviation
applications (e.g., IP-180 and ARP 6461) [61,173], similar developments have not yet reached
the mainstream for the military domain at a direct implementation level, despite the fact
that the US DoD has issued a CBM+ guidebook [80,116]. Guidelines standards [132] for
SHM and predictive maintenance technologies specifically relevant to unscheduled faults
have emerged in recent years for civil aviation; however, military standards do not exist,
but are rather focussed more on longer time horizon faults, such as airframe fatigue life.

The opportunity for research originality and new contributions to the body of knowl-
edge is high in the discussed areas of aircraft SPHM. The following section discusses the
rationale for this research with current industry relevance. Current reliability practices are,
in some ways, inherently reactive [64], limited by the reliance on analysis of system faults
for discrete occurrences, a measure based on prior maintenance events. As demonstrated
by [70], 89% of system failures cannot benefit from simple rules that limit the system
operating age; as such, PHM technologies can offer lead indicators to reliability measures
and perhaps a change to reactive maintenance practices.

Defence operators at a strategic level are preparing for, and, in some cases, order-
ing [79] predictive maintenance practices; however, the PHM architecture at the operational
level is still in the process of maturing. Firstly, the acquisition of on-board sensor data at a
system level requires greater integration with central maintenance management systems
and to become readily accessible to engineers performing the analysis [77]. Secondly, the
airworthiness program structures at a tactical level need to facilitate diagnostic capabilities
and AI/machine learning approaches in areas of prognostics: (i) run to failure, (ii) compar-
ative failure data, (iii) known threshold of failure. Furthermore, at a tactical level the trust
in data becomes critical, with a preference for quality data over quantity, which is stressed
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by [120], “when failure is unpredictable due to randomly changing conditions, then RUL
becomes meaningless and maintenance decisions are based on current condition”. It re-
mains a challenge that the cost of maintaining sensor systems on-board military aircraft has
traditionally precluded them from being deployed across individual aircraft or fleet wide.
Another issue is the required maintenance to ensure the sensors are calibrated and func-
tioning. Challenges in the transition from initial detection and diagnostics to prognostics
are underpinned by the quality of RUL: “The management of uncertainty is an important
and often overlooked aspect in the estimation of [RUL].”. As noted by Engel et al. [119]
and going on to explain “precise estimates of RUL have a very low probability of being
correct”. “In fact, the remaining life estimate with the widest confidence interval (lowest
precision) may offer the least unnecessary maintenance”. Related to this, there are several
opportunities to progress decision-making on the basis of PHM output in military aviation
applications. First of all, the aforementioned transition challenges towards prognostics
and RUL estimation may be influenced by the development of more capable, yet less
computationally intensive, machine learning approaches for prognostics and overall health
assessment, for fleet management decision-making. This does, however, hinge on the gap
between decision-making in practice (whether at the strategic, tactical, or operational level)
and the maturity of PHM solutions. A related aspect is that currently used accuracy and
performance metrics [31] in predictive maintenance / PHM do not necessarily translate well
to decision-making criteria and metrics in military aviation applications. As highlighted in
Section 4, different objectives, constraints, and metrics apply, and a fruitful direction for
future research will consider bridging this gap. When prognostics do reach the work floor,
visualisation of SPHM information at the engineering department level as well as in situ
can influence the effectiveness of decision-making as identified in [46]. However, it will be
of paramount importance to investigate and develop ways to secure the interpretability,
security and trust associated with predictive maintenance solutions, so that acceptance of
prognostic tools becomes a well-founded aim rather than lucky happenstance.

The ability to quantify uncertainty across tactical and strategic timescales is limited
due to the uncertainty of prognostics with long-time horizons, in particular for military
aircraft [145–147]. In such cases, changes in sensor capabilities and topology, individual
aircraft tracking variabilities, changing mission profiles and locations, and mid-life up-
grades can all impact decision-making uncertainty for lifespans ranging into decades, as
noted by Dewey et al. [169]. Consequently, over such long-time horizons, changes in
decision-makers brings into question the varying interpretability of prognostics, security
environments, trust and acceptance of prognostic tools; this may introduce a requirement
for greater transdisciplinary approaches beyond engineering, involving behavioural science
or organisational culture. Moving to a strategic level, PHM may influence maintenance
tasks through substitution or escalation. As previously discussed, the challenges of not
having a rigid standard practice for emerging PHM capability may introduce uncertainty
in the control and accountability of maintenance tasks. Decision-making at each stage
of the predictive maintenance process will have uncertainty to varying degrees from the
sensor system, usage environment, measurement errors and modelling of degradation,
which is noted by Javed et al. [134] and Fink et al. al. [42]. This places emphasis on the
decision-making process to factor in levels of confidence, and it should be known and
monitored to constrain uncertainty in the overall PHM tool.

In summary, these three areas discussed here aim to address and progress prognostics
for defence aircraft sustainment and operations, highlight the research gaps that leave
limitations in advancing SPHM from higher technology readiness and implementation.
However, readers should be confident in the opportunities and potential outcomes, with
analysis by Macheret et al. [172] showing prognostics for military aircraft can improve
operational availability, result in lower maintenance costs, and reduced risk of failure due
to informed decision-making.
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6. Conclusions

Predictive maintenance has become an area of significant interest for researchers
and practitioners. While significant advances have been made, it is abundantly clear
from a variety of recent review papers that much work remains to be conducted. This
impression is reinforced by the systematic review performed in this work, which addresses
the lack of any review to date relative to predictive maintenance for military fixed-wing
aircraft in the defence context. Through analysis of fifty recent review papers, along with a
macro-view of publication trends in the overall state-of-the-art and discussion of specific
application papers, areas of interest have been delineated and discussed in detail in this
review. Challenges, opportunities, and future research directions are discussed, collating
the state-of-the-art and identifying trends that demonstrate the challenges that predictive
maintenance faces in the short-term and long-term, as decisions are made sometimes
20 years in advance over platform capabilities, as in the case of defence.

Predictive maintenance in defence settings is forging a path forward to higher TRLs
and implementation, as the aircraft platforms provide opportunities for prognostics to
be performed. Predictions generated from prognostics are, in many ways, just a starting
point, and subsequent implementation at scale requires embedding into various levels
of decision-making, with operational use in particular being susceptible to issues with
trust and acceptance of proposed solutions. This could be compounded with the future
of autonomous aircraft, where removing pilots removes a source of data and inevitably
sustainment and operations will have to trust and rely on the aircraft sensory systems.
A transdisciplinary and whole of systems approach is required to integrate predictive
maintenance into the full lifecycle of maintenance practices and ensure it is effective overall
in defence sustainment and operations. Nevertheless, there is an opportunity in the near-
term for defence fixed-wing aircraft predictive maintenance, and the recent literature
demonstrates it is tackling the higher TRL challenges. Lastly, military and civil domains
may see benefit from greater cross-collaboration, enabling a dual-use case for predictive
maintenance technologies, while also providing higher returns on funding and resources.
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