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Abstract: Aeroengine working condition recognition is a pivotal step in engine fault diagnosis.
Currently, most research on aeroengine condition recognition focuses on the stable condition. To
identify the aeroengine working conditions including transition conditions and better achieve the fault
diagnosis of engines, a recognition method based on the combination of multi-scale convolutional
neural networks (MsCNNs) and bidirectional long short-term memory neural networks (BiLSTM)
is proposed. Firstly, the MsCNN is used to extract the multi-scale features from the flight data.
Subsequently, the spatial and channel weights are corrected using the weight adaptive correction
module. Then, the BiLSTM is used to extract the temporal dependencies in the data. The Focal Loss
is used as the loss function to improve the recognition ability of the model for confusable samples. L2
regularization and DropOut strategies are employed to prevent overfitting. Finally, the established
model is used to identify the working conditions of an engine sortie, and the recognition results of
different models are compared. The overall recognition accuracy of the proposed model reaches
over 97%, and the recognition accuracy of transition conditions reaches 94%. The results show that
the method based on MsCNN–BiLSTM can effectively identify the aeroengine working conditions
including transition conditions accurately.

Keywords: aeroengine; working condition recognition; convolutional neural networks; multi-scale;
bidirectional long short-term memory neural networks

1. Introduction

In the past decades, the time-frequency analysis methods represented by the fast
Fourier transform and wavelet analysis [1] and the machine learning methods represented
by support vector machines [2] have greatly contributed to the development of fault
diagnosis theories and methods. As the heart of an aircraft, it is of great significance for
flight safety to achieve efficient monitoring of aeroengines [3]. As technology is constantly
being advanced, increasing numbers of parameters can be extracted from the engine to
characterize its operating status. Consequently, how this data can be used to monitor
engines has been a hot topic of research [4]. Aeroengines often exhibit different fault
characteristics under different working conditions, and condition identification is a critical
step in engine fault diagnosis [5]. As military aircraft, especially fighter aircraft, often
have to make air maneuvers, compared with civilian engines, military engine working
conditions change more frequently, and the transition conditions occupy a large proportion
of the relevant factors. Therefore, the identification of the transition condition is a very
pivotal step in the fault diagnosis of military aircraft engines.

Previously, scholars have carried out research on the recognition of aeroengine working
condition. He, D.W. et al. and Zhou, S.M. et al. used a variety of improved support vector
machine [6] and support vector description [5] methods, respectively, to study aeroengine
working condition recognition. Li, D.Z. et al. used random forest (RF) to study aeroengine
working condition recognition [7]. The overall recognition accuracy of these methods is
approximately 98%, but the following problems exist: first, most studies have only investigated
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the identification of the stable working condition of an engine without identifying the transition
condition; second, when classifying the conditions, almost all of them only extract the spatial
features of the data and disregard the temporal features of the data.

The deep learning method represented by convolutional neural networks (CNNs)
provides a new idea for aeroengine working condition recognition. Due to the advantages
of weight sharing, robustness, and parameter simplification, CNNs have attained numerous
achievements in image recognition, object detection, semantic segmentation, and other
fields in recent years. In 2012, Krizhevsky et al. proposed the AlexNet network [8], which
consequently sparked interest in deep learning. Since then, more models with more
powerful performance such as VGGNet [9], GoogLeNet [10], and ResNet [11] have come
out one after another. New models for various specific problems such as R-CNN [12] and
YOLO [13] are also emerging and widely used.

How to extract multi-scale features effectively is very important for the classification
problem [14]. Hence, Lin, T.Y. et al. proposed the FPN model [15], which comprehensively
uses different levels of features containing information of different scales to improve the
capacity of the model to identify multi-scale targets. Cai, Z.W. et al. used multi-scale
convolution kernels to fully exploit the multi-scale features in the input and improve
the feature extraction capability of the model [16]. In addition, the study of attention
mechanisms has also greatly uplifted the performance of deep learning models, such as the
typical Se-Net [17], CBAM [18], and ECA-Net [19]. Most of these models adaptively adjust
the feature weights during error back-propagation to improve the accuracy of the model.

For example, in the field of fault diagnosis, Guo, X. et al. used a hierarchical learning
rate adaptive two-dimensional CNN [20] to realize the bearing fault diagnosis research,
and the accuracy rate reached 97.9%. Tian, Y. et al. proposed an immune-adaptive deep
CNN to realize the fault diagnosis of bearings, with an accuracy rate of 99% [21]. Qian,
W. et al. used one-dimensional convolution to conduct fault diagnosis research [22], and
the fault discrimination accuracy exceeded 99%. In addition, many scholars have used
CNN–LSTM to carry out fault diagnosis research, such as Wei, X.L. et al. and S.-y. Han
et al., respectively, using CNN–LSTM to carry out fault diagnosis research on an aeroengine
plunger pump [23] and bearing [24], both obtaining higher accuracy.

In this paper, CNN and LSTM are combined to identify the working condition of an
aeroengine. First, the excellent feature extraction capability of multi-scale convolution is
utilized to extract the spatial features of the data. Subsequently, the BiLSTM is used to extract
the time series features of the data to realize aeroengine working condition recognition.

2. Basic Theory
2.1. Aeroengine Working Condition Recognition

Depending on the power lever angle (PLA), rotating speed, and exhaust temperature of
an aircraft engine, its working conditions can be categorized into stable working conditions
such as idling, throttling, maximum, and afterburner, and transitional working conditions
such as starting, accelerating, decelerating, and switching on the afterburner. Usually,
by changing the engine PLA and so on, the engine can be maintained in a certain stable
working condition or switched between different working conditions according to certain
control laws. Owing to the hysteresis of the control system, for example, when pushing
the throttle to accelerate, there is often a certain delay before the engine accelerates to the
next stable working condition, while the action of pushing the throttle is often completed
in 1~2 s or even less. Therefore, it is inaccurate to simply characterize the PLA as an engine
working condition. The aeroengine is working under certain control laws; therefore, the
parameters of the aeroengine should be approximated under the same working condition.
Based on this, the conditions can be identified using parameters such as the PLA, rotating
speed, and exhaust temperature recorded in the flight parameter data, while to identify the
transition condition, the change rate of these parameters should be taken into account. The
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identification of the working condition of an aeroengine can be described as a function of
the relationship shown in Equation (1).

Cond = f (PLA, n, A8, α, ∆PLA, ∆n, · · ·) (1)

where Cond indicates the engine operating condition, PLA the PLA, n the engine rotating
speed including low-pressure rotor rotating speed and high-pressure rotor rotating speed,
A8 the tailpipe area, and α the compressor guide vane angle including the variable guide
vane curvature or inlet guide vane angle for the fan and high-pressure compressor. ∆PLA
indicates the PLA change rate and ∆n indicates the rotating speed change rate. Other
parameters related to engine operating conditions are included as well.

In fact, owing to the non-linear and complex characteristics of aeroengines, it is very
difficult or even impossible to accurately determine the functional relationship shown in
Equation (1), but with the help of tools such as machine learning or deep learning, it is
feasible to identify the engine working condition by using parameters such as PLA and
rotating speed. In particular, with the powerful capability to achieve complex feature
extraction of deep learning algorithms, it is possible to identify the working condition of an
aeroengine including the transition condition. Considering the characteristics of aeroengine
operating parameters, this paper proposes an aeroengine working condition recognition
method combining MsCNN and BiLSTM.

2.2. CNN–LSTM

The CNN–LSTM model extracts features by comprehensively using the CNN model
and the LSTM model to improve the feature extraction capability and robustness of the
model. Of these, the CNN model excels in extracting the spatial features of samples, while
the LSTM model has a strong ability to extract the temporal dependence of temporal data.
The comprehensive use of these two models to extract features allows richer features to be
obtained, and the robustness of the model will be stronger [23].

3. The Proposed Model
3.1. Multi-Scale Convolutional Neural Networks
3.1.1. Multi-Scale Feature Extraction Network

One of the keys to achieving accurate classification is that the extracted features
can effectively distinguish different categories. Therefore, it is a very critical step to
extract features that can accurately reflect the differences between categories. The core of
convolutional neural networks to extract complex features is to use convolution kernels
to perform convolution operations. According to [10], a single-scale convolution kernel is
only sensitive to features of a specific scale, and it is difficult to extract features of other
scales. Therefore, to extract richer features, the model uses multi-scale convolution kernels
to extract multi-scale features.

In addition, the features extracted by the different convolution layers are typically
different. Most models use only the features extracted by the deepest convolution kernel as
the final features while disregarding the features of other layers, resulting in significant
information loss. Therefore, the model incorporates FPNs into multiscale convolutional net-
works to establish new feature extraction networks for achieving multiscale and multilevel
information extraction. The specific implementation method is as follows (Figure 1):

As shown in Figure 2, to achieve multi-scale feature extraction, three convolution
kernels with convolution kernel sizes of 1 × 1, 5 × 1, and 10 × 1 are used to perform
three layers of convolution, respectively. Considering the small input, the numbers of
convolution kernels in each layer are 8, 16, and 16, respectively. In order to realize multi-
level information fusion, referring to the FPN network, the features obtained after the third
convolutional layer and the features after the second convolutional layer are added element
by element, and the features of the second layer are supplemented and enhanced. Then,
a convolutional layer with 16 channels and a size of 1 × 1 is used to process the features
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obtained after the first convolutional layer, so that the number of channels is the same as
that of the enhanced second layer feature channels, and then perform element-by-element
addition. The enhanced first-layer features are obtained to realize the fusion of multi-level
information and make full use of the multi-level features. The features extracted by each
convolutional layer are passed through the batch normalization layer and the pooling
layer, which improves the calculation speed, reduces the size of the feature, improves the
stability and robustness of the model, and uses the activation function to improve the
model expression ability.
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Figure 1. Structure of the proposed model.

In addition, to reduce the loss of useful information, the features are not processed
using the pooling module after the 1 × 1 convolution kernel. Instead, the extracted features
are processed using a 3 × 1 maximum pooling layer in the 5 × 1 and 10 × 1 convolution
kernel modules.

3.1.2. Adaptive Weight Correction Unit

In the CBAM, global average pooling and global maximum pooling are used to
compress features to calculate channel attention; cross-channel global average pooling
and global maximum pooling are used to compress features to calculate spatial attention.
In order to compress features within a channel, in Se-Net, intra-channel global average
pooling is used. Global average pooling averages the features directly within a channel or
at the same location across channels, treating them as equally important. Global maximum
pooling also discards a significant amount of other information.

To achieve more reasonable feature compression, adaptive squeeze and exciting
(AdaSE) and modified spatial attention (MSA) are proposed herein. As shown in Figure 3,
when performing in-channel feature compression, AdaSE first uses a 1 × 1 convolution ker-
nel to compress the features into one channel. Then, the weights of this compressed channel
at different spatial locations are calculated using the Sigmoid function as the weights at
each spatial location of all channels during weighted average pooling, and the weights
are assigned to all channels at different spatial locations correspondingly. Finally, the new
features with adjusted spatial weights are globally averaged for pooling to achieve global
weighted average pooling. The channel attention is learned using the fully connected layer
and quantified using the SoftMax function. The spatially corrected features are adjusted
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using the attention values, and finally, the features with more balanced spatial and channel
weights are obtained.
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MSA first uses a convolution kernel with four channels and a size of 1 × 1 to compress
and fuse the features adaptively and then uses a 1 × 1 convolution kernel to learn the
importance of the position in the space. The significance is quantified to obtain the weight
distribution of the feature in space. Finally, adaptive correction is performed according to the
importance of features, meaning that the model pays more attention to those features that
have a great influence on the classification results and suppresses those features that have less
influence on the classification results. The specific implementation method is as follows:

As shown in Figure 4, in the spatial weight calculation, the input features are first
compressed into four channels by linearly combining them using a 1 × 1 convolution kernel.
Then, the features are compressed into one channel using a Relu activation function and a
1 × 1 convolutional kernel that introduces nonlinearity at the same time. The advantages
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are mainly as follows: (1) in the compression process, the information of all elements is
finally used in the extraction of important features by weighted fusion, which retains more
useful information; (2) through 1× 1 convolution, few learnable parameters are introduced,
which brings only a small computational overhead; (3) using convolution operations and
activation functions, the model can adaptively perform nonlinear adaptive compression
of channel features during error back propagation to obtain more reasonable and easily
computable features. Finally, the spatially corrected features are put into the AdaSE module
to calculate channel attention and perform channel correction.
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3.2. Overall Structure

As shown in Figure 1, multi-scale and multi-level information is first extracted using
the multi-scale feature extraction module, followed by spatial and channel weight cor-
rection. The obtained features are Concat fused. Subsequently, the features are flattened
using a Flatten layer and imported into the BiLSTM after batch normalization to extract
the temporal dependencies of the features. Up to this point, the model has extracted the
spatial and temporal dependencies in the original signal. In the end, the classification is
achieved using the fully connected layer and the SoftMax function. Focal Loss is used for
the loss function to ameliorate the problem of the difficult classification of small samples
due to data imbalance, and the final classification results are obtained. The BiLSTM uses
128 units, and the numbers of fully connected layers are 48 and 11, respectively. To enhance
the robustness of the model, a DropOut layer with a random drop rate of 0.2 is used after
the BiLSTM layer for processing.

The initial learning rate was set to 0.1, with a period of 10 epochs and a decline factor
of 0.4. The miniBatchSize was set to 20. The smaller the batch size, the more the model
can converge to a flat minimum. However, too small a batch size will result in a very
slow model. Therefore, to balance the accuracy and speed of the model, the miniBatchSize
was set to 20. To prevent the model from overfitting, the L2 regularization and DropOut
strategies were used, with the regularization factor set to 0.0001 and the dropout rate set
to 0.2. In addition, when the model did not drop in 50 consecutive validation losses, the
iterations were stopped early, and the training was finished.

3.3. Main Steps

The flow chart of the algorithm when identifying the working condition is shown in
Figure 5, which shows the steps of the working condition identification of the aeroengine.
Firstly, the desired data are extracted using real outfield flight data, and the obvious outliers
are removed from the data. The data are then normalized so that all data are between 0 and 1.
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Figure 5. Flow chart of working condition recognition algorithm.

Considering that the variation characteristics of the same parameter are different when
the aeroengine is working in the stable condition and the transition condition, when the
aeroengine is in the stable condition, its working parameters are relatively steady, and the
data fluctuation range is small, while in the transition condition, its parameter changes more
prominently, and each parameter changes according to the control law. Therefore, to better
identify the working condition of the aeroengine including the transition condition, the
engine rotating speed change rate, the PLA change rate, and the tail nozzle cross-sectional
area change rate are added to the input signal to enhance the data. The 28 inputs are shown
in Table 1.

Table 1. Input signals used in the model.

Variable Implication The Employed Data (D(i) = D(j)-D(j-i))

PLA Power level angle PLA, PLA(−2), PLA(−1), PLA(1), PLA(2)
n1 Low-pressure rotor rotating speed n1, n1(−4), n1(−3), n1(−2), n1(−1), n1(1), n1(2)
n2 High-pressure rotor rotating speed n2, n2(−4), n2(−3), n2(−2), n2(−1), n2(1), n2(2)
α1 Inlet guide vane angle α1
α2 High-pressure guide vane variable angle α2
A8 Tailpipe nozzle area A8, A8(−2), A8(−1), A8(1), A8(2)
T6 Exhaust gas temperature T6
s1 Oil supply duty cycle signal s1
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Then, the MsCNN–BiLSTM model is established according to Figure 1. The model
first extracts the multi-scale spatial features of input using MsCNN and adaptively adjusts
the features using the attention model. Then, the multi-scale features processed by the
attention model are introduced into the BiLSTM to obtain the temporal dependencies.
Finally, the fully connected layer and SoftMax classifier are used for classification. During
the training process, when the model classification loss meets the requirements or the
number of iterations is reached, the training is finished, and the current model is saved.
Finally, the test data are imported into the trained model, and the conditions identified by
the model are output. The model is evaluated using evaluation metrics such as accuracy
and recall, verifying the performance of the model.

4. Validation and Analysis
4.1. Model Validation

In order to compare the accuracy of different models for the identification of aeroengine
working conditions, different models were trained and predicted using the same set of
training data and test data, respectively. Accuracy and recall were used as evaluation
metrics, where accuracy is Rp and recall is Rr, defined as follows.

Rp =
TP

TP + FP
(2)

Rr =
TP

TP + FN
(3)

where TP represents the number of positive samples predicted as positive samples, FP
represents the number of negative samples predicted as positive samples, and FN represents
the number of positive samples predicted as negative samples.

All experiments were repeated 10 times, and accuracy and recall were used as evalua-
tion metrics to compare the typical stable condition and transition condition recognition
results. The average of accuracy and recall of the 10 experimental results were taken as
the final classification results of the experiments. The experimental results are shown
in Tables 2 and 3, where A indicates acceleration, D indicates deceleration, T indicates
throttling, M indicates the maximum state, OFF AF indicates getting the throttle out of the
afterburner, and AF indicates the afterburner.

Table 2. Recognition Rp of different models in typical aeroengine working condition (%).

Model
Typical Working Condition Overall

RrA D T M OFF AF AF

BP-ANN 92.1 90.2 92.9 97.9 67.4 98.1 94.7
CNN 93.4 97.3 94.5 98.4 83.7 98.5 96.4

MSCNN 94.5 92.9 96.4 98.6 83.7 97 96.7
BiLSTM 86.3 83 84.7 98.3 55.8 98.1 93.8

MSCNN–BiLSTM 94.5 97.3 95.6 99.5 90.7 100 97.3
MSCNN–BiLSTM–SE 95 96.6 96.5 98.7 91.5 99.8 97.6

MSCNN–BiLSTM–MSA 94.5 95.5 96.7 98.9 93 99.6 97.4
The proposed model 96 96.4 97.5 99 91.9 99.6 98

The following conclusions can be drawn from the experimental results:

(1) It is obvious that the proposed model has higher recognition accuracy than BP–ANN,
CNN, and BiLSTM models, which have lower recognition accuracy, especially for
acceleration and maximum condition recognition accuracy and low recall rate for
turning off afterburner recognition. BiLSTM has only a 55.8% recall rate for turning
off afterburner recognition.

(2) Compared with the single-scale convolution, the recognition accuracy of the proposed
model has been improved by using the multi-scale convolution strategy, especially
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for the transition condition of acceleration and deceleration, which shows that the
multi-scale convolution strategy can effectively extract the features of the engine
transition conditions.

(3) The combination of CNN and BiLSTM models resulted in higher model accuracy than
when one model was used alone.

Table 3. Recognition Rr of different models in typical aeroengine working condition (%).

Model
Typical Working Condition Overall

RpA D T M OFF AF AF

BP-ANN 86.2 88.9 96.3 95.3 100 92.1 94.7
CNN 89.1 89.6 98.2 98.2 94.7 96.3 96.4

MSCNN 92.8 92.9 96.9 98 87.8 95.9 96.7
BiLSTM 87.1 93 93.5 93.5 100 89.9 93.8

MSCNN–BiLSTM 92.5 91.9 98.3 98.9 100 97.4 97.3
MSCNN–BiLSTM–SE 92.5 93 98.1 98.5 100 97.6 97.6

MSCNN–BiLSTM–MSA 94.3 92.8 97.7 98.4 100 96.7 97.4
The proposed model 95.1 94.7 98.1 99.2 100 97.8 98

Figures 6 and 7 show the confusion matrix obtained after model identification. The
darker part indicates a greater proportion of the sample. Samples on the diagonal in the
matrix indicate the proportion of that sample that is accurately classified. The rightmost
side indicates accuracy, and the lower side indicates recall. The correspondence between
labels and work conditions is shown in Table 4.
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As can be seen from Figures 6 and 7, the recognition accuracy of the model for placing
the throttle off and cutting off the engine, unstart, and idling is almost 100%, and the mistak-
enly recognized samples are mainly concentrated in acceleration and deceleration, mainly
because it is difficult to accurately identify when the engine changes from acceleration or
deceleration to throttling. In addition, the recognition recall rate for turning on and off
the afterburner is low, at only about 90%. The reason is that the parameters of the engine
when turning on and turning off the afterburner vary widely, but the changes in rotating
speed and temperature are not obvious, making it difficult to distinguish them from the
maximum condition and afterburner.
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Table 4. The working condition of aeroengine corresponding to the label.

label Aeroengine Working Condition

−1 Placing the throttle off and cutting off the engine
0 Unstart
1 Starting
2 Idling
3 Acceleration
4 Deceleration
5 Throttling
6 Maximum
7 Turning on afterburner
8 Getting the throttle out of afterburner
9 Afterburner

To better analyze the classification effect of each model, the T-Stochastic Neighbor
Embedding (T-SNE) method was used to visualize and analyze the final output features of
BP-ANN, CNN, BiLSTM, and the proposed models during the testing process. The results
are shown in Figure 8.

As shown in Figure 8, it can be seen that the output features of the proposed model
are more compactly distributed in each category on the two-dimensional space, with greater
spacing between categories and fewer overlapping samples between samples of different
categories, compared to BP–ANN, CNN, and BiLSTM. In other words, the proposed model
better distinguished the different working conditions and achieved better classification results.

In addition, it can also be seen in Figure 8 that the single-scale CNN and BiLSTM
models can also accurately distinguish samples of certain categories, but the overall sample
distribution was more dispersed and there were more overlapping samples with less
spacing between categories. In particular, the most overlapping samples were found
between acceleration (label 3), deceleration (label 4), and throttling (label 5)—a result that
also coincides with the results shown in Tables 2 and 3.

Through the visual analysis of T-SNE, it can be seen that the proposed model can
distinguish different categories more effectively than models such as BP–ANN, CNN, and
BiLSTM. Therefore, it can be considered that the proposed model can extract more abundant
features that can effectively distinguish the differences between categories by fusing the
spatial features of different scales and time series features, meaning that it has a higher
accuracy. A comprehensive analysis of the model structure and experimental results shows
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that, compared with traditional methods that can only extract features at a single scale, the
proposed model uses a multi-scale convolution strategy to extract richer multi-scale spatial
features and extracts features in the time dimension with the help of the BiLSTM model,
which fully exploits the hidden working condition features in the flight parameter data,
thus achieving the best recognition effect. In addition, due to the inclusion of the attention
mechanism, the importance of different features to the classification results is effectively
identified, enabling the model to adjust the weights according to the importance of the
features, achieving the purpose of improving the model performance.
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4.2. Analysis of Attention Modules

The core of the attention module is weight adjustment, i.e., improving the accuracy of
the model by increasing the weights of features that have a large impact on the classification
result and decreasing the weights of irrelevant features. When the SoftMax function is used
to quantify the weights, if the attention module cannot learn the importance of the model,
it will concentrate a large amount of weight on one or a few features and assign very little
weight to the remaining features. Similarly, when the Sigmoid function is used to quantify
the weights, if the model does not learn effectively, the weights of each feature tend to be
around 0.5.

Figure 9 shows the attention weights output by the SoftMax function of the AdaSE
module. Based on the figure, no over-concentration or over-averaging occurred in the
weights, indicating that the module effectively learned the importance of each feature and
that the spatial importance of the features was effectively differentiated.
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Figure 9. Weight of every channel of AdaSE (Normal).

Figure 10 shows the weights of the different spatial locations when computing the
channel attention and performing the global adaptive weighted average pooling. The
figure shows that when performing the adaptive weighted average pooling of compressed
features, features at different locations within the same channel are not simply summed
and re-averaged but are weighted and averaged according to the contribution of the spatial
features to the classification result. The features obtained after adaptive weighted averaging
pooling contain more information when used to quantify attention weights, thus optimizing
the feature compression strategy.
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Figure 10. Weight of different spatial position in global weight average pooling.

Figure 11 shows the spatial attention weights obtained using the adaptive compression
strategy. As shown in the figure, the distribution of weights is not equally distributed
around 0.5, which indicates that the module effectively learned the attention weights in
space and distinguished the importance of different positions in space.
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Figure 12 shows the distribution of the attention weights output by the SoftMax
function using the proposed attention model when the model is only 83.2% accurate. It can
be seen that the model focuses a large amount of attention on one channel, which is much
larger than the weights assigned to the other channels, indicating that the model ignores a
large number of features on the other channels, thus resulting in an extremely low final
classification accuracy.
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A comparison of Figures 9–12 shows that the submodules of the proposed attention
model did not focus significantly on individual features or distribute attention evenly across
all features and that they effectively distinguished the importance of features in different
channels or spatial locations. The different models were compared with the classification
results presented in Tables 2 and 3. A comparison of the proposed model with the baseline
model shows that, after adding the proposed attention module, the recognition accuracy of
the model increased from 97.3% to 98%, which fully demonstrates the effectiveness of the
proposed attention model. Meanwhile, a comparison between the proposed model and the
MsCNN–BiLSTM–SE model shows that the overall recognition accuracy of the proposed
attention model was higher owing to the improved feature compression strategy and the
combined use of channel and spatial attention.
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5. Conclusions

In this study, an aeroengine working condition recognition method based on the
combination of MsCNN and BiLSTM is proposed. The validity of the model is verified by
cases, and the recognition effects of different models are compared. Finally, the attention
model is analyzed, and the following conclusions are drawn:

The proposed model can effectively identify the working conditions of an aeroengine
containing transition conditions. The overall recognition accuracy is above 97%, and the
maximum accuracy of the transition condition recognition reaches 94%.

The recognition accuracy of the proposed model is significantly higher than those of
the BP-ANN, CNN, and BiLSTM models, indicating that the proposed model has extracted
more effective features to identify the engine working conditions than the other models
mentioned in Table 2.

The proposed attention module effectively improves the recognition accuracy of the
model with only a minimal increase in the computational overhead, and the accuracy
of the proposed model was higher than that of the ordinary Se-Net model, indicating
that the proposed adaptive compression and adaptive pooling strategy outperformed the
conventional global average pooling compression strategy.

However, the model also has some drawbacks and shortcomings. One is that the
accuracy of the identification of turning on and off the afterburner needs to be improved.
Second, the established model is complex and time-consuming to train, so a simpler deep
learning model for condition identification needs to be further investigated.
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