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Abstract: Recently, the joint estimation for time delay (TD) and direction of arrival (DOA) has suffered
from the high complexity of processing multi-dimensional signal models and the ineffectiveness
of correlated/coherent signals. In order to improve this situation, a joint estimation method using
orthogonal frequency division multiplexing (OFDM) and a uniform planar array composed of
reconfigurable intelligent surface (RIS) is proposed. First, the time-domain coding function of the RIS
is combined with the multi-carrier characteristic of the OFDM signal to construct the coded channel
frequency response in tensor form. Then, the coded channel frequency response covariance matrix is
decomposed by CANDECOMP/PARAFAC (CPD) to separate the signal subspaces of TD and DOA.
Finally, we perform a one-dimensional (1D) spectral search for TD values and a two-dimensional (2D)
spectral search for DOA values. Compared to previous efforts, this algorithm not only enhances the
adaptability of coherent signals, but also greatly decreases the complexity. Simulation results indicate
the robustness and effectiveness for the proposed algorithm in independent, coherent, and mixed
multipath environments and low signal-to-noise ratio (SNR) conditions.

Keywords: tensor; time delay (TD); direction of arrival (DOA); reconfigurable intelligent surface
(RIS); channel frequency response; joint estimation

1. Introduction

Reconfigurable, intelligent surface (RIS) is a planar array consisting of reflective ele-
ments equipped with a time-domain encoding that can alter the frequency characteristics
of incoming signals [1]. At present, the RIS has been widely researched in the fields of
wireless communication [2], beamforming [3], and direction of arrival (DOA) estimation [4].
The RIS has the function of time-domain encoding, which can change the frequency charac-
teristics of received signals [1]. Orthogonal frequency division multiplexing (OFDM) is a
multi-carrier digital modulation technology which utilizes multiple parallel subcarriers to
realize serial high-speed data communication. OFDM provides data transmission and posi-
tioning services for users and is widely used in wireless local area networks (WLAN) [5],
5G mobile communications [6], and time delay (TD) estimation [7]. A reasonable combina-
tion RIS functions and OFDM features can improve performance in a variety of wireless
applications [8–10].

TD and DOA are important components of positioning systems, such as for indoor
localization [11] and radar [12]. Like the time-domain narrowband signal model, the
frequency-domain DOA estimation algorithm is studied by the multiple signal classification
(MUSIC) method [13]. However, the capability of this algorithm is restricted to the size of
the array aperture. An Algorithm [14] is used for TD estimation of OFDM signals, but it is
not available in multipath environments. As researchers choose super-resolution methods
such as the propagator method (PM) [15], MUSIC [16] and estimating signal parameters
via the rotational invariance techniques (ESPRIT) [17], it is difficult to improve the accuracy
of the estimations due to signal bandwidth constraints.
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The joint estimation for TD and DOA by space–time parameter coupling not only
improves the estimation performance, but also reduces the number of receiver nodes and
improves the efficiency of the location system. Thus, the joint estimation has obvious
strengths. Some researchers proposed a method [18] to solve TD under wideband signal
conditions and then estimate DOA based on the trigonometric geometry TD inequality,
but its performance does not improve significantly. In addition, a new method [19] was
proposed to provide the frequency response of extended channels by using a Hadamard
product, which achieves high accuracy joint estimation on OFDM systems. Nevertheless,
the complexity of this approach is extremely high due to the demand for a full-field search.

The above algorithms are performed in an independent environment, which is nec-
essary for the subspace approaches. For the coherent signal estimation, an approach [20]
employing cyclostationary signals and a method [21] for separating coherent signal compo-
nents have been proposed, both of which lead to more complex systems that are hard to
implement in a joint estimation model. In addition, the method in [22] applies smoothing
preprocessing to joint estimation to improve the adaptability in a coherent environment.
However, smoothing preprocessing results in aperture loss and limited estimation accuracy.

The main efforts and results of this paper are summarized in the following points.

(i) We present a joint estimation algorithm for TD and DOA. The algorithmic model
integrates the RIS array response and the OFDM subcarrier response to build a coded
channel frequency response (Coded-Response). The algorithm achieves excellent
estimation performance under low signal-to-noise ratio (SNR) conditions.

(ii) Due to the reasonable combination of the RIS time-domain coding function and the
OFDM multi-subcarrier features, we construct frequency asymmetry of the space–time
phase. This method reduces the singularity of the signal correlation matrix and thus
effectively suppresses the coherence signal.

(iii) The covariance matrix of Coded-Response is reconstructed by using the structural
advantages of tensor. Further use of CANDECOMP/PARAFAC to decompose the
covariance matrix results in corresponding TD and DOA signal subspaces, avoiding
multi-dimensional spectral peak search and greatly reducing complexity.

(iv) Compared with the existing RIS- and OFDM-based localization algorithms [23,24], the
proposed algorithm can obtain the required parameters for localization based on a single
station node in a coherent environment. Simulation results show that the proposed algo-
rithm avoids the aperture loss of current smoothing algorithms [22,25] when processing
coherent signals and thus has more advantages in terms of estimation accuracy.

The rest of the paper is summarized below. First, we describe the details of the
signal model in Section 2. In Section 3, we describe the joint estimation algorithm under
tensor structure and list the steps of the proposed algorithm. We perform computational
complexity analysis in Section 4. For Section 5, we analyze the simulation performance.
Finally, we summarize our efforts in Section 6. The notations used in this paper are
described in Table 1.

Table 1. Notations.

Transpose (•)T

Conjugate (•)*

Hermitian transpose (•)H

Khatri-Rao product �
Kronecker product ⊗
Hadamard product ⊕
Tensor outer product ◦
convolution ∗
Identity matrix I
Statistical expectation E{•}
Orthogonalization orth[•]
Tensor contraction along the qth dimension 〈•, •〉{q}
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2. Signal Model
2.1. Time-Domain Model

In order to construct the space–time asymmetry, the antenna is designed as in Figure 1
with M×M RIS elements. The model is used to estimate TD and DOA without designing
signal source locations. Multipath wireless propagation channels are usually modeled as
complex low-pass equivalent impulse responses. Following the channel estimation, the
channel impact response of the RIS element at location (x, y) in the sth time interval is
denoted by

h(s)x,y(t) =
K

∑
k=1

α
(s)
k ejβ(s)k δ(t− τk) ∗

[
δ
(

t− ξk,x,y

)
Γ(t)

]
, (1)

where K indicates the number of multipaths; α
(s)
k ejβ(S)k is the complex attenuation of the kth

path; α
(s)
k is the amplitude; β

(s)
k is the phase that is consistent with the uniform distribution

of the density function U(0, 2π).

Figure 1. Signal arrives in RIS.

Suppose the RIS element at the origin of the coordinate axis is the reference RIS element,
and the propagation delay of the source reaching the reference RIS element through the kth
path is τk in the multipath environment. The relative delay of the RIS element at location
(x, y) with regard to the reference position is ξk,x,y, which is indicated by

ξk,x,y =
λ sin θk(x cos ϕk + y sin ϕk)

2c
, (2)

in which λ is the impinging signal wavelength; (ϕk, θk) is the direction of the incoming
wave; Γ(t) is the coding coefficient of RIS, and we set its cycle to T with the ODFM symbol
period. Furthermore, we have

Γ(t) =
W−1

∑
w=0

Γwg(t−mψ), (0 ≤ t ≤ T) , (3)

where the period T is uniformly divided into W; the coding coefficient of the wth time
segment is a constant Γw; g(t) is a periodic unit pulse signal with a width of ψ = T/W,
which can be expressed as
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g(t) =
{

1, (0 ≤ t ≤ T)
0, (0 ≤ t ≤ T)

, (4)

which can be expressed in terms of the Fourier series as

g(t) =
L−1

∑
l=0

clej2π∆ f lt, (5)

where ∆ f = 1/T is the OFDM subcarrier spacing, and L is the quantity of OFDM subcarri-
ers. Moreover, cl is the Fourier series coefficient, which can be expressed as

cl =
1

W
sin( lπ

W )
lπ
W

e−j lπ
W =

1
W

Sa(
lπ
W

)e−j lπ
W . (6)

We take (5) into (3) to obtain

Γ(t) =
L

∑
l=0

[
cl

W−1

∑
w=0

Γwe−jlg
2wπ
W

]
ej2π∆ f lt

=
L

∑
l=0

αΓejβΓ ej2π∆ f lt

, (7)

where αΓejβΓ is the composite attenuation caused by RIS; αΓ is the amplitude, and ejβΓ

is the phase, whose effects can be neglected by properly setting W and Γw to achieve
αΓejβΓ αejβ ≈ αejβ.

2.2. Frequency-Domain Model

Performing the Fourier transform to (1), we obtain the Coded-Response of the lth
subcarrier at the (x, y) RIS element as

H(s)
l,x,y =

K

∑
k=1

α
(s)
k ejβ(s)k e−j2π( fc+∆ f l)τk

(e−j2π( fc+∆ f l)ξk,x,y ∗ Γ( f )) + n(s)
l,x,y

=
K

∑
k=1

α
(s)
k ejβ(s)k e−j2π( fc+∆ f l)τk e−j2π fcξk,x,y + n(s)

l,x,y

, (8)

where fc is the carrier frequency, and n(s)
l,x,y is additive white Gaussian noise with power σ2.

According to (8), the Coded-Response of lth subcarrier is given by

H(s)
l =

K

∑
k=1


H(s)

l,0,0

H(s)
l,0,1
...

H(s)
l,M−1,M−1


=

K

∑
k=1

Aτl(τk)� Aξ(ξk)ρ
(s)
k + n(s)

l

, (9)

where
Aτl (τk) = e−j2π( fc+∆ f l)τk , (10)

Aξ(ξk) =
[
e−j2π fcξk,0,0 · · · e−j2π fcξk,M−1,M−1

]T, (11)

ρ
(s)
k = α

(s)
k ejβ(s)k , (12)
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n(s)
l =

[
n(s)

l,0,0 n(s)
l,0,1 · · · n(s)

l,M−1,M−1

]T
. (13)

The subcarriers in the OFDM signal can be similar to the RIS arrays based on space–
time equivalence. Based on the signal subspace algorithms, a space–frequency Coded-
Response matrix can be constructed with the expression

H(s) =
K

∑
k=1


Aτ0(τk)
Aτ1(τk)

...
Aτ(L−1)(τk)

� Aξ(ξk)ρ
(s)
k + n(s)

=
K

∑
k=1

Aτ(τk)� Aξ(ξk)ρ
(s)
k +n(s)

, (14)

where
n(s) =

(
n(s)T

0 n(s)T
1 · · · n(s)T

L−1

)T
. (15)

In addition, if there are an overall S time intervals, then (14) is represented as

H = Aτ(τ)� Aξ(ξ)ρ + n, (16)

where
H =

[
H(1) H(2) · · · H(S)

]
, (17)

Aτ(τ) =
[
Aτ(τ1) Aτ(τ2) · · · Aτ(τK)

]
, (18)

Aξ(ξ) =
[
Aξ(ξ1) Aξ(ξ2) · · · Aξ(ξK)

]
, (19)

ρ =
[
ρ1 ρ1 · · · ρK

]T, (20)

ρk =
[
ρ
(1)
k ρ

(2)
k · · · ρ

(S)
k

]
, (21)

n =
[
n(1) n(2) · · · n(S)

]
. (22)

The time-domain encoding of RIS transforms the combination of Aτ(τ) and Aξ(ξ)
from Hadmard to Khatri–Rao, providing the possibility of solving TD and DOA separately.
The coded signal model converts the time-domain structure into a frequency-domain
structure so that it is still suitable for the time-domain method. Additionally, there are
two clear benefits to building a Coded-Response for joint TD and DOA estimation. On the
one hand, the simultaneous acquisition of TD and DOA parameters enables single-station
localization to reduce the localization system overhead. On the other hand, the proposed
joint estimation approach leads to an increase in L times aperture and M2 times bandwidth
compared to reality, which is better than the individual estimation performance.

3. The Joint TD and DOA Estimation
3.1. Tensor Approach

In this section, we represent the Coded-Response (16) into a tensor. The tensorial
form can reveal signal model structure clearly, which enables us to realize signal and noise
subspaces more accurately. In addition, the proposed method improves the robustness in a
coherent multipath environment with a tensor form of

H = Aτ(τ) ◦ Aξ(ξ) ◦ ρT+N , (23)
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where H ∈ CM2×L×S, and N is additive white Gaussian noise in the same dimension
as H with power of σ2. In (23), the tensor covariance matrix RH∈CM2×L×M2×L can be
obtained as

RH = E
[
< H,H∗>{3}

]
=

K

∑
k=1

β2
k Aτ(τk) ◦ Aξ(ξk) ◦ A∗τ(τk) ◦ A∗ξ (ξk) +NR

, (24)

where β2
k = E

[
ρT

k (ρ
T
k )
∗] is the complex decay of the kth path, and NR = E[〈N ,N ∗〉{3}] is

the noise term. In practice, the tensor covariance matrix RH can be estimated as

R̂H =
1
S
〈H,H∗〉{3}. (25)

The CANDECOMP/PARAFAC decomposition (CPD) [26] is a common method for
splitting a high-dimensional tensor. We perform CPD on the four-dimensional tensor R̂H
to obtain a sum RCP ∈ CM2×K,L×K,M2×K,L×K of component rank-one tensors as

RCP = [T CP], [ACP], [T ∗CP], [A∗CP]. (26)

Due to the milder uniqueness condition of tensor decomposition and the asymmetry
of the constituent factor vectors in (23), there is

rank(TCP)+rank(ACP)+rank(TCP
∗)+rank(ACP

∗)≥2K+N−1

⇒ K + K + K + K ≥ 2K + N − 1

⇒ 2K ≥ 3

. (27)

N is the amount of matrices obtained by CPD or the dimension of the decomposed matrix,
which is four in this algorithm. Therefore, when the number of sources is not unique, the
proposed algorithm satisfies the uniqueness of CPD [26]. Further, we extract the signal sub-
space T CP from RCP for TD estimation and the signal subspace ACP for DOA estimation.

3.2. TD Estimation

Since the phases of TD and DOA are asymmetric in frequency, it allows TD to be
estimated separately while suppressing the coherent signal. To demonstrate this process,
we will fold the M2L× 1 received vector (14) into an L×M2 matrix as follows

H(s)
T f old(p, q) = H(s)(M2(p− 1) + q), (28)

where H(s)
T f old ∈ CL×M2

is a new observation matrix of p = 1, 2, . . . , L and q = 1, 2, . . . , M2.
Thus, TD and DOA can be decoupled in phase as

H(s)
T f old =

K

∑
k=1

Aτ(τk)AT
ξ (ξk)ρ

(s)
k +n(s)

T f old, (29)

where n(s)
T f old denotes the noise term and still follows the white Gaussian distribution.

Further, H(s)
T f old can be considered as a sample collected by the RIS at sth time interval. Here,

we define
F(s) =

[
AT

ξ (ξ1)ρ
(s)
1 AT

ξ (ξ2)ρ
(s)
2 · · · AT

ξ (ξK)ρ
(s)
K

]T
. (30)
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Then the covariance matrix corresponding to (29) is

RT f old =
1
S

S

∑
s=1

H(s)
T f old(H(s)

T f old)
H

= Aτ(τ)RF A(τ)H + σ2 IL

, (31)

where

RF =
1
S

S

∑
s=1

F(s)(F(s))
H

= Rξ ⊕ Rρ

, (32)

where

Rξ =


AT

ξ (ξ1)A∗ξ (ξ1) · · · AT
ξ (ξ1)A∗ξ (ξK)

...
. . .

...
AT

ξ (ξK)A∗ξ (ξ1) · · · AT
ξ (ξK)A∗ξ (ξK)

, (33)

Rρ =
1
S

S

∑
s=1

ρ(s)(ρ(s))
H

. (34)

Note that AT
ξ (ξk)A∗ξ (ξi), k, i = 1, 2, · · · , K can only achieve maximum value if k = i.

Since the relative delays of the signals are different from each other, Rξ is a diagonally
dominant matrix which reduces the singularity of the signal correlation matrix when the
signals are correlated. Combining with (32), it can be seen that in the coherent environment
even if rank(Rρ) < K there is still rank(Rξ) < K enabling rank(RF) < K. Therefore, if the
proposed method can obtain the signal or noise subspace of Aτ(τ) alone for TD estimation,
the method is adaptive to coherent signals.

Then we obtain the corresponding signal subspace T CP of Aτ(τ) from (26) and
construct the corresponding noise subspace UntUH

nt as follows

UntUH
nt = I − orth(T CP)orth(T CP)

H. (35)

Then the spatial spectrum expression of TD estimation is

P(τ) =
1

T (τ)H(UntUH
nt
)
T (τ)

. (36)

We can use the one-dimensional (1D) MUSIC algorithm to solve the value of τ̂, which
has a higher estimation accuracy and significantly reduces the complexity compared to
the three-dimensional (3D) MUSIC algorithm. Further, in the proposed tensor model, the
separate TD estimates are not affected by the coherent multipath environment.

3.3. DOA Estimation

As the phases of TD and DOA are asymmetric in frequency, it allows DOA to be
estimated separately while suppressing the coherent signal. To demonstrate this process,
we will fold the M2L× 1 received vector (14) into an M2 × L matrix as follows

H(s)
A f old(p, q) = H(s)(p + M2(q− 1)), (37)

where H(s)
A f old ∈ CM2×L is a new observation matrix of p = 1, 2, . . . , M2 and q = 1, 2, . . . , L.

Thus, DOA and TD can be decoupled in phase as

H(s)
A f old =

K

∑
k=1

Aξ(ξk)AT
τ(τk)ρ

(s)
k +n(s)

A f old, (38)
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where n(s)
A f old ∈ CM2×L stands for the complex white Gaussian noise. The remaining proof

process is similar to (31)–(34), and the proposed method is adaptive to coherent signals if
the signal or noise subspace of Aξ(ξ) can be obtained separately for DOA estimation. Then
we obtain the corresponding signal subspace ACP of Aξ(ξ) from (26) and construct the
corresponding noise subspace UnaUH

na as follows

UnaUH
na = I − orth(ACP)orth(ACP)

H. (39)

Then the spatial spectrum expression of the DOA estimate can be obtained as

P(θ, ϕ) =
1

A(θ, ϕ)H(UnaUH
na
)
A(θ, ϕ)

. (40)

We can use the two-dimensional (2D) MUSIC algorithm to solve the values of (θ̂, ϕ̂),
which has a higher estimation accuracy and greatly reduces the complexity compared to
the 3D MUSIC algorithm. Further, in the proposed tensor model, the separate TD estimates
are not affected by the coherent multipath environment.

3.4. Algorithm Steps

The major steps of the proposed algorithm are presented in Algorithm 1.

Algorithm 1 Algorithm steps.

step1: The Coded-Response H in tensor form is constructed according to (23).

step2: The tensor covariance matrix
_

RH is constructed according to (25).

step3: Perform a CPD of R̂H, which solves the signal subspaces T CP and VCP, and then
the corresponding noise subspaces and are obtained by (35) and (39), respectively.
UntUH

nt and UnaUH
na.

step4: Proceed to conduct a 1D spectral peak search for UntUH
nt to solve the τ̂ by (36),

and a 2D spectral peak search for UnaUH
na to solve the (θ̂, ϕ̂) by (40).

4. Algorithms Complexity

In this part, we analyze the complexity of the proposed algorithm under the Coded-
Response model and compare it with the 3D spectral peak search method (3D-MUSIC). To
analyze the accuracy in the next section, we also compare the complexity of the algorithm
(joint-smooth) employing smoothing preprocessing [22], which reduces the dimensions of
the joint estimation model.

The related complexity is mainly split into vector-based covariance matrix computa-
tion, tensor-based covariance matrix computation, eigenvalue decomposition, and CPD and
1D spectrum peak search, which areO(SM4L2),O(SM2L2),O(M3),O(2NKM4L2 + NK3),
and O(M(M− K)G), separately, where G represents the quantity of spectral points in the
1D search. Hence, the proposed complexity is O(M2L2)(S + 2NKM2) + NK3 + M2(M2 −
K)GϕGθ + L(L− K)Gτ . The cost of the 3D-MUSIC is O((S + M2L)M4L2 + M2L(M2L−
K)GϕGθGτ), as well as the smoothing preprocessing method (joint-smooth) is O(SM4L2 +
M6 + L3 + M2(M2 − K)GϕGθ + L(L− K)Gτ), in which Gϕ, Gθ , and Gτ denote the quan-
tity of searches for azimuth, elevation, and propagation delay, separately. To make the
comparison clear, Table 2 summarizes the complexity of all methods. Additionally, we
have compared the complexity of the algorithms in terms of time intervals (S), the quan-
tity of RIS elements (M), and the searching step (∆τ, ∆ϕ = ∆θ, in which Gϕ = 360/∆ϕ,
Gθ = 90/∆θ) in Figure 2a–d, separately.
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Table 2. Comparison of complexity.

Algorithm Complexity

Proposed O(M2L2)(S + 2NKM2) + NK3 + L(L− K)Gτ + M2(M2 − K)GϕGθ

3D-Music O((S + M2L)M4L2 + M2L(M2L− K)GϕGθ Gτ)

Joint-Smooth O(SM4L2 + M6 + L3 + M2(M2 − K)GϕGθ + L(L− K)Gτ)

Figure 2. Comparison of complexity: (a) with S where M = 4, ∆θ = 0.05◦, ∆τ = 0.001 ns; (b) with
M where S = 500, ∆θ = 0.05◦, ∆τ = 0.001 ns; (c) with ∆θ where M = 4, S = 500, ∆τ = 0.001 ns;
(d) with ∆τ where M = 4, S = 500, ∆θ = 0.05◦.

From Figure 2, the 3D-MUSIC complexity is substantial because of the large quantity
of spectral points, specifically in the small spectral steps. The high complexity of the 3D-
MUSIC algorithm brings a very high estimation accuracy, but it cannot be used for coherent
signals. In contrast, the proposed and joint-smooth methods are used to reduce the spectral
peak search dimension by tensor CPD and full-dimensional smoothing preprocessing,
which leads to a significant reduction in complexity. Thus, both algorithms have similar
complexity, and both are applicable in coherent environments. Due to the large-scale
smoothing preprocessing that leads to more aperture loss, the estimation performance of
the joint-smooth method is lower than that of the proposed method.

5. Simulation Results

Here, we present simulation results which focus on the analysis of the proposed
algorithm with joint-smooth. In addition, the proposed algorithm is compared with 3D-
MUSIC in the independent multipath environment.

5.1. Performance at Low SNR

Three cases are designed in this paper. First, suppose that the coherent signals are two,
the corresponding delays are 3.5 ns and 23.5 ns, related azimuth angles are −20◦ and 30◦,
and corresponding elevation angles are 20◦ and 45◦, respectively. Secondly, we append an
independent signal with 23.5 ns time delay, 30◦ azimuth angle, and 45◦ elevation angle.
Thirdly, we assume all three signals are independent. Moreover, Q = 100 is set and the
distribution of TD and DOA under S = 500, and SNR = −5 dB is determined, as illustrated
in Figure 3. Figure 3 shows that this algorithm has the ability to estimate TD and DOA
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values in various situations. In addition, the proposed algorithm has good robustness and
performance under low SNR.

(a) (b)

(c)

Figure 3. Estimated distribution at SNR = −5 dB: (a) two coherent components; (b) two coherent
components and one independent component; (c) three independent components.

5.2. Performance versus SNR

This part analyzes the capabilities of the proposed algorithm, Joint-smooth, 3D-MUSIC,
TD estimation [27], DOA estimation [28], and Cramer–Rao bound (Appendix A) in the
coherent and independent multipath environments. Suppose the multipath signals are
three with the same parameters as simulated in Section 5.1. We set Q = 100, S = 500, and
the spectral steps of ∆τ = 0.001 ns and ∆ϕ = ∆θ = 0.05◦. Further, the RMSE performance
versus SNR with ranges of −15 dB to 20dB in 5 dB intervals is shown in Figures 4 and 5.
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(a) (b)

(c)

Figure 4. Performance comparison with SNR in a coherent multipath environment: (a) azimuth;
(b) elevation; (c) time delay.

As shown in Figure 4, the joint estimation algorithms (joint-smooth and proposed) in
the coherent multipath environment work significantly better than the performance of the
independent estimation algorithms (DOA-Smooth and Smooth-TD) due to the aperture and
bandwidth enhancement brought by the joint approach. Combined with the complexity
comparison of Section 4, it can be concluded that the proposed has a higher estimation
accuracy than the joint-smooth, while the complexity is very close for O

(
2.88× 109

)
and

O
(

3.32× 109
)

. The the proposed avoids the aperture loss in processing coherent signals
by the time-domain coding function of the RIS.

As illustrated in Figure 5, the RMSE of 3D-MUSIC is closer to CRB than the proposed
in the independent multipath environment because the CPD process of the proposed loses
part of the extended structure of the subspace. However, the complexity of 3D-MUSIC
is O

(
3.39× 1017

)
, which is much higher than the proposed and difficult to accept in

practical scenarios.
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(a) (b)

(c)

Figure 5. Performance comparison with SNR in an independent multipath environment: (a) azimuth;
(b) elevation; (c) time delay.

5.3. Performance versus Time Intervals

To highlight the impact of time intervals on RMSE, we set SNR = 15 dB, the quantity
of time intervals varies at the range of S = {20, 50, 100, 200, 500, 1000, 2000, 5000}, and the
rest of the simulation parameters are identical to those simulated in Section 5.2.

As shown in Figure 6, when processing coherent signals, the joint-smooth and the
proposed have significantly better performance than DOA-Smooth and Smooth-TD due
to the aperture and bandwidth improvement brought by the joint approach. Further, the
proposed avoids the aperture loss of the current smoothing method when processing
coherent signals by the time-domain coding function of RIS. Therefore, its estimation
performance is better than the joint-smooth.

As shown in Figure 7, in the independent multipath environment, 3D-MUSIC has
a lower RMSE than the proposed, which is due to the fact that the CPD process of the
proposed loses part of the subspace expansion structure. Other conclusions are the same as
in Figure 6.

In summary, the RMSE of the proposed algorithm reduces as the time interval increases,
although the reduction gradually achieves a plateau. Additionally, more algorithms are
adapted to independent environments, and the estimated performance is typically better.
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(a) (b)

(c)

Figure 6. Performance comparison with time intervals in a coherent multipath environment: (a) az-
imuth; (b) elevation; (c) time delay.

(a) (b)

Figure 7. Cont.
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(c)

Figure 7. Performance comparison with time intervals in an independent multipath environment:
(a) azimuth; (b) elevation; (c) time delay.

5.4. Performance versus RIS Elements

For highlighting the effect of RIS elements on RMSE, we set SNR = 15 dB, the num-
ber of RIS elements varies in the range of M = {3, 4, 5, 6, 7, 8, 9, 10}, and the rest of the
simulation parameters are the same as those simulated in Section 5.2.

In Figure 8, we simulate the performance of the joint estimation algorithm in a coherent
environment. As illustrated in (a) and (b), the performance of the joint estimation DOA
gets better as the number of RIS elements increases. However, the trend flattens out, which
is because the algorithm performance is mainly limited by the SNR when there are enough
RIS elements.

As shown in (c), the performance of the joint estimation TD also gets better as the
number of RIS elements increases. However, it is much less affected due to the fact that
TD estimation is mainly limited by the signal bandwidth. Even though the increase of
RIS elements in the joint estimation model expands the signal bandwidth, its effect is not
infinitely increasing.

(a) (b)

Figure 8. Cont.
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(c)

Figure 8. Performance comparison with RIS elements in a coherent multipath environment:
(a) azimuth; (b) elevation; (c) time delay.

6. Conclusions

For the joint estimation for TD and DOA of coherent signals on a single station
system, we propose an algorithm based on RIS and OFDM techniques in this paper. The
proposed algorithmic model integrates the RIS array response and the channel frequency
response of OFDM subcarriers in tensor form to extend the bandwidth and aperture and
achieve better estimation. The appropriate combination of the RIS time-domain coding
function and the tensor structure allows the algorithm to estimate coherent signals with
reduced complexity. Compared with the current algorithm, the proposed algorithm has
better estimation performance in processing coherent signals without the aperture loss
of the smoothing process and can rely on the advantage of joint estimation for single
station localization systems. In this paper, we begin by presenting the signal model and
the algorithmic procedure, which has detailed derivations and proofs. Then, to reflect
the fast estimation of the proposed algorithm, we compare the related algorithms in
terms of complexity. Finally, the validity and robustness of the algorithm are verified by
simulation experiments. In comparison with current algorithms, the proposed algorithm
provides more effective parameter estimation with lower complexity in coherent or mixed
multipath environments.
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Appendix A. Proof of Proposition

Definition Cramer–Rao bound: The CRB [29] is a threshold for the unbiased estimation
variance of the proposed model and can be used as a performance reference benchmark.
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Firstly, we assume that the parameter estimates are all performed individually with S
time intervals, so the joint probability density function is

f (H(1), · · · , H(S)) =

1

(2π)M2LS(σ2/2)M2LS
e
− 1

σ2

S
∑

s=1
(H(s)−Aρ(s))H(H(s)−Aρ(s)). (A1)

Then taking the log-likelihood function of (A1), we obtain

Lo(H(1),· · ·, H(S))=−M2LS ln(2π)−M2LS ln(σ2/2)

− 1
σ2

S

∑
s=1

(H(s)− Aρ(s))H(H(s)− Aρ(s))
. (A2)

Define η =
[
øT, θT,ϕT

]T
. In addition, ρ̃(s) and ρ̄(s) are the imaginary part and real

part of ρ(s), respectively, which are indicated as ρ̄(s) = Re[ρ(s)] and ρ̃(s) = Im[ρ(s)]. The
Fisher information matrix is Ω =

[
E
(
ψψT)], where

ψT= ∂Lo/∂
[
σ2 ρ̄T(1) ρ̃T(1) · · · ρ̄T(S) ρ̃T(S) ηT]. (A3)

For the Fisher information matrix, the CRB of η conforms

CRB(η) =
σ2

2

{
S

∑
s=1

Re
[

FH(s)BHP⊥A BF(s)
]}−1

, (A4)

where P⊥A = I − PA = I − A
(

AH A
)−1

AH, F(s) = I ⊗ diag(ρ(s))
We perform simulations using OFDM signals with L = 64 subcarriers, fast Fourier

transform period TFFT = 32 us, carrier frequency fc = 2.4 GHz, and bandwidth B = 20 MHz.
Used UPA includes 4× 4 RIS elements. We set the spectrum steps of ∆τ = 0.001 ns and
∆θ = 0.05◦. For evaluating the precision of the methods, we calculate the root mean square
error (RMSE) by

RMSE =

√√√√ 1
QK

Q

∑
q=1

∥∥∥λ− λ̂i

∥∥∥2
, (A5)

in which Q, λ̂i, and λ are the amount of Monte Carlo simulations, the ith estimated values
and the true values, respectively.
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