
Citation: Vasconcelos, D.; Nunes, N.J.

A Low-Cost Multi-Purpose IoT

Sensor for Biologging and

Soundscape Activities. Sensors 2022,

22, 7100. https://doi.org/

10.3390/s22197100

Academic Editor: Jong-Ryul Yang

Received: 1 August 2022

Accepted: 15 September 2022

Published: 20 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Low-Cost Multi-Purpose IoT Sensor for Biologging and
Soundscape Activities
Dinarte Vasconcelos * and Nuno Jardim Nunes

ITI/LARSyS, Instituto Superior Técnico, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
* Correspondence: dinarte.vasconcelos@tecnico.ulisboa.pt

Abstract: The rapid expansion in miniaturization, usability, energy efficiency, and affordability of
Internet of Things (IoT) sensors, integrated with innovations in smart capability, is greatly increasing
opportunities in ground-level monitoring of ecosystems at a specific scale using sensor grids. Sur-
rounding sound is a powerful data source for investigating urban and non-urban ecosystem health,
and researchers commonly use robust but expensive passive sensors as monitoring equipment to
capture it. This paper comprehensively describes the hardware behind our low-cost, small multipur-
pose prototype, capable of monitoring different environments (e.g., remote locations) with onboard
processing power. The device consists of a printed circuit board, microprocessor, local memory,
environmental sensor, microphones, optical sensors and LoRa (Long Range) communication systems.
The device was successfully used in different use cases, from monitoring mosquitoes enhanced with
optical sensors to ocean activities using a hydrophone.

Keywords: multipurpose sensor; biodiversity monitoring; optical detection; acoustic capability; LoRa
technology; embedded systems

1. Introduction

Real-time analysis of data from recording devices is increasingly becoming a branch
of ecological research, with multiple research projects using low-cost microcontrollers and
other expensive programmable devices [1] to broadcast the environmental data for analysis.
This approach has found a vast range of applications, from monitoring traffic noise in the
cities [2] to autonomous recording devices widely used in bird species [3].

Due to these environmental acoustic devices’ cost and energy efficiency, the processing
is now carried out on the microcontroller to detect species presence from an ecosystem of
interest through detection algorithms to recognize the unique vocalizations and infer the
species richness. Still, challenges remain in estimating the population densities through the
number of species.

While all organisms in the ecosystem are vital, the role played by insects is especially
critical. They create the biological foundation for all terrestrial ecosystems, forming the
basal part of the food pyramid and influencing our agriculture ecosystems and human
health [4]. They cycle nutrients, pollinate plants [5,6], disperse seeds, preserve soil structure
and fertility, control populations of other organisms, and supply a significant food source
for other species [7,8] and show how these relate to the environment conditions [9]. Insects
also transmit infectious pathogens (parasites, viruses and bacteria) between humans or
from animals to humans. Every year, more than 700,000 people die from diseases such
as malaria and dengue [10]. However, many more vector-borne conditions cause chronic
suffering, life-long morbidity and disabilities, disproportionately affecting the poorest
populations in tropical and subtropical areas [11].

The use of acoustic sensors to monitor insects is a significant trend in recent research,
monitoring and ecological practice. However, some limitations with acoustics have arisen
due to the emergence of optical strategies to observe flying insects based on light scattering
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with a fast read-out ability to guarantee the capturing of wing beats [12,13]. This technique
is efficient in saving battery life and an accurate way to estimate the population densities of
the insects’ species. Furthermore, these self-made devices are also improved with current
machine learning, deep learning, and general-purpose detection algorithms. These let
us achieve a very high improvement rate in remote monitoring data, with no need for
manual recalibration and pretraining of the device for the target phenomena or the acoustic
requirements in the field.

In addition, to further increase the durability of dedicated, power-efficient acoustic
sensors, the devices are set to record in response to specific sounds triggered by the
detection algorithms instead of continuous recording at regular intervals. This significantly
reduces energy consumption because writing an audio file on the device is one of the most
power-consuming tasks. Moreover, this reduces the storage requirements and battery costs,
resulting in a lower price for long-term monitoring systems.

In this paper, we propose and describe a low-cost, multipurpose device to monitor
and control insect/bird densities, where the scientific community can take measures either
to eradicate the most harmful species for human health or to preserve essential species
in the ecosystem. The optical-acoustic device described here is more comprehensive and
robust than available passive acoustic monitoring devices nowadays. Our sensor provides
considerably greater portability, ease of use, and scale for rural and urban locations with
LoRa and high durability in the field with smaller batteries and solar panels. The sensor has
the possibility for various applications in large-scale, long-term surveillance (e.g., the pos-
sibility of using microphones, ultrasonic mics, and hydrophones) and optical detection.
Continuing developments in intelligent, energy-efficient techniques and decreasing unit
costs, we are working towards giving local communities the ability to afford to remotely
survey their areas with a particular device rather than multiple devices for every task,
helping to lower overall system costs for emerging countries.

The remainder of this paper is organized as follows: In Section 2, we briefly overview
current devices available in the market. Section 3 describes the construction of the low-cost
multipurpose sensor, from the design to LoRa communication technology, passing by the
optical-acoustic system and power management. In Section 4, we show the bill of materials
and the cost of the device. Section 5 exposes how we can validate and use the device.
Finally, Section 6 shows the typical applications of the sensor in different scenarios and the
use of machine-learning techniques capable of running on our sensor.

2. Hardware Overview

The analysis of urban, rural, and environmental sounds is a rapidly growing branch of
biodiversity research, frequently referred to as bioacoustics, ecoacoustics, and recently op-
toacoustic recordings [14–16]. The research relies on analyzing stored datasets of collected
sound, contributing to the evolution of science and monitoring procedures. In addition,
a growing number of studies are often collated from audio-visual acoustic recordings
on mains-powered acoustic designs leading to a demand for battery-powered passive
acoustic monitoring (PAM) devices [17] in the life sciences. An acoustic sensor can be
associated with any combination of a sound detector, microphone, and hydrophone cre-
ated to detect and record audio in the surrounding environment. The importance of such
sensors and a complete list of existing hardware and open-source software tools for anal-
ysis over a wide range of spatiotemporal patterns acoustic wildlife monitoring data can
be found in the WWF guidelines for passive bioacoustic monitoring in biodiversity and
conservation [18]. Most ecological and conservation research projects traditionally use
PAM through commercial devices, such as the SongMeter series from Wildlife Acoustics
(www.wildlifeacoustics.com, accessed on 20 July 2022), aquatic SoundTrap from Ocean
Instruments (www.oceaninstruments.co.nz, accessed on 20 July 2022) and the BAR series
from Frontier Labs (www.frontierlabs.com.au, accessed on 20 July 2022). These standard
portable devices are appreciated for their excellent recording quality, making them suitable
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for studying acoustically sensitive organisms. However, they are still a costly research tool
for monitoring uses, ranging in price from USD 250 to thousands of dollars.

This cost restricts usage for many of the research projects requiring coverage of large
areas. In specific applications, such as acoustics monitoring biodiversity, inexpensive
devices allowing researchers to cover more extensive areas could have benefits and have
an acceptable trade-off between audio quality and cost. For this purpose, suitable and
customized solutions have rapidly increased over the last three years, usually facilitated by
new low-cost technologies [19].

State-of-the-art dedicated-designed acoustic sensors nowadays are expensive, so signif-
icant initial expenses are associated with setting up an acoustic survey program. For citizen
science, this subject is still an obstacle to the broader uptake of acoustic monitoring, es-
pecially for conservation programs with a limited budget. Although there are several
promising techniques for the development of low-cost customizable acoustic sensors (e.g.,
AudioMoth [20] and Solo [21]) and the use of smartphones as acoustic sensors for citizen
science [22]. Nevertheless, these low-cost bioacoustic sensors have great potential to involve
the citizens in general to collect and implement ecological data in developing countries.

Ongoing maintenance and regular data recovery for the long-term development of
these sensors are required. Therefore, a more significant effort is needed on the researcher’s
part, and the cost of maintaining such data collection devices is higher, especially in re-
mote environments (e.g., tropical forests) principality without communication technology.
Another disadvantage of the devices enunciated above is that they do not allow you to
hear the sounds captured on the ground to check their quality more quickly and adapt
the quality parameters of the captured sounds, needing a PC to complete that task. In re-
mote areas, having a device with a system capable of charging its battery is essential to
guarantee the greater longevity of the device. None of the current devices has a self-charge
system. The future is moving toward automated wireless networked devices, with data
automatically sent to a base station, potentially decreasing such costs significantly.

In order to reduce the cost associated with the acoustic monitoring market, the hard-
ware community launched accessible, affordable and very small computers entirely em-
bedded in a PCB (e.g., Raspberry PI and Asus tinker board) [23–25]. However, despite
reducing the unit cost of such build-it-yourself devices, they present higher consumption,
as long-term surveillance systems require a higher capacity battery to sustain such survey
programs. Another disadvantage is the knowledge of software and electronics required to
build each sensor and apply them in the field—knowledge that biologists and experts in
biology do not normally have.

In addition, a device with only the acoustic monitoring approach has several disad-
vantages. These include its inability to detect living beings that do not emit sound and
estimate the species density when the ambient noise is higher. Furthermore, they depend on
relatively expensive equipment and highly skilled assistance to analyze the often massive
volumes of data, and most of the devices can not provide communication with each other.

Bearing these factors in mind, we built a multipurpose device capable of adapting
to different ecological research requirements with a low production cost compared to
commercial sensors available in the market. This portable prototype can run lite machine
learning algorithms, as it can send data through Long Range (LoRa) technology. It can
be used in remote locations, making it available almost in real-time. These devices can
also be scalable, allowing a mesh communication system between them until reaching the
main gateway.

3. System Design

Devices based on electro-acoustic transducer housing (MEMS) and application-specific
integrated circuits (ASIC) in a single package allowed the development of cheaper, smaller,
faster and energy-efficient ecoacoustic sensors. The optoacoustic sensor described here
overcomes the barriers set by acoustic-only approaches based on MEMS. We propose a
multipurpose device coupling acoustic sensor with optical sensors for inaudible insects
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and population estimation (e.g., pollinating insects and mosquitoes) jointly with the LoRa
communication technology for efficient data transmission. Biodiversity monitoring in
remote places is an essential topic but often problematic. Therefore, in this battery-powered
board, we can also include a renewable power source (e.g., a solar panel) to improve
the active time of the board. The optical process complements the acoustic sensing by
detecting/counting small insects and activating the acoustic recording trigger when a flying
insect passes in the IR detection field. The bioacoustic procedure identifies the species
by utilizing audio features and machine learning/deep learning approaches. Through
onboard processing algorithms, the data about the detected species is forwarded through a
LoRa communication protocol until reaching the LoRa gateway or a mesh communication
between the IoT devices until obtaining a base station. Then, in the server, all the statistics
and predictions can be made and delivered to the responsible authorities. Figure 1 depicts
an overview of the system design.

Figure 1. Multipurpose sensor overview.

3.1. Hardware Description

The multipurpose sensor is a practical and non-invasive approach for surveying
ecosystems, for instance, mosquito habitats, dolphins/whales recordings, songbirds to
identify acoustics signatures, etc. The device consists of a single credit-card sized (70 ×
61 × 10 mm) printed circuit board (PCB), which contains a side-mounted switch to power
the PCB and charge the battery. Other features are the universal serial bus (USB) port to
program the board; red, green, and blue (RGB) light emitting diode (LED) for notifications;
microSD card slot for the data logger; jack for the recording sound or real-time listening;
real-time clock (RTC) and LoRa antenna for communications purposes. The device captures
sound through two drill holes located at each silkscreened MEMS microphone symbol on
the top PCB layer; see Figure 2a. For the optical system, we have eight general-purpose
I/O GPIO pins on the top layer for straightforward access. These pins create the option to
plug external customized optical systems that interface with the board, allowing users to
add hardware modules that expand the board functionality. In addition, the restore button
present in the prototype enables the possibility of entering into programming mode, which
lets the users upload and update the board code by USB through the Teensy Loader plugin.
The programming software can be the Arduino Integrated Development Environment (IDE)
(www.arduino.cc, accessed on 20 July 2022) or other platforms with C/C++ programming
language (e.g., Microsoft Visual Studio (www.visualmicro.com, accessed on 20 July 2022)).

A multiplatform development environment with multiple advanced features such as
PlatformIO IDE (www.platformio.org/platformio-ide, accessed on 20 July 2022) is a helpful
tool to program this prototype and recently the CircuitPython (www.circuitpython.org,

www.arduino.cc
www.visualmicro.com
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accessed on 20 July 2022). In addition, the Teensy Loader plugin allows the user to upload
code in HEX file format into the flash memory.

The device supports onboard adjustment of volume and gains control, and the sam-
pling rate can go up to 44.1 kHz. A standard feature used in this IoT sensor board is that the
audio can be played locally in the field to check the quality, and species can be identified by
biologists and experts. The prototype recorded the acoustic sound as 16-bit uncompressed
waveform audio (WAV) files into the MicroSD card as a backup.

Figure 2 depicts an overview of our prototype’s most important modules (highlight).

Figure 2. Multipurpose print circuit board sensor and the highlight modules. Red: LoRa module;
Black: bootloader, microcontroller core and real-time clock (RTC); Blue: battery module; Orange:
Microphone slots and modules; Cyan: microSD module; Yellow: environmental data module; Purple:
audio module and controllers; White: Optical slots. (a) Top layer. (b) Bottom layer.

The eight most important modules are composed of the following components and
features:

• LoRa Module (Red):

– RFM95 transceivers
– Antenna connector
– Debug pins

• Acoustic Module (Orange):

– Two ultrasonic microphones on board
– Two extra slots for microphones, ultrasonics or hydrophones

• Environmental Module (Yellow):

– BME280 sensor

• Optical module (white):

– GPIO slots

• Audio module (purple):

– SGTL5000 chip;
– Jack connector;
– Volume control between 0 to 1.0, volume more than 0.8 is too loud;
– Mic gain control between 0 to 62 dB;
– W25Q128JV Memory chip;

• Memory module (Cyan):
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– microSD slot;

• Core module (black):

– MKL02Z32VFG4 Bootloader chip for DIY and easy programming;
– ARM Cortex-M7;
– Real-time clock (RTC);
– Random Acess Memory (RAM);

• Battery module (blue):

– Battery connector;
– USB type B mini connector;
– Battery notification status (LED);
– 300 mA, 500 mA or 800 mA charger current (user definition);

3.2. Power Management

Any 4.2V–6.5V DC supply can power the device (5 V USB recommended) since an
internal voltage regulator converts the DC supply to a regular 3.3 V. An internal N and
P-channel MOSFET array will disconnect the DC supply when a USB power is connected
to reduce the load. In addition, when the device operates in high capacity or high outside
temperature circumstances, an inside block controls the charge current automatically to
safeguard the device.

When a power supply (e.g., USB or DC supply) is connected and the battery voltage is
below 70%, the device enters the trickle charge mode, not given enough current to run the
device. On the other hand, if the battery voltage is more elevated than 70%, the charger
goes to the bulk charge mode. For example, when it reaches 4.2 V, the charger goes to
the constant voltage mode until the battery is full or when the current drops 1% of the
programed value.

The battery charger is fixed at 4.2 V with 1% accuracy, a green LED indicates charging,
and a yellow LED means power is supplied to VIN (chosen by the slide switch). In addition,
it would be better to check the USB’s good power first, which is helpful for alerting users
about noise on the USB line, a frayed or damaged USB cord, or the wrong USB input
voltage. The device has an inner soft-start circuit that minimizes the maximal instantaneous
current. The charge current varies from 0 to the full scale in 100 µs.

The programed charger provides the option of 300 (label JP3), 500 (default-label JP1),
or 800 mA (both labels) charge current. This current selection needs to be made, considering
the maximum load the lithium battery can handle. Therefore, choosing a charging current
below the battery’s capacity is mandatory. For example, if we have a 3.7 V lithium battery
with 400 mAh, the current selected in this case would be 300 mA and not more than
400 mA.

For 300 mA, close the solder jumper labeled JP3 and cut the trace between the solder
jumper pads marked JP1. For 500 mA, solder the JP1 and cut the trace JP3. For 800 mA,
close both soldering jumpers. See Figure 3.
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Figure 3. Built-in linear battery charger current up to 800 mA schematic.

3.3. Audio System

This subsection explains the audio system implemented behind our IoT device solution
through the SGTL5000 chip, one of the smaller components in the market. This unit is a low-
power stereo codec with a headphone amplifier from NXP. It provides a complete acoustic
solution for developments needing stereo lines I/O, mono microphone IN, and digital
I/O GPIO; see Figure 4. NXP derives its architecture from best-in-class. As a result,
the SGTL5000 can achieve very high performance and functionality with ultra-low power.

This audio chip connects to the processor ARM Cortex-M7 using seven signals. To con-
trol the chip and modify parameters, we have the I2C pins (SDA and SCL). The I2S pins for
audio data (TX and RX), and finally, three clocks, LRCLK (44.1 kHz), BCLK (1.41 MHz),
and MCLK (11.29 MHz). In our device, the SGTL5000 audio chip works in “slave mode”,
where all its clock pins are inputs.

Figure 4 shows the audio schematic supporting stereo headphone, stereo line-level
input and output, and mono microphone input. Since SGTL5000XNAA3R2 is scheduled
for obsolescence and will be discontinued by the manufacturer, the alternative will be
SGTL5000XNBA3R2 or SGTL5000XNLA3R2, a perfect compatible successor with no need
to change the PCB layout.

One advantage of this chip is the adjustable power architecture at the lowest cost,
letting the system minimize power consumption and maximize performance. For example,
to have the maximum power in the headphone output level, the VDDA pin runs at the
lower voltage possible. On the other hand, for the highest performance, the VDDA pin
should run at 3.3 V. Therefore, this lower voltage is used for most applications to achieve
the best performance and power consumption combination.

The SGTL5000 audio chip allows you efficiently add high-quality 16-bit sampling
rates between 8 and 44.1 kHz. The audio circuit starts at the microphone input signals
and is routed straight to the audio board analog peripherals (label RIGHT_MIC); see
Figure 5. The SPU0410LR5H-QB is a miniature and low-power microphone with high
performance. This acoustic chip has a low noise input buffer, an output amplifier, and a
usable ultrasonic response up to 80 kHz. On board this prototype, we have the analog
and digital gain/volume, allowing easy setting adjustments. Other microphones can be
connected via the 3-pin header and unsolder the JP4 jumper.
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Figure 4. Audio schematic through SGTL5000XNAA3R2/SGTL5000XNBA3R2.

Figure 5. Built-in ultrasonic microphone schematic.

The compatibility Teensy Audio Library (www.pjrc.com/teensy/gui/index.html, ac-
cessed on 24 July 2022) allows you to forward the microphone input to the output head-
phone directly with high quality or through the line-out pins, using it simultaneously
with other functions. In addition, the toolkit of audio design objects enables the creation
of all types of sophisticated acoustic signals and other applications easily. For example,

www.pjrc.com/teensy/gui/index.html
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play multiple sound files with some audio effects, mix various streams, and create synthe-
sized waveforms.

3.4. Memory

The 23LC1024 RAM chip is added on the top layer side and integrated with the
audio circuit module. An essential feature of this unit is the possibility of playing audio
files through the SerialFlash library. This chip has considerably lower access latency than
standard SD cards, allowing multiple sounds to be recreated simultaneously. A built-in SD
socket will enable the user to increase the data storage; see Figure 6.

Figure 6. Audio RAM chip memory schematic.

This component, combined with an IMXRT1062 processor and Winbond flash memory,
permits us to make a robust and programmable multipurpose sensor that is fully compatible
with microcontrollers such as Teensy 4.0 or Teensy 4.1.

The prototype has a 2Mbyte of flash memory planned for holding code, arrays,
and read-only variables. In addition, we may use a sliced piece of the memory for file
storage through the recommended LittleFS library. In our case, the first 64K is reserved,
where 60 k is for EEPROM emulation data and 4 k for the LED blink restore program.
The Random Access Memory has a total size of 1024 K, and its slide is in two parts, gener-
ally used for variables and data. The first slide is a tightly coupled memory accessed for
higher performance (e.g., accessing the standard variables). The second part is optimized
for access, where extensive arrays and data buffers are typically set, making this IoT device
optimized for audio with 32-channels.

The W25Q16JV (16M-bit) serial flash memory delivers a storage solution for designs
with limited space and power problems (e.g., conservation issues). This memory series
presents flexibility and performance exceeding the standard serial flash units. The 25Q
series is ideal for copying code from nonvolatile to RAM and running code directly from
Dual/Quad SPI. Another essential feature is the storing of audio and information data.
The unit operates on a single 3.3 V supply with an operating current of 4 mA and 1 µA for
power-down consumption. Figure 7 presents the serial flash memory schematic.
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Figure 7. Serial flash memory schematic.

3.5. Optical System

This subsection describes the optical system design and characterization to use with
our prototype for detection purposes (e.g., mosquitoes or other small insects). We detect the
insect by identifying the fly’s transiently reduced shadow when passing through emitted
light. Our setup is shown in Figure 8.

Figure 8. Experimental arrangement from 1 to 4 Fresnel lens.

We placed the infrared emitters (e.g., L-53F3C at 940 nm) and photodiodes (e.g.,
BP104FS-Z at 940 nm) in the array support, capable of incorporating a group of four
emitter–receiver systems. In addition, the Fresnel lens group has a focus wheel so that the
IR units can be centered with the Fresnel lens, as shown in Figure 9. The LEDs emit infrared
light through the emitter Fresnel lens group with a diameter of 50mm. A set of IR lights
together forms a parallel laser field (field detection area). Fresnel lenses are responsible for
directing the lasers to the receivers. All lenses have a focal length of 40 mm.
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Figure 9. Optical sensor infrastructure.

The optical system works while the insect passes through the field detection, called
field of view (FOV); the electric current of the photodiode (VIN) varies proportionately due
to the shading of the light through a transimpedance amplifier. Figure 10 depicts the circuit
and how the photocurrent variation is amplified. The photodiode acquires a higher electric
current signal when no insect passes via the field detection, meaning that the photocurrent
passing through the first amplifier (AC-coupled) is zero. In the opposite situation, when a
flying insect passes via the field detection area, the strength of the infrared light obtained
by the receiver is modulated, ensuing in an oscillating electric current amplified by the
second OPAMP (IC6) presented in Figure 10.

Figure 10. Current to voltage converter (first OPAMP) and photodiode amplifier (second OPAMP)
circuit.

Figure 11 depicts the shield responsible for connecting all four photodiodes to our
multipurpose device.

Figure 11. Optical board.
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To create a more sophisticated architecture for insect optical field detection, we build
four types of adaptors (see Figure 12 for the optical system present in Figure 8); two
supports for the infrared LEDs of 3 and 5mm, one for the photodiode and another for a
small Fresnel lens (e.g., CMS442CTP), see Table 1. Hexagon head screws are recommended
to connect all the components.

Figure 12. Different types of support.

Table 1. Optical modules location.

Module Description Location 1

Led 3 mm Support for a 3 mm infrared led v17_Led-support-body-3 mm.stl
Led 5 mm Support for a 5 mm infrared led v17_led-support-body-5 mm.stl

Big Fresnel Support for a Fresnel lens with 50 mm of
diameter v17_big-fresnel-support-body.stl

Small Fresnel Support for a Fresnel lens with 8.64 mm
of diameter v17_small-fresnel-support-body.stl

Hand adjust Spin adjustment for hand v17_adjust-support-for-hand.stl

Photodiode Support for a photodiode with
4.5 × 4 mm v17_photodiode-support-body.stl

Support body Support interconnection rail and hand
adjustment v17_support-bodies.stl

Array infrastructure Connection rail from 1–4 support body ArraySupport_Front.stl

Video Video demo how to adjust the optical
sensor infrastructure Video Demo.mp4

1 https://github.com/DinarteVasconcelos/Opto-Acoustic-Modules/, (accessed on 29 June 2022).

3.6. LoRa Connectivity

The multipurpose device plans to use LoRa as a communication technology. The unique
capabilities of LoRa are ultra-low-power, high performance, and affordable long-range
connectivity covering entire areas or cities with just a few base stations connected to the In-
ternet, no longer requiring the implementation and maintenance of devices as in traditional
mesh networking such as WiFi. These factors make this technology chosen, as it fulfills the
requirements for implementation in remote places (e.g., distance, maintenance, and energy
consumption), making it one of the defacto standards in IoT approaches. Regardless,
our IoT device occasionally connects to the closest base station to send short pieces of
data collected by the base station and sent to the user-defined server. However, sending
audio files becomes unsustainable because this technology is a low-bandwidth solution.
Consequently, the classification needs to be conducted on the device itself. In addition,
the user needs to consider the environmental conditions since LoRa has some performance
loss when there are great obstacles to the transmission and reception of the RF signal (e.g.,
mountains, forests, and large buildings). To incorporate these environmental factors and
the impacts into LoRa’s connectivity, it is recommended to use the Radio Mobile Software
(http://radiomobile.pe1mew.nl/, accessed on 24 July 2022), namely for forest areas. This
step will ensure good communication and implementation of the final system instead of

https://github.com/DinarteVasconcelos/Opto-Acoustic-Modules/
http://radiomobile.pe1mew.nl/
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hand-picking optimal deployment positions. Figure 13 shows the Cisco Wireless Gateway
infrastructure for LoRaWAN used to test this prototype.

Figure 13. LoRa communication gateway infrastructure.

The RFM95W transceivers feature used in our sensors can reach a sensitivity of around
−148 dBm employing a low-cost crystal and a set of cheaper materials. This transceiver with
high sensitivity fused with an integrated power amplifier (+20 dBm) makes it an optimal
price–cost relation, ideal for any application needing long-range or robustness connectivity.

4. PCB Components

The list of materials for the PCB construction is composed of the general hardware
with acoustic sensors and sliced into two versions of custom functionality: the optical and
hydrophone-operated versions. Table 2 contains unit pricing to buy enough components
to assemble a single device, a portion of 100 or 1000 with acoustic sensors incorporated.
Ordering pieces and PCBs in large quantities results in a more considerable cost-saving per
prototype, which is essential for large-scale deployments.

Table 2. Acoustic and multipurpose device bill of materials.

Designator Quantity Manuf. Code Price e 100 1 1000 1
Source

(accessed on
24 July 2022)

C1 1 08056D106KAT2A 0.219 0.099 0.099 mouser.com
C2 1 CC0805KRX7R7BB104 0.143 0.048 0.028 mouser.com

C3-7, C11-12,
C31 8 0603YC104KAT2A 0.114 0.039 0.023 mouser.com

C8-9 2 06036D475KAT2A 0.152 0.05 0.041 mouser.com
C23, C28, C52 3 CC0603KRX5R7BB225 0.219 0.077 0.047 mouser.com

C10, C27,
C29-30, C39,

C43
6 0603YC104KAT2A 0.114 0.039 0.023 mouser.com

C32, C54, C66 3 C0603C106M9PACTU 0.304 0.119 0.073 mouser.com
C33, C45-47,

C50, C53, C56,
C58-60, C64

11 04026D224KAT2A 0.162 0.044 0.026 mouser.com

C34-35,
C37-38, C40-42 7 CC0805KKX7R8BB225 0.352 0.136 0.085 mouser.com

C36 1 C0603C154K5RACTU 0.352 0.123 0.101 mouser.com
C44, C49, C55,

C62-63, C68 6 GRM155R60J475ME47D 0.114 0.042 0.028 mouser.com

C48, C51 2 04023C103KAT2A 0.095 0.01 0.006 mouser.com
C57, C67 2 C0402C200J5GACTU 0.409 0.173 0.109 mouser.com
C61, C69 2 C0402C120J5GACTU 0.095 0.017 0.01 mouser.com

CN1 1 S2B-PH-K-S(LF)(SN) 0.0889 0.0889 0.0728 farnell.com

mouser.com
mouser.com
mouser.com
mouser.com
mouser.com
mouser.com
mouser.com
mouser.com
mouser.com
mouser.com
mouser.com
mouser.com
mouser.com
mouser.com
farnell.com
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Table 2. Cont.

Designator Quantity Manuf. Code Price e 100 1 1000 1
Source

(accessed on
24 July 2022)

D1 1 HSME-C191 0.599 0.214 0.167 mouser.com
D3 1 ASMT-RF45-AN002 0.466 0.203 0.117 mouser.com
F1 1 MF-PSMF050X-2 0.38 0.233 0.206 mouser.com

FL1 2 BLM18AG121SH1D 0.105 0.04 0.029 mouser.com
IC1 1 AP7313-18SRG-7 0.371 0.187 0.117 mouser.com

IC2 1 SGTL5000XNAA3R2/
SGTL5000XNBA3R2 5.64 4.15 4.02 mouser.com

IC3 1 MIMXRT1062DVL6B 18 12.98 12.97 mouser.com
IC5 1 W25Q16JVZPIQ 0.665 0.591 0.591 mouser.com
J5 1 10104110-0001LF 0.789 0.542 0.451 mouser.com
J9 1 47352-1001 3.94 2.9 2.37 mouser.com

L1 1 CDRH62BNP-4R0NC-
B 0.77 0.483 0.328 mouser.com

LED2 1 ASMT-YTD9-0AA02 1.04 0.441 0.348 mouser.com
LED3, LED4 2 ASMT-RJ45-AQ502 0.466 0.203 0.117 mouser.com

Q2 1 DMP2033UVT-7 0.418 0.27 0.163 mouser.com
R2-3 2 CRCW0805100KFKTA 0.152 0.052 0.022 mouser.com
R4-7 4 CRCW06034K70JNEA 0.095 0.014 0.007 mouser.com

R8, R23-24 3 ERJ2GEJ222X 0.095 0.011 0.006 mouser.com
R9 1 ERA3AEB101V 0.333 0.111 0.047 mouser.com

R11, R15-18 5 ERA3AEB102V 0.266 0.095 0.056 mouser.com
R12, R27 2 3361S-1-253GLF 1.59 1.18 0.792 mouser.com

R13 1 ERA3AEB332V 0.333 0.111 0.047 mouser.com
R14 1 ERA3ARB202V 0.77 0.352 0.194 mouser.com

R22, R40 2 CRG0402J470R 0.002 0.0019 0.0018 farnell.com
R25-26 2 CPF0402B10KE1 0.58 0.248 0.136 mouser.com

R28 1 ASC0603-2M2FT5 0.0158 0.0131 0.01 farnell.com
R29 1 BLM18AG601SN1D 0.124 0.039 0.027 mouser.com

R36, R39 2 CPF0402B100KE1 0.205 0.183 0.138 farnell.com
R37-38 2 BAT54C.215 0.171 0.086 0.036 mouser.com
S4, S2 2 MLL1200S 2.4 1.9 1.4 mouser.com

S3, S5, S6, S9, 4 1977263-3 0.208 0.208 0.208 mouser.com
U4 1 RFM95W-868S2 19.57 15.19 13.97 mouser.com

U1, U5 2 SPU0410LR5H-QB 0.789 0.565 0.466 mouser.com
U2 1 BME280 7.21 4.37 3.59 mouser.com
U3 1 74HC4050D.653 0.58 0.37 0.291 mouser.com
U6 1 MKL02Z32VFG4 3.97 2.4 2.03 mouser.com
U7 1 STC4054GR 1.9 1.62 1.62 mouser.com
U9 1 XC6210B332MR 1.01 0.649 0.56 farnell.com

U10 1 SMTU 2032-LF 0.68 0.634 0.521 mouser.com
U11 1 23LC1024-I/SN 2.45 2.4 2.4 mouser.com
X1 1 U.FL-R-SMT(01) 1.28 0.988 0.712 mouser.com
X3 1 1503 02 2.03 1.3 1.16 farnell.com
Y3 1 ABS07L-32.768KHZ-T 1.19 0.96 0.781 mouser.com

Y4 1 TSX-3225
24.0000MF20G-AC0 0.399 0.266 0.213 mouser.com

MainPCB 1 PCB 0.762 0.2563 0.1778 jlcpcb.com

MicroSD 1 Sandisk Ultra-32 GB 5.86 5.29 4.9 bulkmemorycards.
com

Total per unit - - 109.69 74.50 64.89 -
1 Quantity (e).

Table 3 includes the bill of materials to purchase components sufficient to build a kit
unit (array of 4 optical sensors).

mouser.com
mouser.com
mouser.com
mouser.com
mouser.com
mouser.com
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mouser.com
mouser.com
mouser.com
mouser.com
mouser.com
mouser.com
mouser.com
mouser.com
mouser.com
mouser.com
mouser.com
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mouser.com
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mouser.com
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Table 3. Optical sensor bill of materials.

Designator Quantity Manuf. Code Price e 100 1 1000 1
Source

(accessed on
24 July 2022)

IC4, IC6 4 OPA2380AIDGKT 6.33 4.74 4.51 mouser.com
VIN 4 BPW 34 S-Z 1.11 0.472 0.373 mouser.com

Emitter 3 mm 4 SFH 4350 0.979 0.417 0.33 mouser.com
C13 4 CM03X6S105M10AH 0.266 0.096 0.058 mouser.com
R19 4 CR0603-JW-102ELF 0.095 0.006 0.003 mouser.com
R10 4 ERJ-UP3F7502V 0.228 0.079 0.033 mouser.com
R1 4 ERA-3AEB562V 1.01 0.649 0.398 mouser.com

C14 4 885012006032 0.095 0.027 0.027 mouser.com

Fresnel Lens 8 D50 mm and focal
length 40 mm 3.61 1.461 1.461 aliexpress.

com

Total supports
kit 110 g 1

HATCHBOX 1.75 mm
Black PLA 3D Printer

Filament
2.479 2.479 2.479 amazon.com

PCB shield 4 PCB 0.76 0.1262 0.0548 jlcpcb.com

Total per unit - - 74.85 40.61 37.31 -
1 Quantity (e).

Table 4 includes the kit unit materials to build yourself one hydrophone sensor for
aquatic activities and attach it to our IoT device. This sensor can be soldered to the J7
connection, as shown in Figure 4. To isolate the piezo, we can use epoxy for plastics, which
is excellent for waterproofing and ensuring a solid construction.

Table 4. Hydrophone sensor bill of materials.

Designator Quantity Manuf. Code Price e 100 1 1000 1
Source

(accessed on
24 July 2022)

Piezo sensor 1 MCABT-455-RC 1.94 1.73 1.53 farnell.com
Hydrophone

cable 5 Mogami W2549 per
feet 0.94 0.94 0.94 redco.com

Total per unit - - 6.64 6.43 6.23 -
1 Quantity (e).

5. Validation and Setup

This section describes how to validate the proper build of the multipurpose sensor
hardware and its performance. The board will work if the IMXRT microcontroller and a
flash memory unit are paired correctly with the MKL02 bootloader. Therefore, the hardware
is created with a microcontroller, so the validation involves inspecting the functionality of
the peripherals, which includes the USB bootloader, SPI interface that communicates with
the microSD card, I2S communication between audio circuit and microprocessor, and the
correct reading from the microphones, hydrophone, and optical system.

5.1. Bootloader Validation

The microcontroller chip has special power-up sequence requirements to work cor-
rectly. The validation of the boot loader is accomplished with the following steps:

1. The multipurpose microcontroller has a boot loader (MKL02Z32) pre-programed at
the factory.

2. When plugged in via USB, power arrives at the USB voltage regulator built in the
microcontroller unit and the XC6210B332MR regulator through VIN or VUSB.

mouser.com
mouser.com
mouser.com
mouser.com
mouser.com
mouser.com
mouser.com
mouser.com
aliexpress.com
aliexpress.com
amazon.com
jlcpcb.com
farnell.com
redco.com
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3. The USB voltage controller turns on, and VDD_USB_CAP charges up to 2.5 V. At this
moment, the supply voltage input (Secure Non-Volatile Storage and Real-Time Clock
(SNVS_IN)) regulator receives power.

4. The SNVS regulator turns on and creates 1.1 V at VDD_SNVS_CAP.
5. The IMXRT power management module turns on the Phase Locked Loop (PLL) and

analog regulators (1.1 V at NVCC_PLL and 2.5 V at VDD_HIGH_CAP).
6. Once power and the regulator are stable, the PMIC_ON_REQ pin has 1.1V to request

main power.
7. The XC6210B332MR regulator turns on and supplies the entire main board with 3.3 V.
8. After 3.3 V is stable, the boot loader chip is turned on and drives DCDC_PSWITCH to

high.
9. The IMXRT inside the DCDC buck converter starts producing 1.15 V power for the

CPU and most internal circuits. This voltage can be automatically adjusted as needed
for higher speeds (>528 MHz).

10. A PC will recognize a fully assembled device at this stage.
11. Start the flashing by USB using software (Section 3.1) for this test.

An important note is that the board will run a LED blink program by default when
the first time the restore button is pressed (PTB2) with a size of 4 k. After pressing this
button for 15 s, the flash memory is erased and will copy the default blink program to the
first part of the flash chip. This restore procedure will only work if the user has already
pressed the button at least once for the regular bootloader/program. Figure 14 depicts the
characteristics of the bootloader and restore button.

Figure 14. Bootloader schematic.

This bootloader has released a new feature and can be used in our prototype, called
secure mode (www.pjrc.com/teensy/td_code_security.html, accessed on 25 July 2022))
state. This feature’s main benefits are that the program code kept in the flash memory is
encrypted, the code will run if your key is used, and JTAG access is disabled.

5.2. Peripheral Validation

We validate the peripherals using the most straightforward programs to make a WAV
file sound recording to a microSD card or forward the sound directly to the headphone
jack. This procedure is essential to identify hardware issues quickly. For example, skips in
the recorded sound indicate a slow/poorly connected SD card or incorrect pitch indicates
problems with sample rate. Other peripheral tests can be archived using the programed
files in Table 5. You can upload the .hex files through the Teensy Loader plugin for testing
purposes. For the optical connections, you need to read the GPIOs and check if the infrared
field changes when passing through them.

www.pjrc.com/teensy/td_code_security.html
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Table 5. Programed test files location.

Module Description Location 1

Mechanical peripherals
Test the 3 buttons, 2

potentiometers and jack of
3.5 mm

Hardware_Test.ino.hex

LoRa, RTC and SDcard
File to test the communication

for LoRa module, RTC and
SDcard slot

LoRa_Test.ino.hex

Acoustic peripheral Record a WAV file and check
its parameters Recorder.ino.hex

Environmental sensor I2C scan for BME280
communication BME280Test.ino.hex

1 https://github.com/DinarteVasconcelos/Opto-Acoustic-Modules/, (accessed on 29 June 2022)).

For recording validation tests, it is helpful to download the free open-source, cross-
platform audio software, Audacity (www.audacityteam.org/download, (accessed on 24
July 2022)), to check the audio files. Figure 15 shows an overview of the prototype and its
components. Validation of the peripherals is achieved through the following subsections.

Figure 15. Prototype and principal test components.

Hardware Test

To test the functionalities and the peripheral of the device, a simple beeping program
can be pre-loaded on the Teensy, and this will create sound and print the information to the
serial monitor when plugged into a PC with the appropriate software. The file created a
sinusoidal signal with 500 Hz and 0.9 amplitude. Plugin the headphone in the jack slot,
and we should see a beep message for each headphone beep. The last step is pressing
the buttons (e.g., play, record, and stop) and turning the two potentiometers on the PCB
prototype. See the hardware response in Figure 16. The functionality of the buttons is to
play, record, and stop recording/playing the audio, in this case.

https://github.com/DinarteVasconcelos/Opto-Acoustic-Modules/
www.audacityteam.org/download
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Figure 16. Mechanical peripherals test.

Figure 17 shows the validation print for the connections: LoRa module, RTC and
SDcard working properly, using the file “LoRa_Test.ino.hex” present in Table 5.

Figure 17. LoRa, RTC and SDcard test.

Validation of the acoustic peripheral can be achieved by pre-loading the corresponding
file. Figure 18 shows a spectrogram for the audio file recorded to the SDcard slot with a
sample rate of 44.1 kHz.
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Figure 18. Audio file from an Ae.Aegypti mosquito with a mean frequency of 481 Hz.

The same acoustic process can be made for the optical module, checking if the infrared
field changes after causing a disturbance.

5.3. Energy Management

Low power consumption is critical for long-term monitoring applications, especially in
remote areas. The average consumption of the sensor depends on the number of detections,
and the battery capacity. The user requirements will dictate the lifetime and the need for
battery replacement.

The user can set the optical module, acoustic recorder, sample rates, gain, volume,
environmental readings, time schedules, LED functionality, battery charger, and LoRa
communication. We recommend that a lithium-ion polymer battery of 3.7 V power our
prototype. Battery life can be optimized through efficient consumption management
strategies. All the parameters can be adjusted for specific target activities.

Table 6 presents the energy measuring of a 3.7 V battery in function on the proto-
type functionality.

Table 6. Power consumption in mA for a lithium-ion battery with 6 Ah.

SDcard Access Audio
Processing

Environmental
Readings Optical System LoRa Commu-

nication

Playing
Sounds and
Headphones

(Volume = 0.5)

Sleep Mode

61 81 54.3 23 110 75.4 7.5

Table 7 depicts examples of the configuration guidelines for different applications
and the corresponding battery lifetime for a lithium battery with 6 Ah. For the mosquito
approach, we have a 100% active time because the optical system always waits to trigger the
audio processing stage. The approach with LoRa communication has a higher consumption
than the Dolphins and Soundscapes applications. The greater the number of detections
and the active time, the greater the consumption, consequently reducing the battery life.
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Table 7. Simulation of power durability application.

Function SD
Speed

Active
Time per

Hour

Sleep
Time per

Hour

Number
of Detec-

tions
Gain

Average
Consumption

(mA)
LoRa Optical

Battery
Life in
Hours

Mosquito Class 10 100% 0% 20 Med 73.4 Yes Yes 65
Dolphins Class 10 17% 83% 15 Med 34 No No 141

Birds Class 10 20% 80% 25 Med 66.5 Yes No 72
Soundscapes Class 10 17% 83% - Med 41 No No 117

6. Preliminary Tests

This section presents the validation and characterization of flying mosquitoes through
acoustic sensing using audio features and machine/deep learning approaches. The op-
tical system will use a wing beat frequency technique, which is an efficient solution to
differentiate these fly insects. We will discuss an example of the mosquito species.

All the preliminary experiments were conducted in a controlled laboratory environ-
ment to demonstrate the feasibility of insect detection using the combined audio-optical
principle. First, the optical procedure focuses on the detection to trigger the recording,
and then the acoustic stage classifies this type of species understudy.

Here, we summarize the preliminary laboratory experiments to test the multipur-
pose prototype.

• Data collection:

– Recording setting: 32 float format, 1 channel (mono), 8 and 16 kHz sampling rate,
WAV file format

– Microphones: ultrasonic Mic SPU0410LR5H-QB
– Container: chambers shaped container wrapped around with a net, size: 25 × 25

× 25 cm
– Temperature: 23–25 ◦C

• Pre-processing:

– Separate the portions of the recordings that contain only the segment of mosquito
flight tones

– Frames: windowing: 0.3 s; overlapping: 0.15 s
– Spectrogram Transformation: Short-time Fourier transform (STFT)
– Determine the fundamental frequency with probabilistic YIN algorithm (Fre-

quency ranges)
– Extract Features: 34 signal features

6.1. Optical Experiment

After detecting the event within the frequency range of the mosquitoes, where males
(664–956 Hz) have higher frequency ranges than females (480–620 Hz), the pYin algorithm
(pitch detection method) [26] is applied to have a degree of confidence about the frequency
detected through the harmonic rate parameter.

The lower this value, the more likely that the sound corresponds to a mosquito; see
Figure 19. This method shows how the frequency is distributed along the spectrum. Its
input is the vector of the event (size and time of the data) and the output is the pitch range
within the detected time interval, as well as the harmonic rate of the frequency in the event
frame. This algorithm is relatively robust in terms of performance and can be used in
embedded real-time devices.

In the optical recording file shown in Figure 19, we can count at least four Aedes Aegypti
mosquitoes. This rudimentary approach to counting mosquitoes at each event, where one
event (red arrow) or very close consecutive events with the same frequency variation is
equal to the presence of one mosquito.
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Figure 19. Fundamental frequency estimation and harmonic rate value using pYin algorithm for
mosquito counting (red arrow).

The algorithm provides a distinct method of identifying the presence of mosquitos in
the laboratory and urban environments while largely neglecting other sounds. The optical
system currently records the shadow, and as a future prospect, the user may consider the
backscattered light, which is richer in harmonics and could be more practical for insects
application because it emits light in the open space that is backscattered by the wingbeat
and does not require the insect to pass through the emitter–receiver pair.

6.2. Acoustic Experiments

For the user to replicate our experiment, we used the dataset present in [27]. We
extracted the audio features from the audio files used in that work and applied the various
machine learning techniques for the species Aedes Aegypti and Culex Quinquefasciatus. This
process allowed us to generate signatures for each mosquito species and match them to the
audio segments.

We extracted 34 signal features: zero crossing rate, energy, entropy of energy, spectral
centroid, spectral spread, spectral entropy, spectral flux, spectral roll-off, 13 Mel-Frequency
Cepstral Coefficients (MFCCs), 12 chroma vectors, and chroma deviation.

Then, we applied six machine learning methods: k-nearest neighbor (k-NN), Support
Vector Machine (SVM), SVM-RBF, random forest, gradient boosting, and extra trees. Table 8
shows the evaluation for the six machine learning models and the value of the input
parameter that optimizes the accuracy performance measure. The inputs to these models
were the thirty-four signal features of the audio signals at 8kHz. The classifiers were
evaluated with stratified 20-fold cross-validation. As shown in Table 8, the Grading
boosting has the highest accuracy and F1-Score, followed closely by the extra trees and SVM
with linear kernel. We used the library present in [28] to perform the classification system.

The training group was composed of 80% of the number of samples, 10% for testing,
and 10% for validation of each species: Female Aedes Aegypti and Female Culex Quinquefas-
ciatus. To implement this approach in the prototype, we can use the Micropython platform
(www.micropython.org/, accessed on 24 July 2022) compatible with our device through the
generated files of each model to classify these two species; see Table 9. Furthermore, we rec-
ommend the SVM with a linear kernel because it is the most lightweight model compared
to the size of the other machine learning models and fits in the microcontroller memory.

Following the example, in [29,30], we also implemented a Convolution Neural Net-
work (CNN) to test the prototype’s robustness in terms of deep learning methods using the
TensorFlow lite library.

The total number of steps to training was 4000 with different learning rates. Therefore,
the first 3000 with 0.001 and the last 1000 with 0.0001 learning rate. The model architecture
chosen was the ‘tiny_conv’ option and the spectrogram processing mode ‘micro’. As shown
in Figure 20, the network starts with a 2D convolution layer that takes the raw audio data
in Tensor shape. In the output of the first block, we apply Bias and then pass through the
rectified linear activation function (RELU). During training, a dropout node is introduced

www.micropython.org/
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after the RELU, controlled by a placeholder. The output of the activation layer passes
through the multi-layer dense block. Finally, the softmax prediction process converts
a vector of four real numbers into a probability distribution of four possible outcomes.
The model has as four output labels (unknown, silence, Aedes and Culex).

Table 8. Machine learning classifiers performance with 34 signal features extracted from audio signals
with 8 kHz sampling rate. Classifiers are built for 2 classes using 20-fold stratified cross-validation.

Classifier Selected
Parameter Precision Recall F1 Accuracy

KNN 9 98.5 98.8 98.7 98.8

SVM with
linear kernel 0.01 99 99 99 99.1

SVM with
RBF kernel 20 98.3 98.6 98.9 99

Random
Forest 500 98.1 98.7 99 99.1

Grading
boosting 500 99.5 99.2 99.3 99.4

Extra Trees 100 99.2 98.8 99 99.2

Figure 20. Convolutional model aimed at microcontrollers.

Table 9 also shows the float and quantized models used in the prototype with a size
of 68,048 and 18,712 bytes, respectively. To help train and test this model, we added
several 16 kHz WAV files of various types of background noise. Both models have a similar
accuracy of 88%.

Table 9. Models’ file locations

Model Description Location 1

Extra trees Model with the scaling mean/std vectors
and the feature extraction parameters

extratrees_Mosquito and
extratrees_MosquitoMEANS

Gradient Boosting Model with the scaling mean/std vectors
and the feature extraction parameters

gradientboosting_Mosquito and
gradientboosting_MosquitoMEANS

KNN Model with the feature extraction
parameters knn_Mosquito

Random Forest Model with the scaling mean/std vectors
and the feature extraction parameters

randomforest_Mosquito and
randomforest_MosquitoMEANS

SVM Model with the scaling mean/std vectors
and the feature extraction parameters

svm_Mosquito, svm_MosquitoMEANS,
svm_rbf_Mosquito and

svm_rbf_MosquitoMEANS

CNN Float and quantized model in C format Float_model.cc and Quantized.cc
1 https://github.com/DinarteVasconcelos/Models, (accessed on 25 July 2022).

https://github.com/DinarteVasconcelos/Models
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Table 10 summarizes the classification algorithm implemented in the device to classify
81 recorded audio files where we have 11 false positives and 70 true positives. The input
data are contained in an audio file with a 16 kHz sampling rate and a 1-second time frame
after being activated by the optical system.

Table 10. Confusion matrix for 81 files.

N = 81 Samples Silence Unknown Aedes Culex

Silence 5 1 5 3
Unknown 1 13 0 0

Aedes 0 0 32 1
Culex 0 0 0 20

This does not produce particularly accurate results in a noisy environment, but it
is designed to be used as the first stage of a pipeline, running on a low-energy piece of
hardware. We can train a standard convolution model to produce fairly good quality
results, involving many weight parameters and computations for more accurate results.

Without environmental noise, we can improve the classification by having an accuracy
of about 90 % for Aedes Aegypti and Culex Quinquefasciatus using a 300 ms window instead
of a 1s time frame. One way to reduce this false positive is by combining noise-canceling
microphone procedures and using well-known audio features in speech recognition.

The optical-acoustic combined methods are a way of double verifying the insect
species. The first one verifies the frequency ranges of the detected species, “telling” the
acoustic which kind of species to expect. Since some species have similar frequencies,
the acoustic will dissipate those doubts. One advantage of this combination is that the
optical process is a low-power system that allows the prototype to live longer, just triggering
the acoustic when necessary.

7. Typical Applications

The creation of our multipurpose device has been driven by international demand
from the environmental monitoring and conservation communities. Since deploying the
first version of the sensor [31], we have developed numerous partnerships worldwide,
testing the device for diverse applications, especially targeting mosquito monitoring. One
collaboration with the University of Mahidol in Thailand, Spatial Cognition Center (BSCC),
in partnership with the University of Bremen, combined our sensor with street view
images to detect potential breeding containers. In this research, the sensor was deployed in
the Rajanagarindra Tropical Disease International Centre (RTIC) [31] to validate the risk
mapping from seasonal-spatial models in which the target variable dengue incidence was
explained using weather and container variable predictors. Another collaboration with
the University College London further explores the weather variables by incorporating
additional sensors (i.e., physicochemical parameters) that correlate mosquito counting with
water quality parameters that impact the presence and abundance of mosquitoes. This
approach aims to improve the efficiency of real-time mosquito abundance modeling and
predict high-risk areas of infestation and breeding. During 2019 and 2020, 10 prototype
devices were deployed in Madeira Island with the default recording program [27]. A new
deployment is planned in Madeira Island and also in Brasil.

However, our device is not restricted to mosquito monitoring. Ecoacoustic monitoring
is growing with multiple applications in different domains, including the monitoring of pro-
tected and invasive species in the wildlife (e.g., bats, birds, bees, toads, etc.) [32–35], sound-
scape analysis [36,37], biodiversity conversation [38], environmental surveillance [39,40]
and ocean monitoring [41,42]. In addition, the optical monitoring feature enhances the
potential of identifying insects [12] since it is immune to ambient noise, unlike acoustic
approaches. Despite acoustic noise cancellation techniques, we can change the necessities
for hardware configuration and program as we like for each application. The most critical
sound characteristic to capture is the range of audio frequencies (e.g., forming a fingerprint)
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by the target species. For example, manual surveillance techniques are time-consuming,
such as trapping, and manual identification is labor, time, and cost-intensive [43,44]. Fur-
thermore, to register the source signal, the sampling rate must be at least twice the frequency
created by the organisms, called Nyquist frequency. The audio will not record any sound
above this criteria.

The speed of the SDcard is essential for multiple access (e.g., playing various files
simultaneously) and running machine learning algorithms. Therefore, we recommend
an SDcard with low latency for non-sequential access and a memory capacity of 32 GB.
As well as programmable devices, other parameters can be adjusted for a particular type of
application. For example, the duty cycle routine, sleeping and timed recording schedules
through the RTC sensor can be adjusted for specific target species or activities (e.g., bat
echolocation activity), which will save power and memory required for each deployment.
All indication LEDs can be turned off to prevent unwanted attention (e.g., night deploy-
ments). Gain and volume settings can be changed to adjust for different background noise
levels during recordings. The possibility of being able to record and listen simultaneously
with headphones allows this adjustment to be more efficient when the environment noise
is unknown to prevent audio distorting.

Very short sounds can be stored directly into the program memory. Analyzing sounds
from the microcontroller memory has a significant advantage: it is much quicker and
more energy-efficient, allowing dozens of sounds to play simultaneously without reach-
ing microcontroller resource limits. Then save the data on the SDcard as a backup and
send the information over LoRa protocol. This avoids the storage of useless files, saving
memory space.

Typically, bioacoustics analysis has measured features such as waveforms, spectro-
grams (e.g., signal frequencies), power spectra, and selected measurements such as duration
and fundamental frequency. However, nowadays, several new software tools allow for
automated parameter extraction. Machine-based feature extraction algorithms can provide
a new world of signal feature sets [45,46]. Some examples include spectral features and
cepstral coefficients commonly used in human speech processing and recognition [47].

Nowadays, we have the TensorFlow Lite (www.tensorflow.org/lite/microcontrollers,
accessed on 25 July 2022) for microcontrollers, and it is designed to run machine learn-
ing models on these microdevices with only a few kilobytes of memory. The minimum
requirement to run multiple basic machine models is 16 KB on an Arm Cortex M3. It does
not require operating system support, standard C or C++ libraries, or dynamic memory
allocation to run this feature. A solution is compatible with our prototype, which has digital
signal processor (DSP) instructions providing plenty of computational power for real-time
applications, unlocking the chance to undertake advanced audio-reactive projects.

8. Conclusions

This paper describes the hardware design of a multipurpose, low-cost, IoT-based
device for biodiversity monitoring that combines acoustic and optical sensors. We have
provided the location of the optical 3D print support design files, code test files, and in-
structions on deploying them. After hardware assembly, we described the procedure for
the bootloader and peripheral validation processes. In addition, we provide the guidelines
to test the hardware functionalities and how to deploy our IoT working device. The sci-
entific community can use this device for different biodiversity monitoring approaches
and conservation tasks, such as studying wildlife vocalization behaviors. Still, it can also
be applied to detecting bat signals, insect applications (e.g., mosquitoes and pollinators),
and ocean monitoring purposes (e.g., dolphins and whales).

Furthermore, the cheaper construction components make this device a low-cost prod-
uct, and the small size makes it easy to transport and implement in challenging places.
In addition, high computational operation and simple programmable devices also increase
deployments’ scalability in rural and forest areas using LoRa technology through our
battery-powered device, offering to the industry a diverse set of applications. The battery

www.tensorflow.org/lite/microcontrollers
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and memory consumption predictions can be recorded to estimate battery life, allowing
planning and scheduling to replace batteries since the data are sent over LoRa protocol,
increasing the feasibility of implementing low-power devices for long-term deployment in
the field. As shown with ongoing deployment, our device enables more important conser-
vation research questions to be answered with all-in-one sensors technology. Using machine
learning on low-cost microcontrollers creates a new age for smart devices. After training,
we can deploy machine/deep learning algorithms onto our smaller embedded units.
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