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Abstract: Gait is a unique biometric trait with several useful properties. It can be recognized remotely
and without the cooperation of the individual, with low-resolution cameras, and it is difficult to
obscure. Therefore, it is suitable for crime investigation, surveillance, and access control. Existing
approaches for gait recognition generally belong to the supervised learning domain, where all samples
in the dataset are annotated. In the real world, annotation is often expensive and time-consuming.
Moreover, convolutional neural networks (CNNs) have dominated the field of gait recognition
for many years and have been extensively researched, while other recent methods such as vision
transformer (ViT) remain unexplored. In this manuscript, we propose a self-supervised learning
(SSL) approach for pretraining the feature extractor using the DINO model to automatically learn
useful gait features with the vision transformer architecture. The feature extractor is then used for
extracting gait features on which the fully connected neural network classifier is trained using the
supervised approach. Experiments on CASIA-B and OU-MVLP gait datasets show the effectiveness
of the proposed approach.

Keywords: gait recognition; self-supervised learning; Gait Energy Image (GEI); people identification;
vision transformers

1. Introduction

Gait is a biometric feature that describes the walking pattern of every individual.
Compared with other biometric features such as the face, iris, fingerprint, and ears, gait has
several unique properties. Gait can be captured from a greater distance than face or iris,
which also means that the person does not have to interact with the sensor, i.e., a camera.
In addition, gait is difficult to change, making it a reliable biometric feature. The gait of
an individual can also be extracted from low-resolution sensors, such as those found in
most current surveillance cameras. The range of applications of gait biometric is wide,
e.g., in surveillance scenarios, access control, and identification of individuals for crime
investigation purposes.

Gait biometric has several limitations when applied in the real world. First, factors such
as illumination changes, shadows, and occlusions can significantly alter the appearance
of an individual’s gait. Second, the cameras that capture an individual’s gait often have
different viewing angles, resulting in drastically different appearances of the gait, even
though the individual’s gait signature is the same. Third, the carrying modalities are also
commonly present, such as individuals wearing a bag, coat, hat, or another accessory,
which visually change the individual’s gait from an appearance perspective.

In the literature, there are two general approaches for tackling the task of gait recogni-
tion. The first is compressing the silhouettes of a single gait cycle of an individual into a
single image, which serves as a gait features representation [1,2]. Han et al. [1] propose com-
pressing the individual’s binary silhouettes of one gait cycle, extracted from video frames
by background subtraction, into one compact gait representation, called Gait Energy Image
(GEI). The second approach considers the gait as a sequence of silhouettes of an individual,
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which are used individually as input for feature extractor [3–5]. In both approaches, the
current state-of-the-art methods rely exclusively on deep learning. From their emergence
in 2012 [6], CNNs have in recent years dominated the field of image-based deep learning,
and have naturally become the standard backbone network used in approaches tackling
gait recognition [3,4,7–9]. Wu et al. [7] extracted gait features using the deep CNNs via
similarity learning. GaitSet [3] proposed treating the silhouettes of an individual as a set
using custom CNN with triplet loss for gait representation learning. Rijun et al. [5] extracted
gait features using the information about an individual’s pose throughout video frames,
using the CNN for predicting the body pose from an image. Bai et al. [10] addressed the
problem of radar-based gait recognition based on the dual-channel CNN. Chen et al. [11]
used CNN network for gait classification based on the multistatic micro-doppler signatures.
A detailed description of a typical gait identification pipeline can be found in [3,7,12].

However, in recent years, a new architecture emerged as a direct competitor to CNNs
in the field of image classification—vision transformers (ViTs). ViT architecture was pro-
posed by Dosovitskiy et al. [13], applying the standard transformer encoder from the field
of natural language processing to the field of computer vision, i.e., image classification
task. ViTs have shown excellent results on many image classification benchmarks [13–15],
demonstrating their strong generalization capability. Compared with CNNs, ViTs demand
fewer computational resources to train and have stronger modeling capability. Still, their
application in the domain of gait recognition has not yet been explored.

All of the previously mentioned methods use a supervised approach to address the
gait recognition problem. Supervised deep learning requires that annotated samples are
available for training and test data, which can be expensive to obtain. Moreover, many
of the state-of-the-art methods use complex model architectures to extract useful gait
features [3,4,8,16]. Complex deep learning models often result in long training time, slow
convergence, and a large number of model parameters that need to be tuned.

In this manuscript, we propose a new architecture and learning approach for gait
recognition. Since labeling all samples in a dataset is an expensive and time-consuming
process, we propose using a self-supervised approach for learning useful gait features from
the input data. The self-supervised approach has emerged in recent years [17–20] and has
been successfully applied to a number of problems [21,22]. The main goal of self-supervised
learning is to learn useful data representations from the unlabeled data by creating a pretext
task. The pretext task involves predicting an occluded portion of an input image based on
the rest of the image. In this manuscript, we opted to use the DINO [20] approach. DINO
showed excellent results on the image classification dataset ImageNet and outperformed
previous self-supervised approaches based on CNNs at a significantly lower computational
cost. This approach uses the ViT model as a backbone, which has an interesting property
compared with CNNs trained in the same way. It has been shown that the self-supervised
approach in conjunction with ViTs results in ViTs models learning to separate the desired
object from the background without explicit guidance [20]. GEI images are used as input
data for the DINO model, representing a single gait cycle of an individual.

Our approach uses the general ViT architecture as a backbone model, in conjunction
with DINO self-supervised learning method, for learning useful gait features from GEI
images of individuals, which can then be used as input to a simple fully connected neural
network (FCNN) classifier to classify individuals.

2. Related Work
2.1. Gait Recognition

Gait recognition methods can generally be divided into two categories: image-based
and video-based methods.

Image-based methods extract individual’s silhouettes from a video sequence through
background subtraction, and then align and compress them into a single image that rep-
resents the final gait representation [1,2]. Gait features are then extracted from the im-
ages either using Principal component analysis (PCA) [1], Linear discriminant analysis
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(LDA) [2,23,24], or CNN [25–27]. Finally, the similarity between features is computed, for
example, by using the cosine similarity. Some methods also propose to integrate the above
steps into an end-to-end network [28]. Wang et al. [29] proposed the feature-distribution-
consistent Generative Adversarial Networks (GAN) to tackle the problem of cross-view
gait recognition.

Video-based methods extract silhouettes from a video sequence similar to image-
based methods; however, instead of compressing them into a single representation, they
are used in their raw form as input data. For every individual, all silhouettes are fed into
the network and gait features are extracted. Chao et al. [3] proposed a method called
GaitSet, which considers the gait as a set consisting of permutable silhouettes. The method
is able to learn identity information from the set and proved to be effective in solving the
problem of different viewpoints and different carrying conditions. GaitPart [4] improved
the aforementioned method by considering that the different body parts of an individual
carry information of different significance, and thus modeled the different spatio-temporal
representations for different body parts. mmGaitSet [30] is another improvement of the
GaitSet method, in which information about an individual’s body posture was incorporated
into the network. Some approaches propose to use a model-based gait feature based on
the individual’s body pose to solve the problem [5,31,32]. Wolf et al. [33] proposed the
use of 3D convolutions to better capture the spatio-temporal features of gait. Although
video-based methods produce better results than image-based methods, they are generally
more difficult to train.

Regarding the type of backbone network used in the mentioned deep learning ap-
proaches, the CNN’s are used almost exclusively.

2.2. Self-Supervised Learning

In recent years, a new learning paradigm in deep learning has piqued the interest of
researchers—self-supervised learning (SSL). Self-supervised learning aims at solving the
ever-present problem of the lack of data for training deep learning models. By using self-
supervision, the model learns without any labels, by means of pretext learning, where one
part of the input data is learned from another part of the same input. Many self-supervised
methods exist nowadays, such as [17–20,34]. SimCLR [18] used contrastive learning, with
contrastive loss function, by maximizing the similarity between two augmented views of
the same image. BYOL [17] used two networks, online and target network, which have the
same architecture but different weights. The target network trains the online network, and
the target network’s weights are updated through the exponential moving average of the
online network. SwAV [34] used instance-level discrimination, where each image or its
transformation is considered as a separate class. The goal of the approach is to learn an
embedding in a way that semantically similar images are grouped closer together in the
features space, through means of using contrastive loss and image augmentation.

In DINO [20], the knowledge distillation with no labels is used. The DINO framework
consists of two networks—teacher Φt and student Φs—that share the same architecture
but different parameters, φt and φs, respectively. The goal of the student network is to
match the probability distribution of the teacher network. The method uses a multicrop
strategy [34] during training, where for every input image two global views are generated
(about 50% of the input image), along with several local views of the same image (less
than 50% of the input image). The global views pass through the teacher network while
the global and local views both pass through the student network. The cross-entropy
loss is used to measure similarity between output vectors from the teacher and student
network. The student parameters φs are learned by minimizing the cross-entropy loss with
stochastic gradient descent, while the teacher parameters φt are defined as an exponential
moving average of the student parameters. In that way, the framework is able to gradually
learn useful features from input images, learning the global to local correspondences from
different views of the same image. Further, in contrast to many SSL methods [18,19], DINO
does not require negative samples, which greatly simplifies the training procedure.
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2.3. Self-Supervised Gait Recognition

Self-supervised deep learning approaches have only recently attracted the interest of
researchers in the area of gait recognition. As a result, there are not many methods that
use SSL for gait recognition. Among the first to investigate the application of SSL learning
to gait recognition was WildGait [35]. In their manuscript, the authors created the novel
Uncooperative Wild Gait (UWG) dataset, in which gait representations are automatically
annotated by recognizing skeletal sequences of individuals. In addition, they propose
the use of the SSL approach for pretraining the Spatio-Temporal Graph Convolutional
Network to utilize a large number of samples for creating useful gait representations.
Finally, the model is fine-tuned in a supervised manner to the target datasets and evaluated.
Another SSL approach to the gait recognition task is SelfGait [36]. In the aforementioned
manuscript, the authors propose using the SSL approach for learning the spatio-temporal
gait representation from unlabeled samples. They use the horizontal pyramid mapping
(HPM) [3] and micro-motion template builder (MTB) [4] spatio-temporal backbones, which
are specifically designed for the gait recognition task. As in WildGait [35], the proposed
approaches use CNN as the backbone network.

3. The Proposed Approach

In this section, we describe our proposed approach, along with a detailed explanation
of its key components. The overall processing pipeline is depicted in Figure 1. The
first part of our proposed approach uses the DINO self-supervised model to learn gait
features from unlabeled training data, as shown in Figure 1a. Next, a simple FCNN is
used as a classifier for the features obtained by the DINO feature extractor model, and is
trained on gallery samples and tested on query samples, as shown in Figure 1b. Labeled
samples are only needed for training the FCNN classifier, as the classifier is trained using a
supervised approach.

(a)

(b)

Figure 1. Gait recognition pipeline. (a) Training feature extractor. (b) Classification pipeline.

3.1. Preprocessing

The first step in our proposed approach is data preparation. In general, assuming
the input data are in the form of raw RGB image sequences taken from a camera, the
typical gait data preprocessing steps [12,27] are applied. First, the noise is filtered from the
images. Second, the silhouettes are extracted for every subject in binary form, using, e.g.,
background subtraction method. Third, images are normalized so that all silhouettes have
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the same height and are horizontally aligned. Then, a gait cycle estimation is performed in
order to construct a final gait representation. In this manuscript, image-based gait features
are used in the form of GEI [1]. GEI is able to preserve the static information of a gait
sequence, such as the shape of the subject’s body, and the subject’s dynamic information,
such as the variation of frequency and phase during the subject’s locomotion. The GEI
representation G for a given gait cycle can be calculated with the formula

G(i, j) =
1
N

N

∑
t=1

I(i, j, t), (1)

where N represents the number of silhouette frames in the gait cycle, t represents the frame
number in a gait cycle at a moment in time, and I(i, j) is the original silhouette image with
(i, j) values in the 2D image coordinate.

3.2. Learning Discriminative Gait Features

The second step in our proposed approach is training the feature extractor. In this
manuscript, we propose using a self-supervised learning paradigm in order to tackle the
problem of learning discriminative gait features. We use the recently proposed method called
DINO [20], which showed promising results in various computer vision tasks such as image
classification and image retrieval. The DINO architecture is depicted in Figure 2.

Figure 2. DINO self-supervised learning [20]. The goal of the student network is to match the
probability distribution of a teacher network using cross-entropy loss, given different views of the
same input image.

Originally, DINO constructs a set of eight local views (96× 96 crops, passed only
through Φs) and two global views (224× 224 crops, passed through both Φt and Φs). In
this work, to adapt to gait-specific data, we use eight local views but with local crops of
size 20× 20, while two global crops are of size 64× 64. We change crop sizes in order to
adapt to the sizes of our gait training images while retaining the similar ratios of global and
local crops as in the original manuscript. Moreover, since the DINO was originally trained
on ImageNet, we change the augmentations used during training, by removing most of the
image augmentations used (color jitter, Gaussian blur, solarization, random horizontal flip)
and using only the random erasing augmentation, since the aforementioned augmentations
do not bring a performance gain when used on gait-specific data.

The DINO method exhibits the ability to segment the foreground objects in an image,
i.e., object boundaries, in a self-supervised manner. In natural images, such as ImageNet,
foreground object segmentation is a difficult problem, considering that many possible
variations of the foreground object and the background exist. In a gait recognition scenario,
where images are presented in the form of, e.g., GEI, the foreground object, i.e., a subject, is
clearly outlined in relation to the background, which could lead to the model focusing its
attention on the most significant parts of an image such as the dynamic features presented
as pixels in the range of 〈0, 255〉.

Since gait datasets lack the large amount of data needed to train the ViT model from
scratch [13], the fine-tune strategy is used in this work. The DINO model is trained on the
ImageNet dataset and then fine-tuned to gait data.
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We propose using the DINO method as a feature extractor to produce discriminative
features of input images to be used later for classification.

3.3. Vision Transformers

The DINO uses the vision transformer model [13] as its backbone network, although
CNN’s also work without modifying the general DINO architecture. The ViTs input consists
of patches of resolution p× p that represent non-overlapping sections of the input image.
For an image I,

I ∈ RH×W×C, (2)

where H represents the height of an image, W represents its width, and C is the number of
channels in an image, the resulting image patches are

I ∈ RN×p2C, (3)

where N = HW
p2 is the number of patches and p is the patch resolution.

Patches are linearly projected into an embedding, and a CLS token is added, which
serves as a class token, i.e., representation of the entire input image, and is used for the
actual classification. Furthermore, at this step, the positional embeddings are added to
help the model retain the positional information of input patches. Then, patch embeddings,
positional embeddings, and CLS token are passed through the standard Transformer
Encoder, which consists of self-attention and feed-forward layers, with skip connections.
Finally, the output CLS token of the Transformer Encoder is sent to a Multilayer Perceptron
(MLP) model for classification.

We use the small ViT model, as defined by Touvron et al. [37]. Furthermore, we
train models with a patch size of 16 and 8 to investigate the influence of patch size on
model performance.

3.4. Classifier

After the DINO feature extractor model is trained, the gait features for gallery and
query image can be extracted and used for classification. In order to classify the features,
we propose using a simple FCNN classifier. Accordingly, we set the gait recognition
problem as a gait classification problem, where the gallery acts as training data for the
FCNN classifier and query acts as test data. For example, if a gallery contains 100 subjects
we consider that a classification problem with 100 classes. We design a simple FCNN—
depicted in Figure 3—that consists of two linear layers, together with batch normalization,
ReLU activation function, and dropout. The hyperparameters of a proposed FCNN are
determined empirically. Additionally, we use the center loss [38] to further facilitate
learning a more diverse feature representation. The main loss used is the cross-entropy
loss, and the combination with center loss is given by the formula

L = Lce + αLc, (4)

where L represents final loss value; Lce and Lc are values of cross-entropy loss and center
loss functions, respectively; and α is a scalar that balances influence of the center loss on
the overall loss value and is set to α = 0.0001.

As in feature extractor training, the images were normalized according to the custom
dataset’s normalization values. Random erasing is used as a data augmentation technique.
Furthermore, in order to boost representation learning, we concatenate the CLS tokens
from all 12 blocks of the DINO model as a final input image representation that serves as
input to the FCNN classifier. Dimensionality of CLS token for the small ViT model is 384;
thus, the input dimensionality of FCNN classifier is 4608.
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Input Layer
(4608, 1000)

Batch
Normalization

ReLU

Dropout
(p = 0.25)

Output layer
(1000, num_classes)

Figure 3. Proposed FCNN classifier.

4. Experimental Setup

To validate the proposed approach, we conducted experiments to assess the perfor-
mance of the proposed DINO feature extractor model and the performance of the FCNN
classifier trained on features extracted with the feature extractor model. Experiments were
conducted in a way that allows for easy comparison with current state-of-the-art models
used in gait recognition, following the same dataset splits and comparison metrics. The
experimental setup is described next; then, the results are presented and analyzed.

4.1. Datasets

In this manuscript, we conducted experiments on two widely used gait recognition
datasets: CASIA-B [39] and OU-MVLP [40], where CASIA-B a presents a smaller but
widely used dataset, while OU-MVLP presents one of the largest gait datasets to date.
The aforementioned allows for analyzing the performance of the proposed approach on a
smaller or larger dataset, to see if the data amount is critical in training a successful DINO
feature extractor.

CASIA-B dataset [39] is one of the most popular gait datasets in the literature. It
consists of 124 subjects, three different walking conditions, and 11 different views (0–180◦

with an increment of 18◦). Walking conditions are normal (NM) with six sequences per
subject, walking with a bag (BG) with two sequences per subject, and walking with a coat
or a jacket (CL) also with two sequences per subject. In total, 110 sequences are available for
each subject in the dataset. Since in this manuscript we use GEI images, the aforementioned
translates to almost 13,600 images in total, with an average of 110 images per subject. We
conduct experiments on three partition settings for training and testing, commonly used
in literature. First, the ST (small-sample) setting uses the first 24 subjects for training and
the rest (100 subjects) are used for testing. Second, the MT (medium-sample) setting uses
the first 62 subjects for training and the rest (62 subjects) are used for testing. Third, the
LT (large-sample) setting uses the first 74 subjects for training and the rest (50 subjects) are
used for testing. In all three partition settings, the first 4 sequences of the NM modality are
used in the gallery, while the remaining 6 sequences of NM modality are used in the query
along with the 2 sequences of BG and CL modalities.

OU-MVLP dataset [40] is one of the largest public gait datasets available today. It
consists of 10,307 subjects and 14 different views (0◦–90◦ and 180◦–270◦, in increments of
15◦) per subject. For every view, there are two sequences (#00–01). For training, 5153 subjects
are used, while for testing, the rest of the 5154 subjects are used. In the test set, sequences
with index #01 are used as a gallery, while the ones with index #00 are used as a query. In
total, there are over 267,000 GEI images, with approximately 26 GEI images per subject.

Additionally, we resize all images from both datasets to size 64 × 44 as performed
in [3,36], to ensure comparison compatibility as well as lowering computing requirements
for training the DINO model. Furthermore, when training the DINO model, the training
data are normalized using the mean and stdev calculated from the used training data.

4.2. Experiments

In order to evaluate the performance of our proposed approach, we constructed GEI
image representations for each subject in each dataset. Then, we trained DINO feature
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extraction models on two aforementioned datasets, CASIA-B and OU-MVLP. For each
dataset, two models were trained: one with a patch size of 16 and one with a patch size
of 8. Next, a simple FCNN classifier was trained on gallery samples, to construct the final
model for gait classification. Finally, the trained FCNN classifier was evaluated using the
query samples.

4.3. DINO Implementation Details

For the implementation of the DINO method, the official GitHub repository was used
[41], with slight modifications, as explained in Section 3.2, to account for the different data
distribution of gait data in comparison with natural images of ImageNet dataset, such as
adjusted global and local crop sizes and different training data augmentations. In order to
fine-tune both the student and the teacher networks, the full ImageNet pretrained DINO
model checkpoint was used. In our experiments, we used only small ViT models, which
roughly correspond to the size of normal Resnet-50 [42] architecture by the number of
parameters in the network. We trained models with patch sizes 16 and 8 to study the effect
of patch size on the model’s accuracy. The remaining DINO model parameters, such as
momentum teacher value, teacher temperature, and global and local crop scales are the
same as in the original manuscript [20].

4.4. Training Details

We trained the DINO models for 1000 epochs, with a batch size of 32 for all experiments
on the CASIA-B and OU-MVLP datasets. The optimizer used was AdamW [43] with a
learning rate of 0.0005. The training was performed using one Nvidia 2080Ti 11 GB GPU.

The FCNN classifier was trained for 100 epochs, with a batch size of 128. The Adam
optimizer was used for FCNN classifier with a learning rate of 0.0005; similarly, the Adam
was used for the center loss optimizer with a learning rate of 0.1.

For both DINO models and the FCNN classifier, the learning rates were determined
empirically. The learning rates were searched within the range of 0.1 to 0.000001 using the
grid search method. The number of epochs for training the DINO model was set to 1000, as
the accuracy did not improve when training the model for longer. Similarly, the number
of epochs for training the FCNN classifier was set to 100. The batch size for both models
was set by finding the optimal value between the batch sizes of 8 and 128, with steps of the
power of 2.

4.5. Evaluation Protocol

For evaluation of our experimental results, we use rank-1 accuracy, where we look at
the percentage of predictions where the top prediction is the correct one, i.e., matches the
ground-truth value. Additionally, the identical-view cases are excluded for comparability
with other state-of-the-art methods.

5. Results

In this section, the results of conducted experiments are presented. It is worth not-
ing that, except SelfGait [36], which uses self-supervised learning, every other method
compared uses a supervised learning approach. Furthermore, the state-of-the-art methods
mentioned in this section use silhouettes as input data, as well as features extracted directly
from frames of a subject walking, while the method proposed by Liao et al. [27] uses GEIs,
the same as our method.

5.1. CASIA-B

For the ST setting, the results are presented in Table 1. Compared with the other
state-of-the-art methods, our method achieves the highest accuracy in the NM and BG
modality. Although, the CL modality accuracy is the lowest among the state-of-the-art
methods.
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Table 1. Results for CASIA-B dataset ST setting. The best results for each angle and overall are in
bold.

Gallery (NM #1–4) 0–180°
Mean

Query 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦

NM
(#5–6)

GaitSet [3] 64.60 83.30 90.40 86.50 80.20 75.50 80.30 86.00 87.10 81.40 59.60 79.54

mmGaitSet [30] 78.50 90.70 94.00 92.20 88.10 84.40 87.40 91.70 92.40 90.60 73.90 87.63

Huang et al. [44] 67.40 81.60 88.80 87.00 80.70 74.90 79.20 86.70 88.20 82.00 66.70 80.29

Lima et al. [31] 62.50 97.90 87.50 64.60 93.80 95.80 93.80 97.90 70.80 91.70 75.00 84.66

Proposed ViTs16 99.50 100.00 99.50 100.00 100.00 100.00 99.50 100.00 100.00 99.50 99.50 99.77

Proposed ViTs8 100.00 100.00 100.00 100.00 99.00 98.50 99.00 100.00 100.00 100.00 100.00 99.68

BG
(#1–2)

GaitSet [3] 55.80 70.50 76.90 75.50 69.70 63.40 68.00 75.80 76.20 70.70 52.50 68.64

mmGaitSet [30] 70.40 81.40 84.70 82.70 77.40 73.00 77.90 83.00 82.00 79.60 65.40 77.95

Huang et al. [44] 57.80 70.60 77.10 76.20 70.10 64.30 68.70 76.00 75.40 70.30 54.60 69.19

Lima et al. [31] 52.10 70.80 58.30 43.80 79.20 81.20 77.10 77.10 66.70 77.10 52.10 66.86

Proposed ViTs16 78.50 68.50 64.50 50.51 54.00 59.00 60.50 58.79 60.80 70.05 72.36 63.41

Proposed ViTs8 87.00 86.00 74.50 71.72 69.50 69.00 75.00 70.85 74.87 90.36 91.96 78.25

CL
(#1–2)

GaitSet [3] 29.40 43.10 49.50 48.70 42.30 40.30 44.90 47.40 43.00 35.70 25.60 40.90

mmGaitSet [30] 42.20 54.60 58.30 57.00 53.00 49.50 51.40 52.20 51.20 45.60 34.40 49.95

Huang et al. [44] 33.40 47.10 53.10 48.80 46.10 41.20 47.40 47.70 47.10 39.00 29.30 43.65

Lima et al. [31] 22.90 29.20 35.40 33.30 39.60 62.50 52.10 52.10 33.30 43.80 33.30 39.77

Proposed ViTs16 20.50 25.50 18.50 16.08 17.00 16.00 14.50 15.08 17.59 19.80 20.50 18.28

Proposed ViTs8 30.00 32.50 34.50 27.14 25.50 33.00 25.00 18.59 21.11 26.40 30.00 27.61

In the MT setting, Table 2, the overall accuracy of the NM modality of our method
outperforms the rest of the methods again, while the BG modality is below the rest of the
methods. Further, the CL modality showed significantly lower results.

Finally, in the LT setting, Table 3, our method again gained the best accuracy in the
NM modality, while the BG modality is comparable although lower in accuracy than the
rest of the methods. CL modality in this setting showed poor accuracy.

Overall, our approach performs best on the NM modality, regardless of the CASIA-B
dataset setting. The BG modality performs best in the ST setting, and in the other settings, it
is comparable with other methods. The CL modality showed the lowest accuracy in all the
settings. The reason for that could be that our model focused its attention primarily on the
NM modality, which has the most training data and is easiest to discriminate, without any
other covariate condition. BG modality considers the subject carrying a bag, which alters the
subject’s appearance slightly; thus, the results for BG modality are overall comparable with
those of other state-of-the-art methods. The CL modality considers the subject wearing
a coat, which alters the subject’s appearance significantly; as a result, it is the hardest
modality available in the dataset, on which our method achieved low accuracy. As such,
our proposed method on CL modality may not be the best choice in practical applications,
compared with other methods. Further research into boosting the proposed method’s
accuracy in the mentioned modality will be performed. Considering the presented results,
our approach showed the ability to perform well across different modalities, excluding
CL modality. Furthermore, our method discriminates well across the different angles of
subjects at which they are recorded. The best accuracy is obtained for the angles that are
closer to values of 0◦ and 180◦, while the lowest are in the area around the 90◦ angle.
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Table 2. Results for CASIA-B dataset MT setting. The best results for each angle and overall are in
bold.

Gallery (NM #1–4) 0–180°
Mean

Query 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦

NM
(#5–6)

GaitSet [3] 86.80 95.20 98.00 94.50 91.50 89.10 91.10 95.00 97.40 93.70 80.20 92.05

mmGaitSet [30] 94.40 98.10 99.30 98.20 96.10 94.40 96.30 98.10 98.40 97.90 92.30 96.68

Huang et al. [44] 86.70 95.40 97.80 96.30 91.60 87.00 91.40 96.80 95.90 93.30 82.50 92.25

Liao et al. [27] 63.10 79.40 84.60 79.80 77.00 72.60 77.40 80.30 84.00 78.50 63.70 76.40

Proposed ViTs16 100.00 100.00 100.00 100.00 100.00 100.00 99.19 100.00 100.00 100.00 100.00 99.93

Proposed ViTs8 99.19 100.00 100.00 100.00 99.19 99.19 99.19 100.00 100.00 100.00 99.19 99.63

BG
(#1–2)

GaitSet [3] 79.90 89.80 91.20 86.70 81.60 76.70 81.00 88.20 90.30 88.50 73.00 84.26

mmGaitSet [30] 90.50 95.00 94.30 94.60 91.60 88.90 91.20 93.90 94.90 92.30 84.80 92.00

Huang et al. [44] 80.10 89.90 91.30 87.80 84.00 75.80 81.10 88.60 90.70 85.50 73.70 84.41

Liao et al. [27] 47.50 59.60 64.20 66.30 61.30 56.70 63.40 63.30 61.80 57.50 47.00 58.96

Proposed ViTs16 83.06 86.29 75.81 73.98 66.94 63.71 68.55 68.55 73.39 82.11 85.48 75.26

Proposed ViTs8 88.71 92.74 87.10 81.30 77.42 70.16 77.42 80.65 75.00 88.62 90.32 82.68

CL
(#1–2)

GaitSet [3] 52.00 66.00 72.80 69.30 63.10 61.20 63.50 66.50 67.50 60.00 45.90 62.53

mmGaitSet [30] 73.60 79.50 82.70 82.20 76.40 73.50 74.70 78.30 77.00 72.60 65.50 76.00

Huang et al. [44] 58.30 71.10 76.80 71.50 64.50 58.90 64.00 68.50 68.80 59.50 49.10 64.64

Liao et al. [27] 30.20 43.30 43.40 43.10 43.60 41.90 40.00 40.30 41.40 38.70 29.90 39.62

Proposed ViTs16 17.74 25.00 23.39 27.42 29.03 23.39 20.97 20.16 21.77 23.39 20.16 22.95

Proposed ViTs8 24.19 25.00 27.42 23.39 28.23 29.03 25.00 19.35 23.39 24.19 27.42 25.15

Both models with patch size 16 and patch size 8 performed similarly in the NM modal-
ity, without significant differences in accuracy, across all dataset settings. The significant
differences in accuracy arise in BG and CL modalities, where the model with patch size 8
showed significant improvement in accuracy compared with the model with patch size 16.
This effect could be due to the ability of the model with patch size 8 to focus its attention
to smaller parts of the image, hence, building a model that is more robust to the effect of
covariate factors such as a bag or a coat.

5.2. OU-MVLP

In Table 4, the results for the OU-MVLP dataset are presented. The results show that
our approach achieved comparable results with the other state-of-the-art methods. Our
method performs well across all angles—specifically, the 210◦ and 225◦ angles—while
the lowest accuracy is at an angle of 180◦. The method SelfGait [36] also uses the self-
supervised learning approach but with a specialized backbone network that enhances
the spatio-temporal ability of the model, and it achieves the state-of-the-art result on this
dataset. In contrast, our approach uses a standard unmodified ViT network, with simple
FCNN as a classifier, and achieves comparable accuracy. As the OU-MVLP dataset contains
many images, the DINO model was able to learn discriminative features and achieve
results comparable with the state-of-the-art. Compared with SelfGait, the advantage of our
approach is that it uses a simple general ViT architecture, as opposed to the gait-specific
network used in SelfGait. In addition, our method does not explicitly infer temporal
features from the data, unlike SelfGait, which uses MTB to learn temporal features from
silhouettes, thus making our method more straightforward in terms of learning since only
appearance features are learned.
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Table 3. Results for CASIA-B dataset LT setting. The best results for each angle and overall are in
bold.

Gallery (NM #1–4) 0–180°
Mean

Query 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦

NM
(#5–6)

GaitSet [3] 90.80 97.90 99.40 96.90 93.60 91.70 95.00 97.80 98.90 96.80 85.80 94.96

mmGaitSet [30] 95.60 99.50 99.90 98.80 95.90 95.40 96.20 98.90 98.90 98.40 94.40 97.45

Huang et al. [44] 91.10 97.90 99.60 97.30 94.30 91.90 94.90 98.10 98.80 96.20 86.60 95.15

GaitPart [4] 94.10 98.60 99.30 98.50 94.00 92.30 95.90 98.40 99.20 97.80 90.40 96.23

Proposed ViTs16 100.00 100.00 100.00 100.00 99.00 99.00 99.00 100.00 100.00 100.00 99.00 99.64

Proposed ViTs8 99.00 100.00 100.00 100.00 99.00 98.00 99.00 100.00 100.00 100.00 99.00 99.45

BG
(#1–2)

GaitSet [3] 83.80 91.20 91.80 88.80 83.30 81.00 84.10 90.00 92.20 94.40 79.00 87.24

mmGaitSet [30] 91.40 95.60 94.10 94.30 91.40 88.60 90.00 93.00 95.70 95.70 88.10 92.54

Huang et al. [44] 84.30 91.20 93.40 91.80 86.10 80.30 84.40 90.90 93.70 90.80 80.10 87.91

GaitPart [4] 89.10 94.80 96.70 95.10 88.30 94.90 89.00 93.50 96.10 93.80 85.80 92.46

Proposed ViTs16 85.00 86.00 80.00 76.77 72.00 78.00 78.00 77.00 77.00 80.81 84.00 79.51

Proposed ViTs8 90.00 88.00 90.00 84.85 81.00 80.00 81.00 78.00 79.00 88.89 91.00 84.70

CL
(#1–2)

GaitSet [3] 61.40 75.40 80.70 77.30 72.10 70.10 71.50 73.50 73.50 68.40 50.00 70.35

mmGaitSet [30] 77.60 84.40 85.80 84.70 78.90 76.60 78.50 79.30 82.20 82.80 72.20 80.27

Huang et al. [44] 64.70 79.40 84.10 80.40 73.70 72.30 75.00 78.50 77.90 71.20 57.00 74.02

GaitPart [4] 70.70 85.50 86.90 83.30 77.10 72.50 76.90 82.20 83.80 80.20 66.50 78.69

Proposed ViTs16 20.00 28.00 28.00 28.00 26.00 26.00 24.00 19.00 24.00 27.00 19.00 24.45

Proposed ViTs8 27.00 31.00 28.00 30.00 40.00 34.00 28.00 24.00 22.00 27.00 32.00 29.36

Table 4. Results for OU-MVLP dataset. The best results for each angle and overall are in bold.

Gallery All 14 Views
Mean

Query 0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦ 180◦ 195◦ 210◦ 225◦ 240◦ 255◦ 270◦

GEINet [25] 11.40 29.10 41.50 45.50 39.50 41.80 38.90 14.90 33.10 43.20 45.60 39.40 40.50 36.30 35.76

Zhang et al. [45] 56.20 73.70 81.40 82.00 78.40 78.00 76.50 60.20 72.00 79.80 80.20 76.70 76.30 73.90 74.66

Zhang et al. [8] 74.00 88.30 94.60 95.40 88.00 91.30 90.00 76.70 89.50 95.00 94.90 88.00 90.80 89.80 89.02

GaitSet [3] 79.50 87.90 89.90 90.20 88.10 88.70 87.80 81.70 86.70 89.00 89.30 87.20 87.80 86.20 87.14

SelfGait [36] 85.10 89.30 92.00 94.30 89.10 90.20 90.90 87.40 91.80 89.30 88.70 90.80 91.60 87.70 89.87

Proposed ViTs16 78.00 88.06 91.11 90.69 86.80 87.69 85.86 83.20 90.57 92.24 91.88 87.10 88.32 86.36 87.71

Proposed ViTs8 75.34 86.14 90.12 88.36 84.99 87.16 85.62 81.09 89.42 90.95 90.29 86.05 88.56 86.38 86.46

The model with patch size 16 performed slightly better on this dataset compared with
the model with patch size 8. As, in this dataset, there are no covariate conditions such as a
bag or coat, the model with patch size 8 does not bring any performance improvement as
in CASIA-B dataset.

5.3. Self-Attention Visualization

In order to assess the features learned by the DINO model, we visualize the different
attention heads in the last multihead self-attention block. A random image from each of
the datasets is chosen, for which the attention is displayed. The model used was the ViT
small model, which has n = 6 heads per self-attention block.
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In Figures 4 and 5, the random images from CASIA-B and OU-MVLP datasets are
shown, respectively. As depicted in Figures 4a and 5a, each head learns different features
from the data, as its attention is focused on different parts of the image. Some attention
heads are focused on the subject’s head, while others are on the legs or the left or right part
of the subject in the image. Figures 4b and 5b show the average of all attentions across all
the heads. This observation is consistent with the ones from the original DINO manuscript,
where it is noted that the DINO method successfully segments objects of interest inside
the image. In GEI images, the most important area of the image is the outline of the
subject, which our proposed approach successfully detects and uses that information for
the classification of subjects, producing good results, as shown in Section 5.

(a) (b)

Figure 4. Self-attention of the CLS token on random CASIA-B sample image. (a) Self-attention heads.
(b) Average of all self-attention heads.

(a) (b)

Figure 5. Self-attention of the CLS token on random OU-MVLP sample image. (a) Self-attention
heads. (b) Average of all self-attention heads.

5.4. Ablation Experiments

In this section, the effectiveness of the vision transformer backbone network and the
proposed classifier is studied.

To evaluate the effectiveness of the vision transformer network, we trained the DINO
model with the Resnet-50 as a backbone network for comparison. The Resnet-50 is chosen
because it has a similar number of parameters in the network compared with the small
ViT network, with 23 million and 21 million parameters, respectively. Both models were
trained on the CASIA-B dataset’s LT setting, for 1000 epochs and with a patch size of 16.
Hyperparameters of the small ViT model were determined as described in Section 4.4, while
for the Resnet-50 model the same methodology was used, setting the lr = 0.005. In both
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models, the full ImageNet pretrained DINO model checkpoint was used for fine-tuning.
For evaluation, the FCNN network proposed in Section 3.4 was used. In Table 5, the
comparison of accuracy of Resnet-50 and the small ViT model is shown. It is evident that
the small ViT model significantly outperforms the Resnet-50 model in accuracy across all
modalities, proving the effectiveness of the ViT model for the problem of gait recognition.

Table 5. Comparison of Resnet-50 and small ViT model accuracy on CASIA-B dataset using LT setting.
The best results for each angle and overall are in bold.

Gallery (NM #1–4) 0–180°
Mean

Query 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦

NM
(#5–6)

ResNet-50 80.00 82.00 88.00 78.00 79.00 84.00 81.00 84.00 84.00 83.00 70.00 81.18

Proposed ViTs16 100.00 100.00 100.00 100.00 99.00 99.00 99.00 100.00 100.00 100.00 99.00 99.64

BG
(#1–2)

ResNet-50 60.00 58.00 36.00 29.29 32.00 34.00 28.00 41.00 42.00 50.51 44.00 41.35

Proposed ViTs16 85.00 86.00 80.00 76.77 72.00 78.00 78.00 77.00 77.00 80.81 84.00 79.51

CL
(#1–2)

ResNet-50 18.00 19.00 20.00 16.00 18.00 17.00 6.00 14.00 20.00 24.00 15.00 17.00

Proposed ViTs16 20.00 28.00 28.00 28.00 26.00 26.00 24.00 19.00 24.00 27.00 19.00 24.45

In Table 6, the comparison of different classifiers is shown. To study the effectiveness
of the proposed FCNN classifier, we evaluated the trained ViT feature extractor model
using the standard weighted nearest neighbors classifier (k-NN) as in [46]. The feature
extractor model used was the small ViT model with a patch size of 16. The FCNN classifier
is the same as proposed in Section 3.4. An evaluation is performed on the CASIA-B dataset
using the LT setting. The results show that the proposed FCNN classifier significantly
outperformed the k-NN classifier in all modalities and angles, especially in the BG modality.

Table 6. Comparison of FCNN and k-NN classifiers accuracy on CASIA-B dataset using LT setting.
The best results for each angle and overall are in bold.

Gallery (NM #1–4) 0–180°
Mean

Query 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦

NM
(#5–6)

k-NN 48.00 81.00 93.00 81.00 95.00 81.00 87.00 91.00 81.00 79.00 54.00 79.18

Proposed FCNN 100.00 100.00 100.00 100.00 99.00 99.00 99.00 100.00 100.00 100.00 99.00 99.64

BG
(#1–2)

k-NN 38.00 55.00 51.00 43.43 57.00 48.00 46.00 54.00 41.00 48.48 33.00 46.81

Proposed FCNN 85.00 86.00 80.00 76.77 72.00 78.00 78.00 77.00 77.00 80.81 84.00 79.51

CL
(#1–2)

k-NN 8.00 10.00 14.00 16.00 15.00 11.00 11.00 14.00 14.00 18.00 9.00 12.73

Proposed FCNN 20.00 28.00 28.00 28.00 26.00 26.00 24.00 19.00 24.00 27.00 19.00 24.45

6. Conclusions

In this manuscript, we propose a novel approach that uses self-supervised learning
for application in the gait recognition task. Using the DINO self-supervised method, the
useful gait features are learned using training samples without any annotations. The
obtained model is used as a feature extractor for gallery and query images. The simple
FCNN classifier is trained using the features extracted from gallery images, and query
images are evaluated using the trained model. Experiments conducted on two widely used
gait recognition datasets, CASIA-B and OU-MVLP, showed that our proposed approach
achieved good results, outperforming the supervised approaches in some cases. Moreover,
the self-supervised feature extractor focused its attention on the outlines of the individuals
in the GEI images, deeming the outline as the most meaningful information in the image.
Taking into account covariate factors, such as different camera viewpoints and different
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carrying modalities, our method also produced good results comparable with those of other
state-of-the-art methods, considering both supervised and self-supervised approaches. We
also note that our approach is one of the first that employs ViTs in the domain of gait
recognition. In future work, we will investigate the effect of training the feature extractor
on specific parts of an image such as the legs, torso, or head on recognition accuracy.
Furthermore, additional work will be conducted to further reduce the gap between poorer
BG and CL modality results compared with those of NM modality in CASIA-B dataset.
Newly proposed variants of vision transformers will also be tested in conjunction with
DINO to further boost the recognition accuracy.
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GEI Gait Energy Image
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PCA Principal Component Analysis
LDA Linear Discriminant Analysis
GAN Generative Adversarial Network
UWG Uncooperative Wild Gait dataset
HPM Horizontal Pyramid Mapping
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BG Walking with a bag
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