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Abstract: The performance of the Monte Carlo (MC) algorithm for calibration-free LIBS was studied
on the example of a simulated spectrum that mimics a metallurgical slag sample. The underlying
model is that of a uniform, isothermal, and stationary plasma in local thermodynamical equilibrium.
Based on the model, the algorithm generates from hundreds of thousands to several millions of
simultaneous configurations of plasma parameters and the corresponding number of spectra. The
parameters are temperature, plasma size, and concentrations of species. They are iterated until a
cost function, which indicates a difference between synthetic and simulated slag spectra, reaches
its minimum. After finding the minimum, the concentrations of species are read from the model
and compared to the certified values. The algorithm is parallelized on a graphical processing unit
(GPU) to reduce computational time. The minimization of the cost function takes several minutes
on the GPU NVIDIA Tesla K40 card and depends on the number of elements to be iterated. The
intrinsic accuracy of the MC calibration-free method is found to be around 1% for the eight elements
tested. For a real experimental spectrum, however, the efficiency may turn out to be worse due to
the idealistic nature of the model, as well as incorrectly chosen experimental conditions. Factors
influencing the performance of the method are discussed.

Keywords: laser-induced breakdown spectroscopy; calibration-free analysis; Monte Carlo algorithm

1. Introduction

Calibration-free (CF) methods in laser-induced breakdown spectroscopy (LIBS) serve
as an alternative to calibration-based techniques [1]. Their major advantage is the ability
for rapid chemical analysis without standards; this is important in situations where matrix-
matched standards are not available or amounts of samples are limited. However, their
typical accuracy and precision are modest and degrade toward semi-quantitative analysis
for concentrations below 1%. The main applications of CF LIBS can be found in industry,
geology, biology, archeology, or even space exploration [1,2].

Over the years, several approaches to CF LIBS have been proposed, all relying on an
assumption of a uniform isothermal plasma at local thermodynamic equilibrium (LTE).
They can be divided into two categories: those that use the experimental spectrum to
determine the plasma parameters (the inverse problem) and those that specify the plasma
parameters to reproduce the experimental spectrum (the direct problem). The most fre-
quently used version of the first category is the Boltzmann plot (BP) or Saha–Boltzmann
plot (SBP) method [2,3]. It relies on the assumptions of stoichiometric ablation, plasma
uniformity, and optical thinness. The latter condition, though, can be relaxed by the pro-
posed self-absorption correction methods [4]. This method has been repeatedly used to
solve specific analytical problems. Praher et al. [5] and Pedarnig et al. [6] paid special
attention to the homogeneity and optical transparency of the plasma during a CF LIBS
analysis of steel slags and other industrial materials. They carefully optimized the timing
of radiation collection and corrected lines for self-absorption. Gornushkin et al. [7] studied
effects of non-uniformity of LIBS plasma on the accuracy of calibration-free BP analysis.
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Hermann et al. [8] took into account the influence of density and temperature gradients on
the plasma spectra by assuming two homogeneous zones within the plasma, each with
its own density and temperature. Wester and Noll [9] also proposed a heuristic two-shell
plasma model to account for plasma gradients.

Several single-point calibration methods have been proposed to improve the CF-BP–
LIBS method; they needed only one reference standard with a composition similar to
the sample being analyzed. Although not truly calibration-free, they are still close to CF
because, in the end, they provide concentrations of elements not included in the certified
standard. The methods reduce the error of CF-BP analysis associated with instrumental
factors or inaccuracy of spectroscopic data. Cavalcanti et al. [10] demonstrated an improve-
ment in the accuracy of the CF LIBS analysis by first applying it to a certified sample and
then to unknown samples. Gaudiuso et al. [11] proposed an inverse CF-LIBS method in
which one certified sample was used to find the unique slope of a Boltzmann plot, which
was then applied to unknown samples. Aragon and Aguilera [12,13] proposed a one-point
calibration “C-sigma” method which was based on the theory of curves-of-growth. Here,
several elemental BPs were merged into a single BP that was common for all the elements.
Grifoni et al. [14] compared the three one-point calibration methods in favor of the first.

All CF-BP (inverse) methods require solving ill-posed problems of self-absorption
correction [15] and deconvolution [16], which can lead to significant errors in the calculation
of the integral line intensities (see Equation (1) below). Another disadvantage of these
methods is their large error in determining medium and low concentrations at the level
of 1% or less. The error is related to the need to sum the element concentrations up to
100% to exclude the experimental factor from the model equations. Because of this, small
errors at high concentrations are transformed into large errors at low concentrations. This
disadvantage, however, is not inherent in single-point calibration methods that do not
use such summation or use it only as part of the procedure [10–14]. Another source of
error may be the inadequacy of the model of a homogeneous isothermal plasma to the
parameters of a real plasma [17]. Errors can also arise due to uncertainties in spectroscopic
parameters and experimental factors, such as neglecting the light-collection geometry [18].
Gornushkin et al. [19] studied the factors of optical density, plasma inhomogeneity, line
overlap, noise, spectral resolution, electron density, and path length that affect the accuracy
of quantitative analysis by CF-BP–LIBS.

Another group of methods belonging to the second category (direct problem) was
proposed by the authors [20–23]. These methods are based on generating synthetic spectra
by using the collision-dominated model of a homogeneous isothermal plasma in LTE (see,
for example, Reference [21]) and comparing these spectra with experimental ones. Their
advantage is that there are no requirements for optical thinness and deconvolution of
overlapping lines; these effects are automatically accounted for when generating synthetic
spectra. Yaroshchyk et al. [20] developed an automated standard-free LIBS method that
allows for a fast multi-element analysis. The plasma spectrum was represented by a
system of simultaneous algebraic equations, which were solved by using the singular value
decomposition algorithm. Gornushkin et al. [21] developed a radiation dynamic model of
the post breakdown laser plasma in which the problem of determining the concentration of
elements was solved by a direct comparison of the calculated synthetic spectra with the
experimental ones. Simulated annealing Monte Carlo optimization was used to determine
the plasma temperature and density. In a subsequent paper, Herrera et al. [22] compared CF-
BP–LIBS with simulated annealing Monte Carlo (MC–LIBS) by analyzing aluminum alloy
samples ablated into vacuum. They found that the relative concentrations obtained with
CF-BP and MC–LIBS were comparable in magnitude with relative errors of 30–250%. It was
argued that the improvement of the spatial and temporal resolution of the experiment is no
less important than the refinement of theoretical models. Demidov et al. [23] developed
a new MC–LIBS algorithm suitable for graphical processing unit (GPU) computing, in
contrast to central processing unit (CPU) computing, which requires unacceptably long
processing times. The reduction in computation time was achieved through massive



Sensors 2022, 22, 7149 3 of 11

parallel computing on GPUs containing thousands of coprocessors. The performance of
MC–LIBS was tested on the spectra of mixtures of metal oxides CaO, Fe2O3, MgO and TiO2,
which simulated by-products of metallurgical production, steel slags. Comparison with
CF-LIBS showed that the accuracy of the MC–LIBS and CF-LIBS methods is the same for
this type of sample.

In the abovementioned MC–LIBS papers [21–23], the effectiveness of the method was
evaluated by using experimental spectra. Therefore, it was difficult to separate errors
due to instrumental factors from errors due to the method itself, for example, due to the
stochasticity of the method. In this work, we continued to improve the MC algorithm [23]
and study its internal characteristics, which were not considered in previous publications.
The reliability of the algorithm was tested on synthetic spectra simulating samples of met-
allurgical slag. These spectra are free from instrumental factors and completely correspond
to the mathematical model of a homogeneous isothermal plasma in LTE. This work should
prove that MC–LIBS is a viable alternative to CF-BP–LIBS that can provide higher accuracy
of CF analysis for both high and low concentrations.

2. Materials and Methods

The plasma is assumed to be isothermal and uniform at local thermodynamic equilib-
rium (LTE). The radiation along a line of sight is given by the following equation:

I(λ, T) = B(T)
(
1− e−τ(λ,T)) (1)

where I(λ, T) is the spectral intensity, B(T) is the Planck function, and τ(λ, T) is the
optical density. The optical density can be factorized into two terms, namely a wavelength-
dependent and wavelength-independent optical density:

τ(λ, T) = K(T)P(λ) (2)

Here, K(T) = e2λ2
0

4ε0mec2 fik
gie−Ei/kT

U(T)

(
1− e−(Ek−Ei)/kT)nR where e and me are the elemen-

tary charge and mass, c and k are the speed of light and Boltzmann constant, ε0 is the
permeability of free space, λ0 is the wavelength in the line center, gi is the degeneracy of
the lower transition level, U(T) is the atomic or ionic partition function, Ei and Ek are the
lower and upper transition energies, n is the number density of atomic or ionic species,
and R is the radiation path length through the plasma. Term P(λ) represents a line shape
function (Gaussian, Lorentzian, or Voigt). In our algorithm, two functions are tested that
are typical to LIBS spectra: Lorentzian and Voigt.

A Monte Carlo (MC) algorithm minimizes a cost function that signifies the difference
between synthetic and experimental spectra. During the minimization, the physical pa-
rameters of the model (T, R, ni) are varied and gradually approach that of experimental
plasma. After finding the minimum, the sought-for parameters of the experimental plasma
are read from the model. Mathematically, the problem is expressed by Reference [23]:

f (Iex, Isyn) = minD[ f (Iex, Isyn)]

D =


1013 ≤ ni

[
cm−3] ≤ 1019, i = 1..N

5000 ≤ T [K] ≤ 20000
0.001 ≤ R [cm] ≤ 0.1

 (3)

where f (Iex, Isyn) is the cost function to be minimized; Iex and Isyn are the experimental
and synthetic spectra (dependency of Iex and Isyn upon λ, ni, T is omitted); and D is
the (N + 2)-dimensional search domain, where N is the number of chemical elements
considered in the model.
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A cost function can be any suitable metric that is sensitive to a difference between two
sets of data. For example, one can use a correlation coefficient for the construction of the
cost function:

fC(Iex, Isyn) = 1−
∑
(

Iex
i − Iex

)(
Isyn
i − Isyn

)
[
∑
(

Iex
i − Iex

)2
]1/2[

∑
(

Isyn
i − Isyn

)2
]1/2 (4)

Here, Iex
i and Isyn

i are the intensities of the experimental and synthetic spectra at
wavelength λi, and Iex and Isyn are their corresponding averages over a wavelength
range. Function (4) is sensitive to mutual positions and intensities of spectral lines on two
compared spectra and depends on the cosine of an angle between two vectors. The vectors
represent synthetic and experimental spectra in a multidimensional space, RM, where M is
the number of spectral points (λi, i = 1 . . . M). If the vectors are collinear, the two spectra
perfectly match and fC(Iex, Isyn) = 0. The contribution of an element to the cost function
depends on its concentration and number of spectral lines available for this element. To
equalize contributions from all elements, weights (wk) are added in Equation (4):

fCW(Iex, Isyn)

= 1−
∑k wk ∑

Mk
Lk
(Iex

i −Iex)(Isyn
i −Isyn)[

∑k wk ∑
Mk
Lk
(Iex

i −Iex)
2]1/2[

∑k wk ∑
Mk
Lk
(Isyn

i −Isyn)
2]1/2

(5)

To calculate wk, equal weights (W) are first assigned to all elements regardless of their
concentrations; W = 1/N, with N being the number of elements. The contribution of
each spectral line of a given element is then calculated based on the integral intensity of
this line divided by the sum of integral intensities of all lines belonging to this element:
wnpn = W·(Snpn / ∑pn Snpn), n = 1, . . . N, pn = 1 . . . Pn where Snpn is the integral intensity
of line pn of element n, and Pn is the number of lines available for this element. The integral
intensities of all lines are recovered from the experimental spectrum. A full spectral grid is
split into K spectral fragments so that Lk and Mk, k = 1, . . . K denote the lower and upper
boundaries of a particular fragment k. Each fragment may contain one or several lines of
the same or different elements. The weight of each fragment is then determined by a simple
relation: wk = ∑n,pn wnpn Snpn / ∑n,pn Snpn . The weighting of the cost function equalizes its
sensitivity to both weak and strong lines, making it possible to determine trace elements
with the similar accuracy as the main ones.

The main concept of the MC–LIBS method is to minimize the cost function, which
measures the similarity between model-generated and experimental spectra. This is a
non-linear problem (Equation (1)) that needs to be solved in a high-dimensional space
(Equation (3)). Standard optimization methods, such as, for example, Newton–Raphson
or Levenberg–Marquardt, are inefficient in this case, since the solution can be caught in
some local minimum or maximum. Therefore, we use a global optimization algorithm that
works as follows.

Many initial random combinations (configurations), NC, of plasma parameters (ni, T,
and R) are taken from hypercube D in Equation (3) and used for generation of NC synthetic
spectra. Each configuration is represented by a point in box D that has volume, VD, in a
phase space of plasma parameters. Values of the cost function are calculated for these initial
configurations, and smaller subset Nb of points (Nb � NC) is chosen that corresponds to
Nb smallest values of fCW(Iex, Isyn). Boxes of smaller volumes, V(1)

b < VD, are then built
around each such point. In a next iteration, a fraction, αNC, of configurations is taken from
the original box VD, while another fraction, (1− α)NC, is taken from smaller boxes V(1)

b ,
where 0 < α < 1. After calculating the cost functions for the new set of configurations, new
Nb points are chosen for the smallest values of the cost function, and new Nb boxes are built
around those points such that V(2)

b < V(1)
b < VD, and so on. As a result, a configuration
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is found that yields the global minimum of the cost function without a danger of being
trapped in local minima. The adjustable parameters of the optimization are the total number
of configurations, NC; number of boxes, Nb; rate of reduction of volumes, Vb; and fraction
of configurations, α, taken from small, V(j)

b , and large, VD, boxes.
To accelerate the described method, a large number of synthetic spectra can be calculated

in parallel. The number Nc is determined by the available processors. With the help of graphics
processing units (GPUs), the parallel calculation of millions of spectra is thus possible.

3. Results

The Monte Carlo algorithm is run on a GPU card. A typical GPU works with vec-
tors rather than matrices; matrix operations are prohibited. Therefore, for arrays with
dimensionality greater than 1, say L×M× N, only one data dimension, e.g., L, can be
simultaneously processed by the GPU (parallelized) while two other dimensions, M and
N, are run within a nested loop on the CPU (central processing unit). For efficient op-
eration, the number of such CPU-loops should be maximally reduced. In the proposed
MC algorithm, the plasma parameters are calculated on the GPU for ~105–106 simultane-
ous configurations at each wavelength scanning the whole wavelength range in a loop
on the CPU. To reduce time for looping on the CPU, narrow spectral fragments around
chosen lines are selected. The selected lines are bracketed within intervals with margins of
plus–minus 10–15-line widths from line centers. Such intervals are found to be optimal for
reliable subtraction of a baseline. The algorithm is implemented on the @MATLAB 2020b
platform, using a desktop 3 GHz PC with a NVIDIA Tesla K40 graphical card.

The baseline subtraction is important for finding true heights and widths of spectral
lines that are otherwise affected by a radiation continuum and neighboring lines. This
procedure is especially important for weak lines that sit on the wings of strong lines. In this
work, a polynomial approximation of the baseline is used [24]. Polynomials of powers from
1 and 10 are sequentially tested to find the optimal one. For each tested polynomial, the
baseline is subtracted, and lines are approximated by either a Lorentzian or Voigt function
P(λ, ∆λ) in the exponent of Equation (6):

I(λ, ∆λ, K) = A
(

1− e−KP(λ,∆λ)
)

(6)

where A, K, and ∆λ are the fitting parameters. The optimal polynomial is determined by
the minimal error of the least-mean-square fit.

An observed line profile may consist of several profiles; moreover, an individual
atomic or ionic line profile can be broadened by self-absorption and instrumental function.
A task is to retrieve original line profiles from the observable spectrum. It is postulated
that the width of each line in the iterated synthetic spectrum is equal to the corresponding
line width in the observable spectrum, regardless of what the actual parameters of the
plasma are. Then the own (not self-absorbed) line width, ∆λ, can be extracted by solving
the obvious equation: 2I(λ0 + ∆Λ/2, T) = I(λ0, T), where ∆Λ is the FWHMs (full-width-
at-half-maxima) of the experimental line. By combining Equations (1) and (2) with this
simple relation, a function is composed:

F(∆λ) = 1− 2e−K(T)P(λ0+∆Λ/2,∆λ) + e−K(T)P(λ0,∆λ) (7)

The root of this function, F(∆λ) = 0, is found numerically by fitting the parameter
∆λ (a more detail description can be found in Reference [19]). It is easy to show that the
root always exists for the physical interval ∆λ ∈ (0, ∞) and P(λ, ∆λ) represented by Voigt,
Lorentzian, or Gaussian functions. Thus, the found ∆λ is the own line width that is free
from self-absorption broadening. This approach is used to generate lines with unknown
Stark parameters; it is not needed for lines with known Stark parameters.

The inherent performance of the MC method was demonstrated with synthetic spectra.
A synthetic spectrum was generated that reproduced a spectrum of the slag sample (Table 1).
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The major element, calcium, was taken at the concentration 1016 cm−3; the concentrations
of other elements were calculated based on stoichiometric ratios of corresponding oxides.

Table 1. Concentrations of oxides and corresponding number densities used to generate synthetic spectrum.

Oxide C, % Mass Element n, cm−3

Al2O3 19.7 Al 8.03 × 1015

CaO 27.0 Ca 1.00 × 1016

Cr2O3 0.5 Cr 1.37 × 1014

FeO 24 Fe 6.94 × 1015

MgO 11.5 Mg 5.93 × 1015

MnO 8 Mn 2.34 × 1015

TiO2 0.3 Ti 7.80 × 1013

SiO2 9 Si 3.11 × 1015

The plasma was assumed to be uniform and isothermal, with a temperature T = 10,000 K
and size R = 0.1 cm. Seventy-four spectral lines were used, which are given in Table 2. All
of these lines could be clearly identified on the experimental spectrum from a slag sample.
No other criteria for choosing the lines were applied; they could be strong or weak, atomic or
ionic, or self-absorbed or optically thin. Spectroscopic data for the lines were taken from the
NIST database [25]; the Stark broadening parameters were taken from Griem’s tables [26] and
pertinent works from the literature [27,28]. The fragment of the synthetic spectrum is shown in
Figure 1 to illustrate its appearance. Complicating effects were added to the spectrum in the
form of a finite spectral resolution (84 pix/nm) and random Gaussian noise (0.5% of maximal
spectrum intensity). Considering this synthetic spectrum as experimental one, the task was to
retrieve the sample composition by the MC method and compare it to the certified values.
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Table 2. Elements and spectral lines used to generate synthetic spectra.

# Elm λ nm Ei Ek fik gi gk # Elm λ nm Ei Ek fik gi gk

1

CaI

428.301 15,210 38,552 0.1990 3 5 38
FeI

404.581 11,976 36,686 0.2120 9 9
2 428.936 15,158 38,465 0.500 1 3 39 406.359 12,561 37,163 0.1650 5 5
3 429.899 15,210 38,465 0.129 3 3 40 407.174 12,969 37,521 0.1900 5 5
4 430.253 15,316 38,552 0.378 5 5 41

MnI

403.075 0 24,802 0.0550 6 8
5 430.774 15,210 38,418 0.1849 3 1 42 403.307 0 24,788 0.0403 6 6
6 431.865 15,316 38,465 0.1200 5 3 43 403.449 0 24,779 0.0257 6 4
7 558.876 20,371 38,259 0.2317 7 7 44 403.575 17,282 42,054 0.0800 8 6
8 559.849 20,335 38,192 0.2009 3 3 45 404.136 17,052 41,789 0.193 10 10
9 560.285 20,349 38,192 0.0399 5 3 46 472.746 23,549 44,696 0.057 6 6

10

CaII

315.887 25,192 56,839 0.847 2 4 47 473.909 23,720 44,815 0.081 4 4
11 317.933 25,414 56,858 0.8200 4 6 48 475.404 18,402 39,431 0.137 6 8
12 318.128 25,414 56,839 0.088 4 4 49 475.585 23,720 44,696 0.210 4 6
13 370.602 25,192 52,167 0.172 2 2 50 476.151 23,819 44,815 0.364 2 4
14 373.690 25,414 52,167 0.164 4 2 51 476.237 23,297 44,289 0.333 8 10
15 393.366 0 25,414 0.682 2 4 52 476.642 23,549 44,523 0.210 6 8
16 396.847 0 25,192 0.330 2 2 53 478.343 18,531 39,431 0.138 8 8
17

AlI

308.215 0 32,435 0.1670 2 4 54 482.352 18,705 39,431 0.139 10 8
18 309.271 112 32,437 0.1570 4 6 55

MnII

344.199 14,326 43,371 0.0500 9 7
19 394.401 0 25,348 0.1160 2 2 56 346.031 14,594 43,485 0.0334 7 5
20 396.152 112 25,348 0.1160 4 2 57 347.413 14,781 43,557 0.0179 5 3
21

MgI
516.732 21850 41,197 0.1350 1 3 58 348.290 14,781 43,485 0.0291 5 5

22 517.268 21870 41,197 0.1350 3 3 59 348.868 14,901 43,557 0.0385 3 3
23 518.360 21911 41,197 0.1360 5 3 60

TiI
498.173 6843 26,911 0.2900 11 13

24 SiI 390.552 15394 40,992 0.091 1 3 61 499.107 6743 26,773 0.2670 9 11
25

FeI

303.739 888 33,802 0.0671 3 5 62 499.950 6661 26,657 0.254 7 9
26 304.760 704 33,507 0.0533 5 7 63

TiII

323.452 393 31,301 0.2685 10 10
27 305.745 6928 39,626 0.0359 11 9 64 323.657 226 31,114 0.2150 8 8
28 305.909 416 33,096 0.0294 7 9 65 323.904 94 30,959 0.198 10 10
29 306.724 7376 39,970 0.0342 9 7 66 324.199 0 30,836 0.2317 4 4
30 371.993 0 26,875 0.0411 9 11 67 324.860 10025 40,798 0.388 6 8
31 372.256 704 27,560 0.0103 5 5 68 336.121 226 29,968 0.3350 8 10
32 374.336 7986 34,692 0.0328 5 3 69 337.279 94 29,735 0.3210 6 8
33 374.556 704 27,395 0.0339 5 7 70 338.376 0 29,544 0.3580 4 6
34 374.826 888 27,560 0.0321 3 5 71

CrI

357.869 0 27,935 0.3660 7 9
35 374.948 7377 34,040 0.1610 9 9 72 359.349 0 27,820 0.2910 7 7
36 375.823 7728 34,329 0.1340 7 7 73 425.434 0 23,499 0.1100 7 8
37 376.719 8155 34,692 0.1360 3 3 74 427.480 0 23,386 0.0842 7 7

The convergence of the MC algorithm to the same value of the cost function is illustrated
in Figure 2. The algorithm scanned six orders of magnitude in concentrations, two orders in
path length, and 104 K range in temperatures. Starting eleven times from a random config-
uration, the cost function consistently converged to a minimum 0.0023± 0.0001. Running
50 iterations took ~5 min on the GPU, examining 500,000 configurations per iteration.
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Figure 2. Convergence of the cost function as the function of the number of iterations. Starting
from a random configuration, 11 runs were performed. Different symbols correspond to different
initial configurations.

The certified–found correlation plot for the artificial slag sample is shown in Figure 3,
and the corresponding accuracy and precision are given in Table 3. To obtain data given
in Figure 3 and Table 3, 11 runs by 50 iterations have been performed for each element,
starting each time from a random configuration. Since each run takes ~5 min, the total
processing time was 5 min × 11 runs = 55 min. Note that, for a practical problem, such
extensive calculations are not required; one run will be enough, because the iterations
converge to the same value within ±5%. Convergence can be further improved by refining
the algorithm on a denser grid.

Sensors 2022, 22, x FOR PEER REVIEW 9 of 12 
 

 

 

Figure 3. Certified–found correlation plot for synthetic slag spectrum. Each element is represented 

by 11 colored triangles (some are completely merged) corresponding to 11 runs that started from a 

random configuration. 

Table 3. Accuracy and precision of MC analysis; % concentrations of elements are recalculated from 

concentrations of oxides given in Table 1. 

 Ca Al Mg Si Fe Mn Ti Cr 

concentration in wt.% 27.32 22.01 16.16 8.52 19.03 6.35 0.22 0.4 

rel. error in % 0.21 0.07 0.94 3.74 0.28 0.04 0.16 0.73 

RSD in % 0.73 1.28 2.15 4.0 1.56 1.79 1.72 7.43 

The points in Figure 3 show the very small scatter around the 45-degree correlation 

line, while Table 3 implies that the relative errors for major and minor elements are below 

1% (except for silicon). The relative standard deviation is always below 10%, mostly 

around 1%; it comes from random noise that was imposed on the spectrum and stochastic 

character of the algorithm. As one sees from Table 3, accuracy and precision are slightly 

worse for elements represented by only a few lines (e.g., only one line at 390.6 nm was 

available for Si) or weak lines (e.g., Cr I at 357.9 and 359.3 nm shown in the inset in Figure 

1). Note that the accuracy and precision of the MC analysis is the same at both low and 

high concentrations due to the concentration-independent nature of the method’s errors, 

unlike the CF-BP method. This favorably distinguishes MC–LIBS from the standard BP 

method, where accuracy and precision significantly deteriorate toward low concentra-

tions due to the closure condition. 

4. Discussion 

It can be seen that, even for a synthetic spectrum, the result is not 100% accurate. The 

reasons for this are as follows. During the iterative reconstruction, the broadening param-

eters (due to the Stark effect) were not known for all lines. These parameters were deter-

mined from Equation (5), where the error is dependent on the accuracy of the line width 

measurement. Thus, as the noise fraction increases, the error also increases. Two other 

conditions for successful reconstruction are good spectral resolution to distinguish closely 

spaced lines and a wide spectral range necessary to represent each element with a suffi-

cient number of lines. In principle, only one spectral line per element is required. How-

ever, since the spectra are subject to instrumental noise, or the parameters of the spectro-

scopic lines are not always known with 100% accuracy, it is desirable to include as many 

Figure 3. Certified–found correlation plot for synthetic slag spectrum. Each element is represented
by 11 colored triangles (some are completely merged) corresponding to 11 runs that started from a
random configuration.



Sensors 2022, 22, 7149 9 of 11

Table 3. Accuracy and precision of MC analysis; % concentrations of elements are recalculated from
concentrations of oxides given in Table 1.

Ca Al Mg Si Fe Mn Ti Cr

concentration in wt.% 27.32 22.01 16.16 8.52 19.03 6.35 0.22 0.4
rel. error in % 0.21 0.07 0.94 3.74 0.28 0.04 0.16 0.73
RSD in % 0.73 1.28 2.15 4.0 1.56 1.79 1.72 7.43

The points in Figure 3 show the very small scatter around the 45-degree correlation line,
while Table 3 implies that the relative errors for major and minor elements are below 1%
(except for silicon). The relative standard deviation is always below 10%, mostly around 1%;
it comes from random noise that was imposed on the spectrum and stochastic character
of the algorithm. As one sees from Table 3, accuracy and precision are slightly worse for
elements represented by only a few lines (e.g., only one line at 390.6 nm was available
for Si) or weak lines (e.g., Cr I at 357.9 and 359.3 nm shown in the inset in Figure 1).
Note that the accuracy and precision of the MC analysis is the same at both low and high
concentrations due to the concentration-independent nature of the method’s errors, unlike
the CF-BP method. This favorably distinguishes MC–LIBS from the standard BP method,
where accuracy and precision significantly deteriorate toward low concentrations due to
the closure condition.

4. Discussion

It can be seen that, even for a synthetic spectrum, the result is not 100% accurate.
The reasons for this are as follows. During the iterative reconstruction, the broadening
parameters (due to the Stark effect) were not known for all lines. These parameters were
determined from Equation (5), where the error is dependent on the accuracy of the line
width measurement. Thus, as the noise fraction increases, the error also increases. Two
other conditions for successful reconstruction are good spectral resolution to distinguish
closely spaced lines and a wide spectral range necessary to represent each element with
a sufficient number of lines. In principle, only one spectral line per element is required.
However, since the spectra are subject to instrumental noise, or the parameters of the
spectroscopic lines are not always known with 100% accuracy, it is desirable to include as
many suitable lines for each element as possible. The effect of an insufficient number of
lines for Si (only one) leads to a larger relative error of its determination (see Table 3).

Experimentally, the above conditions require operation with a wide-range high-
resolution spectrometer, such as an echelle. It should also be noted that the spectrometer
must be carefully calibrated with a standard light source to account for the uneven spectral
response of the light detector.

Further, the Monte Carlo CF method is based on an oversimplified model of laser-
induced plasma in LTE, in which plasma is assumed to be (i) isothermal, (ii) uniform,
and (iii) stationary, and (iv) light is collected along a single line-of-sight. None of these
conditions is fully satisfied in real plasma and experiment. Nevertheless, the assumption
can still be a reasonable approximation if the experiment is well-planned. Conditions (i)
and (ii) can be met by choosing the correct gating for the detection of LIBS spectra: the
start of the gate must be delayed with respect to the laser pulse enough for the plasma to
thermalize (i.e., equilibrate translational temperatures of electrons and heavy particles). At
the same time, the gate length must be short enough to consider the plasma frozen, but also
long enough to collect enough light and not lose sensitivity. Condition (iii), stationarity, is
provided, again, by the short gating of plasma emission. Conditions (i)–(iii) assume the use
of a gated ICCD camera for light detection rather than a CCD camera. Condition (iv) can
be provided by diaphragming the light collection path; a top-view geometry could be the
most suitable one.

Thus, despite the very promising results of Monte Carlo analysis with a synthetic spec-
trum (~1% accuracy and precision), similar results for experimental spectra can turn out to
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be worse (see, for example, References [22,23]), unless special measures are taken to properly
organize the experiment considering the above requirements. It is not difficult to ensure the
required experimental conditions, in which case the real efficiency of the method can approach
the theoretical one. The relatively long processing time (minutes) of each spectrum can hardly
be considered a limitation, given the ever-increasing power of modern computers.

5. Conclusions

The performance of the Monte Carlo algorithm for calibration-free LIBS was studied
on the example of a synthetic spectrum that mimics a metallurgical slag sample. The
algorithm runs in parallel and fully automated on a graphical processing unit (GPU). It
can work with any types of lines: self-absorbed or optically thin, affected or not by the
instrumental function. The optimization takes several minutes and depends on a type
of the GPU and number of elements to be determined. Knowledge of spectroscopic and
physical parameters is required for all species involved in calculations. The accuracy
and precision are about 1%, the latter due to the stochastic nature of the method and the
influence of spectral noise. On experimental spectra, the performance may be worse due to
the still idealistic character of the underlying model that requires the uniform, isothermal,
and stationary plasma in LTE. The method is, probably, best suited for applications, in
which standard-based analysis with reference samples is not feasible and requirements for
accuracy and precision are relaxed.

Further development of the MC–LIBS method can be expected in the direction of
reducing the computational time by further optimizing the algorithm and incorporating
temperature and density gradients into the model, which will introduce only a few new
iterable parameters into the algorithm. Work in this direction continues.
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